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ABSTRACT 

 
Android is an extensively used mobile platform and with evolution it has also witnessed an increased influx 

of malicious applications in its market place. The availability of multiple sources for downloading 

applications has also contributed to users falling prey to malicious applications.  A major hindrance in 

blocking the entry of malicious applications into the Android market place is scarcity of effective 

mechanisms to identify malicious applications. This paper presents AndroInspector, a system for 

comprehensive analysis of an Android application using both static and dynamic analysis techniques. 

AndroInspector derives, extracts and analyses crucial features of Android applications using static analysis 

and subsequently classifies the application using machine learning techniques. Dynamic analysis includes 

automated execution of Android application to identify a set of pre-defined malicious actions performed by 

application at run-time.  
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1. INTRODUCTION 
 

Android is a widely used mobile platform and due to its dominance in consumer space, Android 

becomes a lucrative target for malware developers who are exploiting the popularity and 

openness of Android platform for various benefits. Malware developers use Android 

marketplaces as entry points for hosting their malicious applications into the android user space. 

According to Risk-IQ [1] report, malicious applications in Play store have grown by 388 percent 

from 2011 to 2013, while the number of such applications removed annually by Google has 

dropped from 60 percent in 2011 to 23 percent in 2013. As a large number of applications are 

uploaded and updated regularly on these market places, Manual analysis of all the applications is 

difficult task. A major hindrance for these market places is a scarcity of effective mechanisms to 

evaluate the security threats possessed by the mobile applications being uploaded. Though static 

analysis of Android applications gives a good idea of what an application is capable of, it is the 

behavioural analysis of the application during it's execution which depicts the exact behaviour of 

the application and detects if any malicious actions have been performed. Analysis of an 

application by manually executing it is a cumbersome and error prone process. 

  

In this regard we present 'AndroInspector', a system for comprehensive analysis of an Android 

application using both static and dynamic analysis techniques. Dynamic analysis component of 

AndroInspector identifies malicious actions performed during application execution by analysing 

traces generated at run time. Application execution is carried out by automating the process of 

test case generation and execution. Static analysis component comprises of extracting various 
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crucial features from an Android application, assigning weights to these features and 

subsequently classifying the application as either malware or benign using a classifier model. The 

classifier model is trained using the malware data set of 1260 malware samples acquired from 

Genome Malware Project [2] and popular benign applications obtained from Google Play Store. 

The model was then tested against 500 malware samples obtained from Virustotal malware 

intelligence service [3]. 

 

2. RELATED WORK 
 

Androguard [4] statically extracts features from APK, but this tool shows high false positive rate. 

DroidMat [5] combines static and dynamic analysis approaches. It extracts features like 

permissions and intents using static analysis and API calls using dynamic analysis. Adrieene et al. 

[6] proposed an approach to identify over privileged applications by comparing API calls invoked 

with permissions declared in the Manifest. William Enck et al. [7] proposed an approach where a 

certificate is generated during an application's installation. This certificate gives complete 

information about the application by rating them using Kirin security rules which are based on the 

combinations of permissions extracted from Manifest file. DroidAnalytics [8] is a signature based 

system for detecting repackaged applications. The drawback of this technique is it requires large 

and balanced data set of malware and benign samples. Shabtai et al. [9] applied machine learning 

classifier techniques like decision tree, Naive Bayes (NB), Bayesian Networks (BN) etc. to 

classify Android applications as games and utilities citing the non availability of malware 

applications. They collected around 22,000 features initially and later reduced to 50 features for 

the purpose of classification. Classification using AndroInspector's classifier model requires 

extraction of 24 features from the Android application. 

 

Recently, a lot of work has also been done in the areas of automated Android application 

execution and dynamic analysis of Android application. Automated android application execution 

tools and frameworks are primarily used for the purpose of automated application testing. Tools 

currently available for the purpose of automatic application execution can be broadly divided into 

two categories. The first type of tools like Sikuli [10], Selendroid [11] require the developer to 

generate a test case specific to the application. Test case developers for these tools need to have 

information like ID, text, alignment etc about UI elements of the application. The second category 

of tools are of 'Record and play' type. Here the user needs to record a sequence of events first and 

then replay them. Ranorex [12] and Reran [13] are tools which fall into the second category. In 

both the categories of tools mentioned above, either manual intervention is required or it is 

essential to run the application at least once for test case generation. Another test automation 

framework, GUIRipper [14] tests Android applications via their GUI by automatically exploring 

the application with the aim of exercising the application GUI in a structured manner. PUMA 

[15] is a programmable framework containing a generic UI automation and analysis. It uses 

Monkey [16] for triggering events on the GUI. The monkey tool triggers a set of pseudo random 

events on the GUI. Hence the execution path is random and not structured. Robotium [17] is an 

open-source test framework for writing automatic grey box test cases for Android applications. 

Robotium can be used for developing test cases for function, system and acceptance test 

scenarios, spanning multiple Android activities. TaintDroid [18] provides a system-wide dynamic 

taint tracking across multiple sources of sensitive data.  DroidScope [19] is an Android analysis 

platform based on virtual machine introspection. DroidScope reconstructs both the OS-Level and 

Java-level semantics simultaneously. Also to facilitate custom analysis across three levels of an  

Android device, that is  hardware, OS and Dalvik Virtual Machine, DroidScope provides 

possibility to develop plug ins which monitor activities across all three levels. Neither TaintDroid 

nor DroidScope provide any means of automatic application execution. CopperDroid [20], a 

dynamic analysis tool, provides system call-centric analysis of the application. For application 

execution, CopperDroid installs and UN-installs the application thrice and analysis is done on 

http://en.wikipedia.org/wiki/Open-source_software
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traces collected only during installation and uninstallation. Due to limited execution, most of the 

application behaviours can't be observed. In Construction of AndroInspector, we used Robotium 

framework to develop application specific test cases and DroidScope for monitoring application 

by collecting traces during application execution. Aubrey-Derrick Schmidt et al. [21] extracted 

function calls of an installed application using readelf command. These function calls were later 

compared with function calls of the malware executables present on a Remote Detection Server. 

In contrast to this, our approach does not analyse applications on an Android device because of 

limited resources like power, memory and data usage. DroidRanger [23] detects malicious 

applications of known malware families in popular Android marketplaces using permission-based 

behavioural foot printing. To detect malware from unknown families, DroidRanger uses heuristic-

based filtering scheme. The drawback of DroidRanger is the requirement of manual operations 

while analysing and collecting behaviour of applications. 

 

3. APPROACH 
 

AndroInspector performs both static and dynamic analysis on a given Android application and 

uses information gained from both to provide a comprehensive view of application behaviour.  
 

Illustration 1: AndroInspector Architecture 

 

The static analysis component gives out a verdict as to weather the application is malicious or 

benign. The dynamic analysis component lists out the suspicious actions performed by the 

application during execution. Figure 1 depicts AndroInspector architecture. 

 

3.1. Dynamic Analysis 

 
Dynamic Analysis of an Android application refers to analysing the application during its 

execution. AndroInspector performs dynamic analysis by first executing the application on an 

Android emulator and collecting various levels of traces simultaneously. The traces generated are 

then analysed to identify malicious actions. This process is divided into 3 phases namely 

preparation phase, execution phase and analysis phase. The test case for application execution is 

generated during the preparation phase. Execution phase comprises of test case execution and 

collecting run time traces. During the analysis phase, traces collected in execution phase are 

analysed to detect suspicious behaviour. 
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3.1.1. Preparation Phase 

 

Traversal through an application during application execution comprises of traversing through the 

application's activities as well as triggering events on all the UI widgets present in each activity. 

The event triggering may lead to another activity or may trigger some functionality. When 

provided only with an APK file we do not have required information to generate test case for 

application execution. To extract the necessary information, we disassemble the APK. The 

application is disassembled using apktool [24]. The information thus acquired is used to generate 

an Robotium based test case specific to the application. Information extracted for test case 

generation is explained below: 

 

Package name:  Application's package name is required while installing the application. An 

application's package name can be extracted from its corresponding 'AndroidManifest.xml' file.  

 

Launch activity: The launch activity/Main activity of an application is where the application 

execution starts. The launch activity name is available in the 'AndroidManifest.xml' file. 

 

List of activities: All activities present in an application are listed in it's 'AndroidManifest.xml' 

file. 

 

List of intent filters: List of all the intents and intent-filters are used to invoke the broadcast 

receivers and services which may be waiting for some specific action to occur on which intent 

would be triggered. Intent filters are extracted from the Android Manifest file. 

 

The test case generated is structured in a way that all the activities comprising the application are 

traversed in a depth first search fashion. DFS for application execution means first main activity 

is traversed and all other activities are traversed sequentially in the order of their reachability 

from main activity.  

 

3.1.2. Execution Phase 

 

By the end of preparation phase we have a robotium based test case specific to the application to 

be executed. The Android emulator used during dynamic analysis is DroidScope. (Reasons for 

using droidscope are stated in the next section). If the application and test case have different 

signatures, then test case does not have access to the application and its elements. To overcome 

this, we re-sign the application under analysis and test case with “Android Debug Mode”. The test 

case is then compiled and built using Apache Ant [25] tool. The Android application is then 

executed on the emulator using test case on the device. This test case is limited to testing the UI 

elements and testing the Activities in an application.  

 

Initially the test case starts the application execution by launching the Launch/Main activity. The 

test case then triggers events on all the elements present in the activity. Triggering events on UI 

elements is performed by using the Robotium based API's provided for different types of UI 

elements. UI elements like buttons, image buttons, list views etc. are clicked, where as edit texts, 

date time pickers are set with some per-determined values. Both types of actions (clicking and 

setting values) are carried out by using API's provided by Robotium which use the IDs of 

elements to identify elements and perform a specified action on them. If on triggering an event on 

any UI element causes the launch of another activity, then the activity launched is identified and 

actions are performed upon elements in the newly launched activity. This is repeated till the 

control reaches an activity(let's say 'activity Last') from where another activity cannot be 

instantiated, when actions on all elements in that activity are performed, control moves back to 

the previous activity( that is the activity from which 'activity Last' had originated) and checks 
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whether actions upon all the elements in the activity have been performed. If yes, we go back to 

previous activity or else perform action upon the remaining elements. 

  

Once all the activities are parsed and all the elements in those activities are executed, we exit the 

test case. Figure 2 shows the flow of execution in test case.  

 

After execution of all the UI elements of the application, the broadcast receivers in the application 

are invoked one at a time by triggering intents specific to the broadcast listeners. Triggering 

intents is done by using 'Activity Manager' (am) in 'adb shell'. By this point, activities and 

broadcast receivers have been executed.  

 

Even though we did not explicitly start the Services, the tests executed above would have started 

the following types of services : 

 

Services which are started when application is installed 

Services which are started when application is launched 

Services which start when any activity is launched 

Services which start when some action is performed on an UI element 

Services which are start on receiving specific intents. 

 

Illustration 2: Flowchart for automatic application execution 

 

3.1.3. Analysis Phase 

 

The traces collected during execution phase are used for analysis. During the execution phase, the 

application is executed on DroidScope emulator. DroidScope emulator is an Android analysis 

platform for virtualization-based malware analysis. DroidScope provides the possibility to 

develop plug ins to access both the OS-level and Java-level semantics simultaneously and 

seamlessly. DroidScope monitors the three levels of an Android device: hardware, OS and Dalvik 

Virtual Machine. Using DroidScope, We developed plug ins to monitor and record the a) dalvik 

instruction traces b) system calls and c) API-level activity. The network activity performed by the 

application during application execution is captured using tcpdump. All the information gathered 

from dalvik instruction traces, system calls traces, API calls and network activity traces are then 

parsed to identify a set of per-defined patterns which indicate the occurrence of malicious 
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activity. The malicious actions observed are then reported to the user. For deciding upon the 

patterns which would act as an indicator of malicious action, We executed 1260 malware samples 

on DroidScope and manually studied the traces extracted. As the behaviour corresponding to the 

malware samples from training set were known, the system call traces and API traces were 

observed when the malicious action was performed to deduce patterns which would help in 

identifying the occurrence of malicious activity. For example, to identify if the application is 

trying to send an SMS without user's consent, we look for API corresponding to sending SMS 

and also observe if the Messaging application was opened or not. If the Messaging application 

was not opened and an SMS was sent from the application under analysis, it is considered as a 

malicious action. Another example is 'dev/urandom_Access'. We parse through the system call 

traces to identify read or write system calls upon path 'dev/urandom'. Each pattern thus identified 

substantiates the occurrence of a specific malicious action. Any malicious action found is 

reported to the user. Malicious actions which were considered for finding patterns are stated in 

the Table 1 

 

3.2. Static Analysis 
 

Android applications are installed by using an Android application package (APK) file. APK file 

is an archive filewhich contains Java classes, resources and Manifest file. Static analysis 

constitutes of unpacking the android application and analysing the contents of application. Static 

analysis component of AndroInspector unpacks the application, extracts necessary information 

and uses the information extracted to classify the application as either malicious or benign using 

machine learning techniques. The information extracted for analysis is in form of various features 

of an Android application. Figure 3 shows how various features are extracted from an Android 

application. 
Illustration 3: Feature extraction in AndroInspector 

 

Following sub-sections describe feature selection for feature set, weight assignment to the 

features and selection of feature vector. 

 

3.2.1. Features 

 

3.2.1.1. Suspicious Permissions and Permission Combinations 

 

A permission is a restriction limiting the  access of an application to the device to protect critical 

data and code that could be misused to distort or damage the user experience. We considered the 
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patterns of suspicious permissions in malware samples as discovered by Y.Zhou et.al. [26]. For 

extracting permissions used by an application we use APKParser tool [22]. The permissions 

extracted were analysed  and cross verified for high occurrence across malware samples available 

in our training dataset. Out of all the permissions specified as suspicious by Y.Zhou et.al, we 

discarded those permissions which were present in large numbers in benign samples as these 

would not significantly contribute during classification process. The presence or absence of the 

remaining suspicious permissions was then considered as a feature. Our findings are shown in 

Figure 4. 

 

I.Rassameeroj [27] states that certain permission combinations enable an application to perform 

dangerous actions posing threat to user's data and privacy. We considered these combinations as 

features for our feature set. Table 2 depicts the permissions and permission combinations 

considered as features. 

 

Illustration 4: Frequency of suspicious permissions among malware samples 

 

3.2.1.2. Suspicious API Combinations 

 

APIs used by an application determines the actual functionality and capability of the application. 

Static analysis of APIs used in an application hence becomes important to understand what the 

application actually intends to do. In the similar direction of selecting permissions as features, our 

approach contributes by evaluating APIs extensively used by malware applications. APIs were 

broadly classified according to their usage by the application. From the list of APIs which are 

found in large number of malware samples, combinations were derived which could pose a threat 

to the user. Two main types of threats considered are financial losses and leakage of user's 

personal information. For example APIs for accessing user's personal information (network 

details, device ID, line number, etc.) in combination with APIs for sending SMS enables an 

application to transmit user's personal information to a predefined source. This leads to both 

breach of privacy as well as monetary loss. The monetary loss here is due to cost incurred when 

the SMS is sent.\par APIs for evaluation are extracted by disassembling classes.dex file using 

dexdump tool present in Android SDK [28]. Figure 5 depicts the a snapshot of classes.dex when 

disassembled using dexdump tool. Table 3 lists the API combinations considered as a feature for 

our feature set. 
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Illustration 5: Disassembled dex file 

 

 

3.2.1.3. Manifest Violation  

 

All the permissions required by an application should be declared in the AndroidManifest.xml. 

These permissions determine what are all the capabilities the application has. During application 

installation, all the permissions declared by the application are not cross verified by the package 

manager. Thus, at the run time if the application needs to perform a certain action and it does not 

have corresponding permission, run time exceptions occur. Malware developers take advantage of 

this flaw to perform collusion attacks [29]. The collusion attack requires at least 2 applications to 

work in collaboration. In this type of attack, an over privileged application provides an under 

privileged application with necessary permissions at runtime. Soundcomber [30] is one such 

application which aims at collecting user's information by capturing audio from device's 

microphone and then sends it over the network with help of another application having necessary 

permissions. Figure 6 depicts a scenario where two applications combine their permissions to 

read contacts and send them over the network. 

 

One way to detect the possibility of collusion attack is to look for application which has declared 

more permissions than what it requires (over privileged applications), but the drawback with this 

approach is the high false positive rate. The reason for high false positive rate is that many 

developers declare majority of the permissions available irrespective of their usage by the 

application. 

 

Illustration 6: A collusion attack scenario 

 

We devised a different approach for detecting possible collusion attack. Rather than looking for 

over privileged applications we detect under privileged applications, that is the application 

declaring less permissions than what it actually required. The under privileged application then 

gets required privileges at runtime with the help of another application. To detect under privileged 

applications applications, we look for the permissions that will be used by the application at run 

time but are not present in application's manifest file. To derive permissions required by 

application at run time, permission required for executing each API present in application's dex 



International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015 

9 

file is extracted. If any permission required for execution of an API is not found in the 

application's manifest file, it is considered as a manifest violation. 

 

We derive the permissions required by an API with the help of Android's developer guide and 

Pscout [31]. 

 

Each occurrence of manifest violation is assigned a weight of 7. A summation of these 

permission's weights was considered as the weight of the feature (Manifest violation). 

 

3.2.1.4. Suspicious Content URI 

 

A content URI (used for data access) can be called suspicious if by using that URI an application 

can leak user's personal data or can access another application's data. For example, an application 

can get access to contacts by using URI: content://com.Android.contacts. Such suspicious URIs 

were identified and their presence was checked among various malware and benign samples 

available in the training set. Suspicious content URIs which were detected in most of the malware 

samples and few benign samples were considered as a feature for feature set. Figure 7 shows the 

content URIs extensively used by malware applications. 

 

To collect the content URIs used by the application, we parse the dalvik byte code of 

disassembled classes.dex. The presence of content URIs that provide access to MMS, Browser 

and telephony data were seen among majority of malware applications. 

 
Illustration 7: Frequency of suspicious content URIs among malware samples 

 

Each Suspicious Content URI was assigned a weight of 6. Summation of the weights for 

frequency of such suspicious content URIs is considered as the weight of the feature. 

 

3.2.1.5. Detection of Executable code 

 

Embedding malicious code into documents has been successful technique for distributing 

malware. Desktop malware like Pidief, ZBOT, SillyD have been distributed as malicious PDF, 

JPEG, mp3 files. Based on Shafiq [32] and Stolfo's [33] findings which stated that detection of 

embedded malware requires parsing the byte code of the documents, We employed a mechanism 

to find embedded executables by parsing the byte code of all the files present in the resources 

directory of an APK. Many malware samples show the presence of executables and shell scripts 

embedded within image and music files. Presence of image files embedded with executable code 

can be found in samples from malware families like DroidKungFu1 and RougePush. Malware 

samples from DroidKungFu3 and GingerMaster families show presence of music files embedded 

with executable code.\par As this behavior was detected only in malware samples, presence of 

embedded executables was assigned a maximum weight of 10. Summation of the weights for 

frequency of such files is considered as weight of the feature. 
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3.2.2. Assigning Weight to Features 

 

The weight assigned to a feature represents the impact that presence or absence feature  makes on 

an application's classification. Weights are assigned to each feature on a scale of 1 to 10 using 

heuristics based approach such that higher the weight of a feature, more the feature contributes 

during classification. The highest weight of 10 was assigned to presence of executables embedded 

in image or music files. Presence of embedded executables is the strongest indicator in our feature 

set of an application being malicious as only malware samples are found to have resource files 

injected with executable code. All other features were assigned weights relative to the weight of 

'presence of embedded executables' feature. Manifest violations are assigned a weight of 7. This 

is because unlike a malicious application, a benign application declares all the permissions being 

used. When compared to 'suspicious Permission combinations' or 'suspicious API combinations', 

'manifest violation' has more impact during classification but it is not as influential as 'presence of 

embedded executables'. Thus it is assigned a weight lower than 'presence of embedded 

executables' and higher than 'suspicious Permission combinations' and 'suspicious API 

combinations'. Presence of suspicious content URI in an application is assigned a weight of 6. 

The presence of these content URI was seen in both malicious and benign samples, but number of 

malicious samples containing these URIs was much greater than number of benign samples. 

Weights for suspicious content URIs, manifest violations, presence of executable code are 

frequency based. Thus the total weight for these features in the feature set is multiple of the 

frequency of the feature occurrence and the weight assigned to the feature. \par Permission 

combinations and API combinations are assigned a moderate weight of 5 as the presence of these 

leads to suspicious behaviours, but their presence cannot conclude an application of being a 

malware or benign.  We assigned suspicious permissions the lowest weight of 3 as these 

permissions can be found in large number in both benign and malware samples. Table 4 depicts 

the assignment of weights to the features selected. 

3.2.3. Feature Vector Selection 

 

After deciding upon the application's attributes to be considered as features, we considered and 

evaluated three categories of feature vectors with a set of machine learning algorithms. All the 

three categories of feature vectors constituted of similar features, but represented in different way. 

The first and second categories of feature vectors were weighted feature vector where as the third 

category was a non weighted feature vector. The first category of feature vector contained 

weights for each feature along with the Euclidean distance as an additional feature. The second 

category of feature vector was derived by excluding Euclidean distance from the first feature 

vector. For the third category of feature vector, rather than considering the frequency and weight 

of a feature, we check only presence of  a feature. Representation in feature vector is done as 

either 1 or 0 to depict the presence or absence of a specific feature in the sample. 

 

3.2.3.1. Evaluation of model for Feature Vector Selection 

 

K-fold cross validation was carried out in order to evaluate the efficiency of the classification 

model. The default implementation of cross validation provided by WEKA was used for this 

purpose. The efficiency of the classifier models generated using all three categories of feature 

vectors were compared based on cross validation. One round of cross-validation of a two class 

classifier model involves seggregating a sample of the training data set into two complementary 

subsets, subset for performing the analysis (the training set) and subset for validating the analysis 

(the validation set). Inconsistency is reduced by multiple rounds of cross-validation using 

different seggregations. Finally the average of all validation results is presented as true positive 

rate and false positive rate. We used WEKA [34] implementation for both model generation and 

cross validation. The true positive rate and false positive rate are deduced as follows : 
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TPR=

TP

TP+FN
 

FPR=

FP

FP+TN
 

Figure 8 (a) and Figure 8 (b) show variations in true positive rates and variations in false positive 

rates respectively for models generated using three categories of feature vectors. 

High true positive and low false positive rates are observed for the second category of feature 

vector, that is a feature vector with weights and excluding Euclidean distance. Thus the second  

 

Illustration 8: Variation inTPR (a) and FPR (b) for various models 
 

category of feature vector was considered for providing features to the machine learning 

algorithms. The reason for omitting Euclidean distance from the feature set was its last rank 

among the features on applying Chi-Square attribute ranking mechanism. This illustrated that 

excluding it as a feature would not affect the detection rates. Figure 9 shows variation in 

Euclidean distance across all the samples present in our dataset. 
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Illustration 9: Variation in ED scores among benign and malware samples 
 

Figure 10 shows the receiver operating characteristic (ROC) graph for the classification model 

built using second category of feature set. This  graph illustrates the performance of a binary 

classifier system built using various machine learning algorithms and the weighted feature set. 

Random Forest algorithm depicts the maximum ROC space in the ROC curve which proves that 

for the given training set, classifier model built using Random Forest is more efficient than 

models generated using other machine learning algorithms. We used model built using Random 

Forest algorithm as the classifier in AndroInspector implementation. 

 

Illustration 10: ROC Curve for classifier models based on various algorithms 

 

3.2.3. Classification Using AndroInspector 

 

Classification of an Android application by AndroInspector as either malicious or benign is based 

solely on information obtained during the static analysis of the application. Static analysis is 

carried out in two phases. First phase is the knowledge building phase. In this phase, 

AndroInspector extracts specific features and builds feature set of all the samples from  the 

training set. These feature sets are then provided to the machine learning algorithm using WEKA  
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Illustration 11: Detection rate of AndroInspector for malware samples 

 

 

 

 

 

 

 

 

 

 

Illustration 12: Detection rate of AndroInspector for benign samples 

 

implementation of machine learning algorithms. A two class classifier model is thus generated. 

Classifier model generated during this phase can be used for classification of samples without 

updating the model every time a new sample is provided for analysis. 

 

Second phase is the classification phase. In this phase, features are extracted from test application 

which needs to be classified and a corresponding feature set is built. Now this feature set is 

provided to the classification model generated during phase 1. The classification model then 

classifies the sample as either malicious or benign 

 

4. RESULTS 

 
After application analysis, AndroInspector generates an output json file. This output report 

generated contains details regarding the presence or absence of all the features under 

consideration and a verdict on weather the application is either malicious or benign. The report 

also specifies all the suspicious content URIs and embedded executables present in the 

application. 

 

The efficiency of AndroInspector's classification model was tested by analysing 500 malware 

samples obtained from Virustotal malware intelligence service [3] and 800 benign samples from 

ApkDrawer [35]. Collectively these samples constituted of our test-set. It was verified beforehand 

that the test-set does not contain any samples in common with the training-set by comparing the 

hash code of each sample in test set against hash codes of samples from training set. Figure 11 

and Figure 12 depict the detection rates of malware samples and benign samples respectively by 

using AndroInspector. 
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Results from Dynamic analysis of malware samples obtained from GENOME project [2] 

indicates that 90 percent of the malware samples analysed performed cryptographic operations 

and 85 percent of them accessed files related to the device. Figure 13 depicts malicious actions 

observed on executing malware samples. 

 

Illustration 13: Malicious actions detected during execution of malware samples 

 

On analysis of network activity based traces it was observed that most malware samples 

communicate with IP addresses based in Beijing and Guangzhou cities of China. Figure 14 

depicts network connections made by malware samples with IP addresses from different cities.  

 

 

Illustration 14: Network connections made by malware samples 

 

The detection rate of AndroInspector was compared with the detection rates of four other anti 

virus solutions for the same set of malware samples. Figure 15 shows the detection rate of 

AndroInspector in comparison with Kaspersky (version 12.0.0.1225) [36], McAfee (version 

6.0.5.614) [37], Avast (version 8.0.1489.320) [38] and TrendMicro (version 9.740.0.1012) [39]. 
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Illustration 15: Detection rates of AndroInspector in comparison with other AV solutions 

 

ecall rate of AndroInspector with Random Forest based classifier for malwares from various 

malware families is shown in Figure 16 

 
 

Illustration 16: Recall rate of AndroInspector for various malware families 

 

5. CONCLUSION 

 
We present AndroInspector, an approach for detecting malicious Android applications based on 

static analysis and dynamic analysis of their respective APK files. Static analysis is responsible 

for classifying the application as either malware or benign whereas dynamic analysis identifies 

the malicious actions performed by the application during execution. The process of classification 

comprises of extracting 24 features, assigning weights to the features and finally using the 

collection of feature weights as a feature set. The feature set along with Random Forest classifier 

model is then used to classify the given sample as either malware or benign. We observed that 

classifier model built using Random Forest shows higher TPR and lower FPR when compared to 

other machine learning algorithms. Observations from dynamic analysis revealed that a large 

number of malware samples (Training set and test set) accessed device related information. 

Analysis of application's network activity revealed that majority of malware samples connected to 

servers located in China. 



International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015 

16 

Future scope of work involves developing a classifier model which considers information from 

both static analysis and dynamic analysis while classifying an Android application. We are also 

working towards modifying the dynamic analysis component such that it's functioning would be 

independent of application's Android version and would works on any generic Android emulator. 

 

REFERENCES 
 
[1] RiskIQ, Feb 19 2014, Research Also Shows Steady and Significant  Drop in Number of Malicious 

Apps Being Removed in Past Three  Years. Available: http://www.riskiq.com/company/press-

releases/riskiqreports-malicious-mobile-apps-google-play-have-spiked-nearly-400 

[2] Genome Project. Android malware samples. http://www.malgenomeproject.org. 

[3] S. Hispasec Sistemas. Virustotal malware intelligence service, 2011. 

[4] A. Desnos. Androguard. Available at https://code.google.com/p/androguard/. 

[5] Wu, Dong-Jie, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and KuoPing Wu. ”Droidmat: Android 

malware detection through manifest and  API calls tracing.”In Information Security (Asia JCIS), 2012 

Seventh  Asia Joint Conference on, pp. 62-69. IEEE, 2012. 

[6] Felt, Adrienne Porter, et al. ”Android permissions demystified.”Proceedings of the 18th ACM 

conference on Computer and  communications security. ACM, 2011. 

[7] Enck William, Machigar Ongtang, and Patrick McDaniel. ”On  lightweight mobile phone application 

certification.” Proceedings of the  16th ACM conference on Computer and communications security. 

ACM,  2009. 

[8] Zheng, Min, Mingshen Sun, and John Lui. ”Droid Analytics: A Signature Based Analytic System to 

Collect, Extract, Analyze and Associate  Android Malware.” Trust, Security and Privacy in 

Computing and Communications (TrustCom), 2013 12th IEEE International Conference on  IEEE, 

2013. 

[9] Shabtai, Asaf, Yuval Fledel, and Yuval Elovici. "Automated static code analysis for classifying 

Android applications using machine learning." Computational Intelligence and Security (CIS), 2010 

International Conference on. IEEE, 2010. 

[10] Yeh, Tom, Tsung-Hsiang Chang, and Robert C. Miller. "Sikuli: using GUI screenshots for search and 

automation." Proceedings of the 22nd annual ACM symposium on User interface software and 

technology. ACM, 2009. 

[11] Selendroid, Ebay software foundation,'Test automation for native or hybrid Android apps and the 

mobile web with Selendroid.'. http://selendroid.io/ 

[12] Ranonex. Android Test Automation - Automateyour App Testing. http://www.ranorex.com/mobile-

automation-testing/android-test-automation.html. 

[13] Gomez, Lorenzo, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. "Reran: Timing-and touch-

sensitive record and replay for android." In Software Engineering (ICSE), 2013 35th International 

Conference on, pp. 72-81. IEEE, 2013. 

[14] Amalfitano, Domenico, et al. "Using GUI ripping for automated testing of Android applications." 

Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering. 

ACM, 2012. 

[15] Hao, Shuai, et al. "PUMA: Programmable UI-Automation for Large Scale Dynamic Analysis of 

Mobile Apps." Proceedings of the 12th annual international conference on Mobile systems, 

applications, and services. ACM, 2014 

[16] Google. UI/Application Exerciser Monkey, 

http://developer.android.com/guide/developing/tools/monkey.html 

[17] Robotium. User scenario testing for Android. http://code.google.com/p/robotium/. 

[18] Enck, William, et al. "TaintDroid: an information flow tracking system for real-time privacy 

monitoring on smartphones." Communications of the ACM 57.3 (2014): 99-106. 

[19] Yan, Lok-Kwong, and Heng Yin. "DroidScope: Seamlessly Reconstructing the OS and Dalvik 

Semantic Views for Dynamic Android Malware Analysis."USENIX Security Symposium. 2012. 

[20] Tam, Kimberly, et al. "CopperDroid: Automatic Reconstruction of Android Malware Behaviors." 

 (2015). 

[21] Schmidt, A-D., Rainer Bye, H-G. Schmidt, Jan Clausen, Osman Kiraz, Kamer A. Yuksel, Seyit 

 Ahmet Camtepe, and Sahin Albayrak. ”Static  analysis of executables for collaborative malware 

 detection on android.”  In Communications, 2009. ICC’09. IEEE International Conference on,  

 pp. 1-5. IEEE, 2009. 



International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015 

17 

[22] J. Erdfelt. Apkparser tool. https://code.google.com/p/xml-apk-parser. 

[23] Zhou, Yajin, Zhi Wang, Wu Zhou, and Xuxian Jiang. ”Hey, You, Get  Off of My Market: Detecting 

Malicious Apps in Official and Alternative  Android Markets.” In NDSS. 2012. 

[24] Winsniewski, R.: Android, “Apktool: a tool for reverse engineering Android apk files,” 2012,[Online] 

Available: http://code.google.com/p/android-apktool/ 

[25] Ant, Apache. "The Apache Ant Project." (2010). 

[26] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware: Characterization and evolution." 

Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012. 

[27] Rassameeroj, Ittipon, and Yuzuru Tanahashi. "Various approaches in analyzing Android applications 

with its permission-based security models." Electro/Information Technology (EIT), 2011 IEEE 

International Conference on. IEEE, 2011. 

[28] Google Inc. Official Page for android developers. http://developer.android.com. 

[29] Bugiel, Sven, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi, and 

Bhargava Shastry. "Towards Taming Privilege-Escalation Attacks on Android." In NDSS. 2012. 

[30] Schlegel, Roman and Zhang, Kehuan and Zhou, Xiao-yong and Intwala, Mehool and Kapadia, Apu 

and Wang, XiaoFeng. 'Soundcomber: A Stealthy and Context-Aware Sound Trojan for 

Smartphones.'NDSS, 2011 

[31] Au, Kathy Wain Yee, Yi Fan Zhou, Zhen Huang, and David Lie. "Pscout: analyzing the android 

permission specification." In Proceedings of the 2012 ACM conference on Computer and 

communications security, pp. 217-228. ACM, 2012.  

[32] Shafiq, M. Zubair, Syed Ali Khayam, and Muddassar Farooq. "Embedded malware detection using 

markov n-grams." In Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 88-107. 

Springer Berlin Heidelberg, 2008.  

[33] Stolfo, Salvatore J., Ke Wang, and Wei-Jen Li. ”Towards stealthy malware detection.” Malware 

Detection. Springer US, 2007. 231-249. 

[34] Hall, Mark, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter  Reutemann, and Ian H. Witten. 

”The WEKA data mining software: an  update.” ACM SIGKDD explorations newsletter 11, no. 1 

(2009): 10-18. 

[35] Z. Jay. Apkdrawer.com. http://www.apkdrawer.com. 

[36] Kaspersky mobile security. Available at http://www.kaspersky.co.in/downloads/android-security. 

[37] Mcafee mobile security. Available at https://www.mcafeemobilesecurity.com/. 

[38] Avast mobile security. Available at http://www.avast.com/en-in/free-mobile-security. 

[39] Trendmicro mobile security. Available at http://www.trendmicro.com/us/enterprise/product-

security/mobile-security/. 

 

APPENDIX 
Table 1.  Malicious Actions Considered 

 

Feature Threat 

SMS_Sent Application sending SMS without user's interaction 

Data_Download Application is trying to download data over the network 

dev/urandom_Access Application performs read or write operations on /dev/urandom limits the 

expansion of entropy pool of /dev/random thus limiting the randomness and 

hence making it easier to crack cryptographic algorithms 

BreakingSandbox Application accessing other applications on the device or data related to other 

applications  

NetworkInfo_Access Application accessing device's network related information 
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BrowsingInfo_Accessed Application accessing cookies and browsing history from the device 

SystemInfo_Access Application can know the current system state 

CryptographicMethods Application using cryptographic algorithms for data encryption 

Contacts_Accessed Application has accessed contacts on device without user's consent 

File_Content_Uploaded Application sending a file over the network 

DeviceFiles_Access Application accessing sensitive files related to the device 

 

Table 2.  Suspicious permissions and permission combinations 

 

Suspicious permissions and  permission combinations Weight assigned 

READ SMS 3 

WRITE SMS 3 

RECEIVE SMS 3 

WRITE CONTACTS 3 

WRITE APN SETTINGS 3 

SEND SMS 3 

ONLY INTERNET 3 

ONLY WRITE EXTERNAL STORAGE 3 

WRITE SMS and RECEIVE SMS 5 

SEND SMS and WRITE SMS 5 

INTERNET and WRITE EXTERNAL STORAGE 5 

INTERNET,RECORD AUDIO, READ PHONE STATEand MODIFY PHONE 

STATE 

5 

ACCESS FINE LOCATION or ACCESS COARSE LOCATION, 

RECEIVE BOOT COMPLETED and INTERNET 

5 

INTERNET,RECORD AUDIO and PROCESS OUTGOING CALLS 5 

Table 3.  Suspicious API combinations 



International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015 

19 

 

Suspicious API combinations Weight assigned 

"landroid/telephony/telephonymanager;.getdeviceid" 

"landroid/location/locationmanager;.getlastknownlocation" 

"landroid/location/location;.getlatitude" 

"landroid/location/location;.getlongitude" 

"landroid/telephony/smsmanager;.sendtextmessage" 

"landroid/net/uri;.parse","landroid/location/locationmanager;.getbestprovider" 

5 

"ljava/net/urlencoder;.encode" 

"ljava/net/uri;.getquery" 

"ljava/net/httpurlconnection;.connect" 

"ljava/net/httpurlconnection;.geturl" 

"ljava/net/httpurlconnection;.getheaderfield" 

"landroid/location/locationmanager;.getbestprovider" 

"landroid/location/location;.getlatitude" 

"landroid/location/location;.getlongitude" 

"landroid/telephony/gsm/smsmanager;.sendtextmessage" 

5 

"landroid/net/uri;.parse" 

"landroid/content/contentresolver;.query" 

"landroid/database/cursor;.movetonext" 

"landroid/database/cursor;.getcolumnindex" 

"landroid/database/cursor;.getstring" 

"landroid/database/cursor;.close" 

"landroid/database/cursor;.movetolast" 

"landroid/database/cursor;.movetoprevious" 

5 

"landroid/net/uri;.parse" 

"ljava/net/urlencoder;.encode" 

"ljava/net/url;.openstream" 

"landroid/telephony/telephonymanager;.getdeviceid" 

"landroid/telephony/telephonymanager;.getline1number" 

"landroid/telephony/telephonymanager;.getnetworkcountryiso" 

"landroid/telephony/telephonymanager;.getnetworkoperatorname" 

"ljava/io/bufferedreader;.readline" 

"landroid/content/pm/packagemanager;.hassystemfeature" 

5 

"ljava/net/inetaddress;.getlocalhost" 5 
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"ljava/net/inetaddress;.gethostname" 

"ljava/net/url;.openstream" 

"ljava/net/inetaddress;.getbyname" 

"ljava/net/inetaddress;.equals" 

"ljava/net/inetaddress;.hashcode" 

"landroid/net/uri;.parse" 

"landroid/telephony/smsmanager;.getdefault" 

"landroid/telephony/smsmanager;.dividemessage" 

"landroid/telephony/smsmanager;.sendtextmessage" 

"landroid/telephony/telephonymanager;.getdeviceid" 

"landroid/telephony/telephonymanager;.listen" 

"ljava/net/urlencoder;.encode" 

"ljava/net/uri;.<init>" 

"landroid/location/location;.hasaccuracy" 

"landroid/location/location;.distanceto" 

"landroid/location/location;.gettime" 

"landroid/location/location;.getaccuracy" 

"landroid/location/location;.getlatitude" 

"landroid/location/location;.getlongitude" 

"landroid/location/location;.getprovider" 

"landroid/location/locationmanager;.requestlocationupdates" 

"landroid/location/location;.<init>" 

"landroid/location/location;.setaccuracy" 

5 

"ljava/net/urlencoder;.encode" 

"ljava/net/url;.<init>" 

"ljava/net/url;.openconnection" 

"landroid/telephony/telephonymanager;.getline1number" 

"landroid/telephony/smsmanager;.getdefault" 

"landroid/telephony/smsmanager;.sendtextmessage" 

"landroid/telephony/smsmessage;.getdisplayoriginatingaddress" 

"landroid/telephony/smsmessage;.getmessagebody" 

"landroid/telephony/smsmessage;.createfrompdu" 

5 

 

 

 

 

 



International Journal of Network Security & Its Applications (IJNSA) Vol.7, No.5, September 2015 

21 

Table 4.  Weight assignment to various features 

 

Feature type Weight assigned 

Suspicious permissions 3 

Suspicious permission  combinations 5 

Suspicious API combinations 5 

Suspicious content URI 6 

Manifest violation 7 

Presence of executable 10 
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