
International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

DOI : 10.5121/ijnsa.2015.7501 1

ANDROINSPECTOR: A SYSTEM FOR

COMPREHENSIVE ANALYSIS OF ANDROID
APPLICATIONS

Babu Rajesh V, Phaninder Reddy, Himanshu P and Mahesh U Patil

Centre for Development of Advanced Computing

ABSTRACT

Android is an extensively used mobile platform and with evolution it has also witnessed an increased influx

of malicious applications in its market place. The availability of multiple sources for downloading

applications has also contributed to users falling prey to malicious applications. A major hindrance in

blocking the entry of malicious applications into the Android market place is scarcity of effective

mechanisms to identify malicious applications. This paper presents AndroInspector, a system for

comprehensive analysis of an Android application using both static and dynamic analysis techniques.

AndroInspector derives, extracts and analyses crucial features of Android applications using static analysis

and subsequently classifies the application using machine learning techniques. Dynamic analysis includes

automated execution of Android application to identify a set of pre-defined malicious actions performed by

application at run-time.

KEYWORDS

Mobile Security, Malware, Static Analysis, Dynamic Analysis, Android

1. INTRODUCTION

Android is a widely used mobile platform and due to its dominance in consumer space, Android

becomes a lucrative target for malware developers who are exploiting the popularity and

openness of Android platform for various benefits. Malware developers use Android

marketplaces as entry points for hosting their malicious applications into the android user space.

According to Risk-IQ [1] report, malicious applications in Play store have grown by 388 percent

from 2011 to 2013, while the number of such applications removed annually by Google has

dropped from 60 percent in 2011 to 23 percent in 2013. As a large number of applications are

uploaded and updated regularly on these market places, Manual analysis of all the applications is

difficult task. A major hindrance for these market places is a scarcity of effective mechanisms to

evaluate the security threats possessed by the mobile applications being uploaded. Though static

analysis of Android applications gives a good idea of what an application is capable of, it is the

behavioural analysis of the application during it's execution which depicts the exact behaviour of

the application and detects if any malicious actions have been performed. Analysis of an

application by manually executing it is a cumbersome and error prone process.

In this regard we present 'AndroInspector', a system for comprehensive analysis of an Android

application using both static and dynamic analysis techniques. Dynamic analysis component of

AndroInspector identifies malicious actions performed during application execution by analysing

traces generated at run time. Application execution is carried out by automating the process of

test case generation and execution. Static analysis component comprises of extracting various

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

2

crucial features from an Android application, assigning weights to these features and

subsequently classifying the application as either malware or benign using a classifier model. The

classifier model is trained using the malware data set of 1260 malware samples acquired from

Genome Malware Project [2] and popular benign applications obtained from Google Play Store.

The model was then tested against 500 malware samples obtained from Virustotal malware

intelligence service [3].

2. RELATED WORK

Androguard [4] statically extracts features from APK, but this tool shows high false positive rate.

DroidMat [5] combines static and dynamic analysis approaches. It extracts features like

permissions and intents using static analysis and API calls using dynamic analysis. Adrieene et al.

[6] proposed an approach to identify over privileged applications by comparing API calls invoked

with permissions declared in the Manifest. William Enck et al. [7] proposed an approach where a

certificate is generated during an application's installation. This certificate gives complete

information about the application by rating them using Kirin security rules which are based on the

combinations of permissions extracted from Manifest file. DroidAnalytics [8] is a signature based

system for detecting repackaged applications. The drawback of this technique is it requires large

and balanced data set of malware and benign samples. Shabtai et al. [9] applied machine learning

classifier techniques like decision tree, Naive Bayes (NB), Bayesian Networks (BN) etc. to

classify Android applications as games and utilities citing the non availability of malware

applications. They collected around 22,000 features initially and later reduced to 50 features for

the purpose of classification. Classification using AndroInspector's classifier model requires

extraction of 24 features from the Android application.

Recently, a lot of work has also been done in the areas of automated Android application

execution and dynamic analysis of Android application. Automated android application execution

tools and frameworks are primarily used for the purpose of automated application testing. Tools

currently available for the purpose of automatic application execution can be broadly divided into

two categories. The first type of tools like Sikuli [10], Selendroid [11] require the developer to

generate a test case specific to the application. Test case developers for these tools need to have

information like ID, text, alignment etc about UI elements of the application. The second category

of tools are of 'Record and play' type. Here the user needs to record a sequence of events first and

then replay them. Ranorex [12] and Reran [13] are tools which fall into the second category. In

both the categories of tools mentioned above, either manual intervention is required or it is

essential to run the application at least once for test case generation. Another test automation

framework, GUIRipper [14] tests Android applications via their GUI by automatically exploring

the application with the aim of exercising the application GUI in a structured manner. PUMA

[15] is a programmable framework containing a generic UI automation and analysis. It uses

Monkey [16] for triggering events on the GUI. The monkey tool triggers a set of pseudo random

events on the GUI. Hence the execution path is random and not structured. Robotium [17] is an

open-source test framework for writing automatic grey box test cases for Android applications.

Robotium can be used for developing test cases for function, system and acceptance test

scenarios, spanning multiple Android activities. TaintDroid [18] provides a system-wide dynamic

taint tracking across multiple sources of sensitive data. DroidScope [19] is an Android analysis

platform based on virtual machine introspection. DroidScope reconstructs both the OS-Level and

Java-level semantics simultaneously. Also to facilitate custom analysis across three levels of an

Android device, that is hardware, OS and Dalvik Virtual Machine, DroidScope provides

possibility to develop plug ins which monitor activities across all three levels. Neither TaintDroid

nor DroidScope provide any means of automatic application execution. CopperDroid [20], a

dynamic analysis tool, provides system call-centric analysis of the application. For application

execution, CopperDroid installs and UN-installs the application thrice and analysis is done on

http://en.wikipedia.org/wiki/Open-source_software

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

3

traces collected only during installation and uninstallation. Due to limited execution, most of the

application behaviours can't be observed. In Construction of AndroInspector, we used Robotium

framework to develop application specific test cases and DroidScope for monitoring application

by collecting traces during application execution. Aubrey-Derrick Schmidt et al. [21] extracted

function calls of an installed application using readelf command. These function calls were later

compared with function calls of the malware executables present on a Remote Detection Server.

In contrast to this, our approach does not analyse applications on an Android device because of

limited resources like power, memory and data usage. DroidRanger [23] detects malicious

applications of known malware families in popular Android marketplaces using permission-based

behavioural foot printing. To detect malware from unknown families, DroidRanger uses heuristic-

based filtering scheme. The drawback of DroidRanger is the requirement of manual operations

while analysing and collecting behaviour of applications.

3. APPROACH

AndroInspector performs both static and dynamic analysis on a given Android application and

uses information gained from both to provide a comprehensive view of application behaviour.

Illustration 1: AndroInspector Architecture

The static analysis component gives out a verdict as to weather the application is malicious or

benign. The dynamic analysis component lists out the suspicious actions performed by the

application during execution. Figure 1 depicts AndroInspector architecture.

3.1. Dynamic Analysis

Dynamic Analysis of an Android application refers to analysing the application during its

execution. AndroInspector performs dynamic analysis by first executing the application on an

Android emulator and collecting various levels of traces simultaneously. The traces generated are

then analysed to identify malicious actions. This process is divided into 3 phases namely

preparation phase, execution phase and analysis phase. The test case for application execution is

generated during the preparation phase. Execution phase comprises of test case execution and

collecting run time traces. During the analysis phase, traces collected in execution phase are

analysed to detect suspicious behaviour.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

4

3.1.1. Preparation Phase

Traversal through an application during application execution comprises of traversing through the

application's activities as well as triggering events on all the UI widgets present in each activity.

The event triggering may lead to another activity or may trigger some functionality. When

provided only with an APK file we do not have required information to generate test case for

application execution. To extract the necessary information, we disassemble the APK. The

application is disassembled using apktool [24]. The information thus acquired is used to generate

an Robotium based test case specific to the application. Information extracted for test case

generation is explained below:

Package name: Application's package name is required while installing the application. An

application's package name can be extracted from its corresponding 'AndroidManifest.xml' file.

Launch activity: The launch activity/Main activity of an application is where the application

execution starts. The launch activity name is available in the 'AndroidManifest.xml' file.

List of activities: All activities present in an application are listed in it's 'AndroidManifest.xml'

file.

List of intent filters: List of all the intents and intent-filters are used to invoke the broadcast

receivers and services which may be waiting for some specific action to occur on which intent

would be triggered. Intent filters are extracted from the Android Manifest file.

The test case generated is structured in a way that all the activities comprising the application are

traversed in a depth first search fashion. DFS for application execution means first main activity

is traversed and all other activities are traversed sequentially in the order of their reachability

from main activity.

3.1.2. Execution Phase

By the end of preparation phase we have a robotium based test case specific to the application to

be executed. The Android emulator used during dynamic analysis is DroidScope. (Reasons for

using droidscope are stated in the next section). If the application and test case have different

signatures, then test case does not have access to the application and its elements. To overcome

this, we re-sign the application under analysis and test case with “Android Debug Mode”. The test

case is then compiled and built using Apache Ant [25] tool. The Android application is then

executed on the emulator using test case on the device. This test case is limited to testing the UI

elements and testing the Activities in an application.

Initially the test case starts the application execution by launching the Launch/Main activity. The

test case then triggers events on all the elements present in the activity. Triggering events on UI

elements is performed by using the Robotium based API's provided for different types of UI

elements. UI elements like buttons, image buttons, list views etc. are clicked, where as edit texts,

date time pickers are set with some per-determined values. Both types of actions (clicking and

setting values) are carried out by using API's provided by Robotium which use the IDs of

elements to identify elements and perform a specified action on them. If on triggering an event on

any UI element causes the launch of another activity, then the activity launched is identified and

actions are performed upon elements in the newly launched activity. This is repeated till the

control reaches an activity(let's say 'activity Last') from where another activity cannot be

instantiated, when actions on all elements in that activity are performed, control moves back to

the previous activity(that is the activity from which 'activity Last' had originated) and checks

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

5

whether actions upon all the elements in the activity have been performed. If yes, we go back to

previous activity or else perform action upon the remaining elements.

Once all the activities are parsed and all the elements in those activities are executed, we exit the

test case. Figure 2 shows the flow of execution in test case.

After execution of all the UI elements of the application, the broadcast receivers in the application

are invoked one at a time by triggering intents specific to the broadcast listeners. Triggering

intents is done by using 'Activity Manager' (am) in 'adb shell'. By this point, activities and

broadcast receivers have been executed.

Even though we did not explicitly start the Services, the tests executed above would have started

the following types of services :

Services which are started when application is installed

Services which are started when application is launched

Services which start when any activity is launched

Services which start when some action is performed on an UI element

Services which are start on receiving specific intents.

Illustration 2: Flowchart for automatic application execution

3.1.3. Analysis Phase

The traces collected during execution phase are used for analysis. During the execution phase, the

application is executed on DroidScope emulator. DroidScope emulator is an Android analysis

platform for virtualization-based malware analysis. DroidScope provides the possibility to

develop plug ins to access both the OS-level and Java-level semantics simultaneously and

seamlessly. DroidScope monitors the three levels of an Android device: hardware, OS and Dalvik

Virtual Machine. Using DroidScope, We developed plug ins to monitor and record the a) dalvik

instruction traces b) system calls and c) API-level activity. The network activity performed by the

application during application execution is captured using tcpdump. All the information gathered

from dalvik instruction traces, system calls traces, API calls and network activity traces are then

parsed to identify a set of per-defined patterns which indicate the occurrence of malicious

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

6

activity. The malicious actions observed are then reported to the user. For deciding upon the

patterns which would act as an indicator of malicious action, We executed 1260 malware samples

on DroidScope and manually studied the traces extracted. As the behaviour corresponding to the

malware samples from training set were known, the system call traces and API traces were

observed when the malicious action was performed to deduce patterns which would help in

identifying the occurrence of malicious activity. For example, to identify if the application is

trying to send an SMS without user's consent, we look for API corresponding to sending SMS

and also observe if the Messaging application was opened or not. If the Messaging application

was not opened and an SMS was sent from the application under analysis, it is considered as a

malicious action. Another example is 'dev/urandom_Access'. We parse through the system call

traces to identify read or write system calls upon path 'dev/urandom'. Each pattern thus identified

substantiates the occurrence of a specific malicious action. Any malicious action found is

reported to the user. Malicious actions which were considered for finding patterns are stated in

the Table 1

3.2. Static Analysis

Android applications are installed by using an Android application package (APK) file. APK file

is an archive filewhich contains Java classes, resources and Manifest file. Static analysis

constitutes of unpacking the android application and analysing the contents of application. Static

analysis component of AndroInspector unpacks the application, extracts necessary information

and uses the information extracted to classify the application as either malicious or benign using

machine learning techniques. The information extracted for analysis is in form of various features

of an Android application. Figure 3 shows how various features are extracted from an Android

application.
Illustration 3: Feature extraction in AndroInspector

Following sub-sections describe feature selection for feature set, weight assignment to the

features and selection of feature vector.

3.2.1. Features

3.2.1.1. Suspicious Permissions and Permission Combinations

A permission is a restriction limiting the access of an application to the device to protect critical

data and code that could be misused to distort or damage the user experience. We considered the

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

7

patterns of suspicious permissions in malware samples as discovered by Y.Zhou et.al. [26]. For

extracting permissions used by an application we use APKParser tool [22]. The permissions

extracted were analysed and cross verified for high occurrence across malware samples available

in our training dataset. Out of all the permissions specified as suspicious by Y.Zhou et.al, we

discarded those permissions which were present in large numbers in benign samples as these

would not significantly contribute during classification process. The presence or absence of the

remaining suspicious permissions was then considered as a feature. Our findings are shown in

Figure 4.

I.Rassameeroj [27] states that certain permission combinations enable an application to perform

dangerous actions posing threat to user's data and privacy. We considered these combinations as

features for our feature set. Table 2 depicts the permissions and permission combinations

considered as features.

Illustration 4: Frequency of suspicious permissions among malware samples

3.2.1.2. Suspicious API Combinations

APIs used by an application determines the actual functionality and capability of the application.

Static analysis of APIs used in an application hence becomes important to understand what the

application actually intends to do. In the similar direction of selecting permissions as features, our

approach contributes by evaluating APIs extensively used by malware applications. APIs were

broadly classified according to their usage by the application. From the list of APIs which are

found in large number of malware samples, combinations were derived which could pose a threat

to the user. Two main types of threats considered are financial losses and leakage of user's

personal information. For example APIs for accessing user's personal information (network

details, device ID, line number, etc.) in combination with APIs for sending SMS enables an

application to transmit user's personal information to a predefined source. This leads to both

breach of privacy as well as monetary loss. The monetary loss here is due to cost incurred when

the SMS is sent.\par APIs for evaluation are extracted by disassembling classes.dex file using

dexdump tool present in Android SDK [28]. Figure 5 depicts the a snapshot of classes.dex when

disassembled using dexdump tool. Table 3 lists the API combinations considered as a feature for

our feature set.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

8

Illustration 5: Disassembled dex file

3.2.1.3. Manifest Violation

All the permissions required by an application should be declared in the AndroidManifest.xml.

These permissions determine what are all the capabilities the application has. During application

installation, all the permissions declared by the application are not cross verified by the package

manager. Thus, at the run time if the application needs to perform a certain action and it does not

have corresponding permission, run time exceptions occur. Malware developers take advantage of

this flaw to perform collusion attacks [29]. The collusion attack requires at least 2 applications to

work in collaboration. In this type of attack, an over privileged application provides an under

privileged application with necessary permissions at runtime. Soundcomber [30] is one such

application which aims at collecting user's information by capturing audio from device's

microphone and then sends it over the network with help of another application having necessary

permissions. Figure 6 depicts a scenario where two applications combine their permissions to

read contacts and send them over the network.

One way to detect the possibility of collusion attack is to look for application which has declared

more permissions than what it requires (over privileged applications), but the drawback with this

approach is the high false positive rate. The reason for high false positive rate is that many

developers declare majority of the permissions available irrespective of their usage by the

application.

Illustration 6: A collusion attack scenario

We devised a different approach for detecting possible collusion attack. Rather than looking for

over privileged applications we detect under privileged applications, that is the application

declaring less permissions than what it actually required. The under privileged application then

gets required privileges at runtime with the help of another application. To detect under privileged

applications applications, we look for the permissions that will be used by the application at run

time but are not present in application's manifest file. To derive permissions required by

application at run time, permission required for executing each API present in application's dex

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

9

file is extracted. If any permission required for execution of an API is not found in the

application's manifest file, it is considered as a manifest violation.

We derive the permissions required by an API with the help of Android's developer guide and

Pscout [31].

Each occurrence of manifest violation is assigned a weight of 7. A summation of these

permission's weights was considered as the weight of the feature (Manifest violation).

3.2.1.4. Suspicious Content URI

A content URI (used for data access) can be called suspicious if by using that URI an application

can leak user's personal data or can access another application's data. For example, an application

can get access to contacts by using URI: content://com.Android.contacts. Such suspicious URIs

were identified and their presence was checked among various malware and benign samples

available in the training set. Suspicious content URIs which were detected in most of the malware

samples and few benign samples were considered as a feature for feature set. Figure 7 shows the

content URIs extensively used by malware applications.

To collect the content URIs used by the application, we parse the dalvik byte code of

disassembled classes.dex. The presence of content URIs that provide access to MMS, Browser

and telephony data were seen among majority of malware applications.

Illustration 7: Frequency of suspicious content URIs among malware samples

Each Suspicious Content URI was assigned a weight of 6. Summation of the weights for

frequency of such suspicious content URIs is considered as the weight of the feature.

3.2.1.5. Detection of Executable code

Embedding malicious code into documents has been successful technique for distributing

malware. Desktop malware like Pidief, ZBOT, SillyD have been distributed as malicious PDF,

JPEG, mp3 files. Based on Shafiq [32] and Stolfo's [33] findings which stated that detection of

embedded malware requires parsing the byte code of the documents, We employed a mechanism

to find embedded executables by parsing the byte code of all the files present in the resources

directory of an APK. Many malware samples show the presence of executables and shell scripts

embedded within image and music files. Presence of image files embedded with executable code

can be found in samples from malware families like DroidKungFu1 and RougePush. Malware

samples from DroidKungFu3 and GingerMaster families show presence of music files embedded

with executable code.\par As this behavior was detected only in malware samples, presence of

embedded executables was assigned a maximum weight of 10. Summation of the weights for

frequency of such files is considered as weight of the feature.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

10

3.2.2. Assigning Weight to Features

The weight assigned to a feature represents the impact that presence or absence feature makes on

an application's classification. Weights are assigned to each feature on a scale of 1 to 10 using

heuristics based approach such that higher the weight of a feature, more the feature contributes

during classification. The highest weight of 10 was assigned to presence of executables embedded

in image or music files. Presence of embedded executables is the strongest indicator in our feature

set of an application being malicious as only malware samples are found to have resource files

injected with executable code. All other features were assigned weights relative to the weight of

'presence of embedded executables' feature. Manifest violations are assigned a weight of 7. This

is because unlike a malicious application, a benign application declares all the permissions being

used. When compared to 'suspicious Permission combinations' or 'suspicious API combinations',

'manifest violation' has more impact during classification but it is not as influential as 'presence of

embedded executables'. Thus it is assigned a weight lower than 'presence of embedded

executables' and higher than 'suspicious Permission combinations' and 'suspicious API

combinations'. Presence of suspicious content URI in an application is assigned a weight of 6.

The presence of these content URI was seen in both malicious and benign samples, but number of

malicious samples containing these URIs was much greater than number of benign samples.

Weights for suspicious content URIs, manifest violations, presence of executable code are

frequency based. Thus the total weight for these features in the feature set is multiple of the

frequency of the feature occurrence and the weight assigned to the feature. \par Permission

combinations and API combinations are assigned a moderate weight of 5 as the presence of these

leads to suspicious behaviours, but their presence cannot conclude an application of being a

malware or benign. We assigned suspicious permissions the lowest weight of 3 as these

permissions can be found in large number in both benign and malware samples. Table 4 depicts

the assignment of weights to the features selected.

3.2.3. Feature Vector Selection

After deciding upon the application's attributes to be considered as features, we considered and

evaluated three categories of feature vectors with a set of machine learning algorithms. All the

three categories of feature vectors constituted of similar features, but represented in different way.

The first and second categories of feature vectors were weighted feature vector where as the third

category was a non weighted feature vector. The first category of feature vector contained

weights for each feature along with the Euclidean distance as an additional feature. The second

category of feature vector was derived by excluding Euclidean distance from the first feature

vector. For the third category of feature vector, rather than considering the frequency and weight

of a feature, we check only presence of a feature. Representation in feature vector is done as

either 1 or 0 to depict the presence or absence of a specific feature in the sample.

3.2.3.1. Evaluation of model for Feature Vector Selection

K-fold cross validation was carried out in order to evaluate the efficiency of the classification

model. The default implementation of cross validation provided by WEKA was used for this

purpose. The efficiency of the classifier models generated using all three categories of feature

vectors were compared based on cross validation. One round of cross-validation of a two class

classifier model involves seggregating a sample of the training data set into two complementary

subsets, subset for performing the analysis (the training set) and subset for validating the analysis

(the validation set). Inconsistency is reduced by multiple rounds of cross-validation using

different seggregations. Finally the average of all validation results is presented as true positive

rate and false positive rate. We used WEKA [34] implementation for both model generation and

cross validation. The true positive rate and false positive rate are deduced as follows :

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

11

TPR=

TP

TP+FN

FPR=

FP

FP+TN

Figure 8 (a) and Figure 8 (b) show variations in true positive rates and variations in false positive

rates respectively for models generated using three categories of feature vectors.

High true positive and low false positive rates are observed for the second category of feature

vector, that is a feature vector with weights and excluding Euclidean distance. Thus the second

Illustration 8: Variation inTPR (a) and FPR (b) for various models

category of feature vector was considered for providing features to the machine learning

algorithms. The reason for omitting Euclidean distance from the feature set was its last rank

among the features on applying Chi-Square attribute ranking mechanism. This illustrated that

excluding it as a feature would not affect the detection rates. Figure 9 shows variation in

Euclidean distance across all the samples present in our dataset.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

12

Illustration 9: Variation in ED scores among benign and malware samples

Figure 10 shows the receiver operating characteristic (ROC) graph for the classification model

built using second category of feature set. This graph illustrates the performance of a binary

classifier system built using various machine learning algorithms and the weighted feature set.

Random Forest algorithm depicts the maximum ROC space in the ROC curve which proves that

for the given training set, classifier model built using Random Forest is more efficient than

models generated using other machine learning algorithms. We used model built using Random

Forest algorithm as the classifier in AndroInspector implementation.

Illustration 10: ROC Curve for classifier models based on various algorithms

3.2.3. Classification Using AndroInspector

Classification of an Android application by AndroInspector as either malicious or benign is based

solely on information obtained during the static analysis of the application. Static analysis is

carried out in two phases. First phase is the knowledge building phase. In this phase,

AndroInspector extracts specific features and builds feature set of all the samples from the

training set. These feature sets are then provided to the machine learning algorithm using WEKA

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

13

Illustration 11: Detection rate of AndroInspector for malware samples

Illustration 12: Detection rate of AndroInspector for benign samples

implementation of machine learning algorithms. A two class classifier model is thus generated.

Classifier model generated during this phase can be used for classification of samples without

updating the model every time a new sample is provided for analysis.

Second phase is the classification phase. In this phase, features are extracted from test application

which needs to be classified and a corresponding feature set is built. Now this feature set is

provided to the classification model generated during phase 1. The classification model then

classifies the sample as either malicious or benign

4. RESULTS

After application analysis, AndroInspector generates an output json file. This output report

generated contains details regarding the presence or absence of all the features under

consideration and a verdict on weather the application is either malicious or benign. The report

also specifies all the suspicious content URIs and embedded executables present in the

application.

The efficiency of AndroInspector's classification model was tested by analysing 500 malware

samples obtained from Virustotal malware intelligence service [3] and 800 benign samples from

ApkDrawer [35]. Collectively these samples constituted of our test-set. It was verified beforehand

that the test-set does not contain any samples in common with the training-set by comparing the

hash code of each sample in test set against hash codes of samples from training set. Figure 11

and Figure 12 depict the detection rates of malware samples and benign samples respectively by

using AndroInspector.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

14

Results from Dynamic analysis of malware samples obtained from GENOME project [2]

indicates that 90 percent of the malware samples analysed performed cryptographic operations

and 85 percent of them accessed files related to the device. Figure 13 depicts malicious actions

observed on executing malware samples.

Illustration 13: Malicious actions detected during execution of malware samples

On analysis of network activity based traces it was observed that most malware samples

communicate with IP addresses based in Beijing and Guangzhou cities of China. Figure 14

depicts network connections made by malware samples with IP addresses from different cities.

Illustration 14: Network connections made by malware samples

The detection rate of AndroInspector was compared with the detection rates of four other anti

virus solutions for the same set of malware samples. Figure 15 shows the detection rate of

AndroInspector in comparison with Kaspersky (version 12.0.0.1225) [36], McAfee (version

6.0.5.614) [37], Avast (version 8.0.1489.320) [38] and TrendMicro (version 9.740.0.1012) [39].

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

15

Illustration 15: Detection rates of AndroInspector in comparison with other AV solutions

ecall rate of AndroInspector with Random Forest based classifier for malwares from various

malware families is shown in Figure 16

Illustration 16: Recall rate of AndroInspector for various malware families

5. CONCLUSION

We present AndroInspector, an approach for detecting malicious Android applications based on

static analysis and dynamic analysis of their respective APK files. Static analysis is responsible

for classifying the application as either malware or benign whereas dynamic analysis identifies

the malicious actions performed by the application during execution. The process of classification

comprises of extracting 24 features, assigning weights to the features and finally using the

collection of feature weights as a feature set. The feature set along with Random Forest classifier

model is then used to classify the given sample as either malware or benign. We observed that

classifier model built using Random Forest shows higher TPR and lower FPR when compared to

other machine learning algorithms. Observations from dynamic analysis revealed that a large

number of malware samples (Training set and test set) accessed device related information.

Analysis of application's network activity revealed that majority of malware samples connected to

servers located in China.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

16

Future scope of work involves developing a classifier model which considers information from

both static analysis and dynamic analysis while classifying an Android application. We are also

working towards modifying the dynamic analysis component such that it's functioning would be

independent of application's Android version and would works on any generic Android emulator.

REFERENCES

[1] RiskIQ, Feb 19 2014, Research Also Shows Steady and Significant Drop in Number of Malicious

Apps Being Removed in Past Three Years. Available: http://www.riskiq.com/company/press-

releases/riskiqreports-malicious-mobile-apps-google-play-have-spiked-nearly-400

[2] Genome Project. Android malware samples. http://www.malgenomeproject.org.

[3] S. Hispasec Sistemas. Virustotal malware intelligence service, 2011.

[4] A. Desnos. Androguard. Available at https://code.google.com/p/androguard/.

[5] Wu, Dong-Jie, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and KuoPing Wu. ”Droidmat: Android

malware detection through manifest and API calls tracing.”In Information Security (Asia JCIS), 2012

Seventh Asia Joint Conference on, pp. 62-69. IEEE, 2012.

[6] Felt, Adrienne Porter, et al. ”Android permissions demystified.”Proceedings of the 18th ACM

conference on Computer and communications security. ACM, 2011.

[7] Enck William, Machigar Ongtang, and Patrick McDaniel. ”On lightweight mobile phone application

certification.” Proceedings of the 16th ACM conference on Computer and communications security.

ACM, 2009.

[8] Zheng, Min, Mingshen Sun, and John Lui. ”Droid Analytics: A Signature Based Analytic System to

Collect, Extract, Analyze and Associate Android Malware.” Trust, Security and Privacy in

Computing and Communications (TrustCom), 2013 12th IEEE International Conference on IEEE,

2013.

[9] Shabtai, Asaf, Yuval Fledel, and Yuval Elovici. "Automated static code analysis for classifying

Android applications using machine learning." Computational Intelligence and Security (CIS), 2010

International Conference on. IEEE, 2010.

[10] Yeh, Tom, Tsung-Hsiang Chang, and Robert C. Miller. "Sikuli: using GUI screenshots for search and

automation." Proceedings of the 22nd annual ACM symposium on User interface software and

technology. ACM, 2009.

[11] Selendroid, Ebay software foundation,'Test automation for native or hybrid Android apps and the

mobile web with Selendroid.'. http://selendroid.io/

[12] Ranonex. Android Test Automation - Automateyour App Testing. http://www.ranorex.com/mobile-

automation-testing/android-test-automation.html.

[13] Gomez, Lorenzo, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. "Reran: Timing-and touch-

sensitive record and replay for android." In Software Engineering (ICSE), 2013 35th International

Conference on, pp. 72-81. IEEE, 2013.

[14] Amalfitano, Domenico, et al. "Using GUI ripping for automated testing of Android applications."

Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering.

ACM, 2012.

[15] Hao, Shuai, et al. "PUMA: Programmable UI-Automation for Large Scale Dynamic Analysis of

Mobile Apps." Proceedings of the 12th annual international conference on Mobile systems,

applications, and services. ACM, 2014

[16] Google. UI/Application Exerciser Monkey,

http://developer.android.com/guide/developing/tools/monkey.html

[17] Robotium. User scenario testing for Android. http://code.google.com/p/robotium/.

[18] Enck, William, et al. "TaintDroid: an information flow tracking system for real-time privacy

monitoring on smartphones." Communications of the ACM 57.3 (2014): 99-106.

[19] Yan, Lok-Kwong, and Heng Yin. "DroidScope: Seamlessly Reconstructing the OS and Dalvik

Semantic Views for Dynamic Android Malware Analysis."USENIX Security Symposium. 2012.

[20] Tam, Kimberly, et al. "CopperDroid: Automatic Reconstruction of Android Malware Behaviors."

 (2015).

[21] Schmidt, A-D., Rainer Bye, H-G. Schmidt, Jan Clausen, Osman Kiraz, Kamer A. Yuksel, Seyit

 Ahmet Camtepe, and Sahin Albayrak. ”Static analysis of executables for collaborative malware

 detection on android.” In Communications, 2009. ICC’09. IEEE International Conference on,

 pp. 1-5. IEEE, 2009.

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

17

[22] J. Erdfelt. Apkparser tool. https://code.google.com/p/xml-apk-parser.

[23] Zhou, Yajin, Zhi Wang, Wu Zhou, and Xuxian Jiang. ”Hey, You, Get Off of My Market: Detecting

Malicious Apps in Official and Alternative Android Markets.” In NDSS. 2012.

[24] Winsniewski, R.: Android, “Apktool: a tool for reverse engineering Android apk files,” 2012,[Online]

Available: http://code.google.com/p/android-apktool/

[25] Ant, Apache. "The Apache Ant Project." (2010).

[26] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution."

Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012.

[27] Rassameeroj, Ittipon, and Yuzuru Tanahashi. "Various approaches in analyzing Android applications

with its permission-based security models." Electro/Information Technology (EIT), 2011 IEEE

International Conference on. IEEE, 2011.

[28] Google Inc. Official Page for android developers. http://developer.android.com.

[29] Bugiel, Sven, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and

Bhargava Shastry. "Towards Taming Privilege-Escalation Attacks on Android." In NDSS. 2012.

[30] Schlegel, Roman and Zhang, Kehuan and Zhou, Xiao-yong and Intwala, Mehool and Kapadia, Apu

and Wang, XiaoFeng. 'Soundcomber: A Stealthy and Context-Aware Sound Trojan for

Smartphones.'NDSS, 2011

[31] Au, Kathy Wain Yee, Yi Fan Zhou, Zhen Huang, and David Lie. "Pscout: analyzing the android

permission specification." In Proceedings of the 2012 ACM conference on Computer and

communications security, pp. 217-228. ACM, 2012.

[32] Shafiq, M. Zubair, Syed Ali Khayam, and Muddassar Farooq. "Embedded malware detection using

markov n-grams." In Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 88-107.

Springer Berlin Heidelberg, 2008.

[33] Stolfo, Salvatore J., Ke Wang, and Wei-Jen Li. ”Towards stealthy malware detection.” Malware

Detection. Springer US, 2007. 231-249.

[34] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten.

”The WEKA data mining software: an update.” ACM SIGKDD explorations newsletter 11, no. 1

(2009): 10-18.

[35] Z. Jay. Apkdrawer.com. http://www.apkdrawer.com.

[36] Kaspersky mobile security. Available at http://www.kaspersky.co.in/downloads/android-security.

[37] Mcafee mobile security. Available at https://www.mcafeemobilesecurity.com/.

[38] Avast mobile security. Available at http://www.avast.com/en-in/free-mobile-security.

[39] Trendmicro mobile security. Available at http://www.trendmicro.com/us/enterprise/product-

security/mobile-security/.

APPENDIX
Table 1. Malicious Actions Considered

Feature Threat

SMS_Sent Application sending SMS without user's interaction

Data_Download Application is trying to download data over the network

dev/urandom_Access Application performs read or write operations on /dev/urandom limits the

expansion of entropy pool of /dev/random thus limiting the randomness and

hence making it easier to crack cryptographic algorithms

BreakingSandbox Application accessing other applications on the device or data related to other

applications

NetworkInfo_Access Application accessing device's network related information

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

18

BrowsingInfo_Accessed Application accessing cookies and browsing history from the device

SystemInfo_Access Application can know the current system state

CryptographicMethods Application using cryptographic algorithms for data encryption

Contacts_Accessed Application has accessed contacts on device without user's consent

File_Content_Uploaded Application sending a file over the network

DeviceFiles_Access Application accessing sensitive files related to the device

Table 2. Suspicious permissions and permission combinations

Suspicious permissions and permission combinations Weight assigned

READ SMS 3

WRITE SMS 3

RECEIVE SMS 3

WRITE CONTACTS 3

WRITE APN SETTINGS 3

SEND SMS 3

ONLY INTERNET 3

ONLY WRITE EXTERNAL STORAGE 3

WRITE SMS and RECEIVE SMS 5

SEND SMS and WRITE SMS 5

INTERNET and WRITE EXTERNAL STORAGE 5

INTERNET,RECORD AUDIO, READ PHONE STATEand MODIFY PHONE

STATE

5

ACCESS FINE LOCATION or ACCESS COARSE LOCATION,

RECEIVE BOOT COMPLETED and INTERNET

5

INTERNET,RECORD AUDIO and PROCESS OUTGOING CALLS 5

Table 3. Suspicious API combinations

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

19

Suspicious API combinations Weight assigned

"landroid/telephony/telephonymanager;.getdeviceid"

"landroid/location/locationmanager;.getlastknownlocation"

"landroid/location/location;.getlatitude"

"landroid/location/location;.getlongitude"

"landroid/telephony/smsmanager;.sendtextmessage"

"landroid/net/uri;.parse","landroid/location/locationmanager;.getbestprovider"

5

"ljava/net/urlencoder;.encode"

"ljava/net/uri;.getquery"

"ljava/net/httpurlconnection;.connect"

"ljava/net/httpurlconnection;.geturl"

"ljava/net/httpurlconnection;.getheaderfield"

"landroid/location/locationmanager;.getbestprovider"

"landroid/location/location;.getlatitude"

"landroid/location/location;.getlongitude"

"landroid/telephony/gsm/smsmanager;.sendtextmessage"

5

"landroid/net/uri;.parse"

"landroid/content/contentresolver;.query"

"landroid/database/cursor;.movetonext"

"landroid/database/cursor;.getcolumnindex"

"landroid/database/cursor;.getstring"

"landroid/database/cursor;.close"

"landroid/database/cursor;.movetolast"

"landroid/database/cursor;.movetoprevious"

5

"landroid/net/uri;.parse"

"ljava/net/urlencoder;.encode"

"ljava/net/url;.openstream"

"landroid/telephony/telephonymanager;.getdeviceid"

"landroid/telephony/telephonymanager;.getline1number"

"landroid/telephony/telephonymanager;.getnetworkcountryiso"

"landroid/telephony/telephonymanager;.getnetworkoperatorname"

"ljava/io/bufferedreader;.readline"

"landroid/content/pm/packagemanager;.hassystemfeature"

5

"ljava/net/inetaddress;.getlocalhost" 5

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

20

"ljava/net/inetaddress;.gethostname"

"ljava/net/url;.openstream"

"ljava/net/inetaddress;.getbyname"

"ljava/net/inetaddress;.equals"

"ljava/net/inetaddress;.hashcode"

"landroid/net/uri;.parse"

"landroid/telephony/smsmanager;.getdefault"

"landroid/telephony/smsmanager;.dividemessage"

"landroid/telephony/smsmanager;.sendtextmessage"

"landroid/telephony/telephonymanager;.getdeviceid"

"landroid/telephony/telephonymanager;.listen"

"ljava/net/urlencoder;.encode"

"ljava/net/uri;.<init>"

"landroid/location/location;.hasaccuracy"

"landroid/location/location;.distanceto"

"landroid/location/location;.gettime"

"landroid/location/location;.getaccuracy"

"landroid/location/location;.getlatitude"

"landroid/location/location;.getlongitude"

"landroid/location/location;.getprovider"

"landroid/location/locationmanager;.requestlocationupdates"

"landroid/location/location;.<init>"

"landroid/location/location;.setaccuracy"

5

"ljava/net/urlencoder;.encode"

"ljava/net/url;.<init>"

"ljava/net/url;.openconnection"

"landroid/telephony/telephonymanager;.getline1number"

"landroid/telephony/smsmanager;.getdefault"

"landroid/telephony/smsmanager;.sendtextmessage"

"landroid/telephony/smsmessage;.getdisplayoriginatingaddress"

"landroid/telephony/smsmessage;.getmessagebody"

"landroid/telephony/smsmessage;.createfrompdu"

5

International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015

21

Table 4. Weight assignment to various features

Feature type Weight assigned

Suspicious permissions 3

Suspicious permission combinations 5

Suspicious API combinations 5

Suspicious content URI 6

Manifest violation 7

Presence of executable 10

AUTHORS

Babu Rajesh V has been working for three years in the field of mobile security and malware

analysis. His areas of interests include mobile security and embedded security

Phaninder Reddy has been working for two years in the field of mobile security and

malware analysis. His areas of interests include machine learning and data analytics

Himanshu Pareek has around six years of experience in developing and design of security

solutions related to small sized networks. He has research papers published on topics like

malware detection based on behaviour and application modelling

Mahesh U Patil received master degree in electronics and communication. Presently he is

working as Principal Technical Officer at Centre for Development of Advanced Computing.

His research interests include Mobile Security and Embedded Systems.

