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ABSTRACT 

In this paper we present PLEDGE, an efficient and scalable security ProtocoL for protecting fixed-

content objects in contEnt aDdressable storaGe (CAS) architEctures. PLEDGE follows an end-to-end 

policy-driven security approach to secure the confidentiality, integrity, and authenticity of fixed-content 

entities over the enterprise network links and in the nodes of the CAS device. It utilizes a customizable 

and configurable extensible mark-up language (XML) security policy to provide flexible, multi-level, and 

fine-grained encryption and hashing methodologies to fixed content CAS entities. PLEDGE secures data 

objects based on their content and sensitivity and highly overcomes the performance of bulk and raw 

encryption protocols such as the Secure Socket Layer (SSL) and the Transport Layer Security (TLS) 

protocols. Moreover, PLEDGE transparently stores sensitive objects encrypted (partially or totally) in 

the CAS storage nodes without affecting the CAS storage system operation or performance and takes into 

consideration the processing load, computing power, and memory capabilities of the client devices which 

may be constrained by limited processing power, memory resources, or network connectivity. PLEDGE 

complies with regulations such as the Health Insurance Portability and Accountability Act (HIPAA) 

requirements and the SEC Rule 17a-4 financial standards. The protocol is implemented in a real CAS 

network using an EMC Centera backend storage device. The application secured by PLEDGE in the 

sample implementation is an X-Ray radiography scanning system in a healthcare network environment. 

The experimental test bed implementation conducted shows a speedup factor of three over raw encryption 

security mechanisms. 
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1. INTRODUCTION 

Content-addressable storage (CAS) is a novel storage methodology targeting the efficient online 

storage and retrieval of fixed-content entities in enterprise network environments. Fixed-content 

entities refer to objects that should be stored in a fixed format and whose content should be 

conserved intact for extended periods of time. This is either due to the business value of these 

entities, their future significance, or due to industrial regulations and policies that enforce the 

authentic storage of such entities. Of these regulations one can mention the Health Insurance 

Portability and Accountability Act (HIPAA) [5] for securing medical records and patient 

information against theft, disclosure, or modification, and the Gramm-Leach-Bliley Act [16] for 

ensuring the confidentiality and integrity of financial records and banking information for any 

institution providing a financial service. In fact, if one looks at the information life cycle of 

different types of transactional data, it becomes clear that all data eventually end as fixed 

content. Entities such as emails and attachments, X-Ray images, CAT scans, CAD/CAM 
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drawings, financial records, legal contracts, database backups, etc. may start transactional and 

may involve some modification, but in their final stages they all end up as fixed-content.  

The main problem facing the storage of fixed content data is that this content is conventionally 

archived on backup tapes and/or optical disks due to the economy of such storage media. This 

backup technology, however, results in a very slow interaction with the stored entities, and to an 

immense limitation in the accessibility and usefulness of the stored information, which 

contradicts regulatory policies, auditing obligations, and customer requirements that demand the 

continuous and online access to information for relatively long periods of time. To solve this 

problem, the CAS technology provides a relatively cheap storage solution that facilitates very 

fast online network accessibility to fixed-content entities with the guarantee of data integrity 

against any form of modification or fabrication which complies with regulatory requirements 

and customer needs. CAS refers to the fixed content entity by a unique global identifier which is 

the hash value of the contents of this object, rather than using the traditional way of accessing 

the object by its name in a physical location.  

CAS storage nodes are used to store sensitive and critical data. The results of clinical trials such 

as X-Ray images, MRI scans and CAT scans; and financial documents such as check images 

and insurance photos are few examples of such sensitive data. To prevent any loss of 

confidence, reputation, and trust among clients and to avoid legal or civil fines and penalties, 

companies and institutions must exert considerable effort and take substantial precautions to 

protect the confidentiality and integrity of their fixed content entities. When designing CAS 

security, one should consider two main objectives: the first one is to safeguard the 

confidentiality, integrity, and authenticity of data entities stored in the CAS storage nodes, and 

the second objective is to protect the confidentiality and consistency of the data travelling over 

the network links in the CAS enterprise network. Both objectives should be given exceptional 

attention. 

The operation of today’s CAS enterprise applications over different network infrastructures 

using client devices and terminal workstations that vary greatly in capabilities and resources 

makes such applications very assorted in requirements, configurations, and resources. This 

necessitates that the security protocols used in securing such applications be designed 

specifically for operation in such diverse environments. The security protocols must consider 

the large variety of client devices which may be severely constrained in terms of processor 

speed, memory resources, and storage capacity. Many hospitals today are supporting their staff 

with palm-sized pocket PCs and Personal Digital Assistants (PDAs) mainly operating over 

wireless networks for recording clinical trials and even analyzing and distributing X-Ray scans 

and images. This diversity makes the implementation of a unique security standard that 

encompasses the whole device range infeasible. A least-common denominator security solution 

that targets devices with limited memory and slow processors would be unfair to powerful 

devices and would not meet their security requirements, and in the same sense, a security 

solution that addresses high-end devices would neither fit nor perform efficiently on limited-

resource devices. What is needed is a security protocol that can be customized and configured to 

perform the security operations flexibly, taking into consideration the memory capabilities and 

the processing power of the client device, the network latency, and the specific requirements of 

the enterprise CAS application. This ensures the efficient operation of the same application on a 

wide range of devices and enterprise networks. Moreover, this protocol must be extensible, 

scalable and capable of evolving to meet new challenges and to adapt to new application 

requirements.  

In this paper we present PLEDGE, an efficient and scalable security protocol for protecting 

fixed-content objects in CAS architectures. PLEDGE follows an end-to-end policy-driven 

security approach to secure the confidentiality, integrity, and authenticity of fixed-content 

entities over the enterprise network links and in the nodes of the CAS device. It utilizes a 

customizable and configurable XML [15] security policy to provide flexible, multi-level, and 
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fine-grained encryption and hashing methodologies to fixed content CAS entities. PLEDGE 

secures data objects based on their content and sensitivity and highly overcomes the 

performance of bulk and raw encryption protocols such as the SSL [2] and TLS [3] protocols. 

Moreover, PLEDGE transparently stores sensitive objects encrypted (partially or totally) in the 

CAS storage nodes without affecting the CAS storage system operation or performance and 

takes into consideration the processing load, computing power, and memory capabilities of the 

client devices. By transparently offering content-based security services to CAS systems, 

PLEDGE lays the ground for achieving the optimal point of intersection between security and 

efficiency in fixed-content, high-speed storage environments. The cryptographic mechanisms 

provided complement and support the regulatory compliance policies by assuring the security of 

data in the rest and transit states.  

The work presented in this paper is an extension to [1]. The additions incorporated include 

elaborate discussions on the operation of the core security protocol, extensive details of the 

security policy generation methodology, updates on the key management mechanism to enhance 

its resistance to device seizure attacks, and the implementation of the security protocol on a new 

CAS box and client platforms.    

It should be noted here that the PLEDGE protocol can be tuned to secure transactional storage 

environments, such as file systems, relational database management systems, or directory 

servers. However, two chief properties give a content-driven security solution sizable 

importance in the CAS realm. First, the object-based structure of CAS fixed-content entities 

supports the content-based encryption mechanisms by facilitating the process of selecting 

conceptual encryption regions based on high-level specifications. This property is highly 

realized when dealing with imaging objects, video objects or document scans. Second, the 

relatively large physical size of CAS entities dramatically enhances the performance of content-

based encryption operations especially when the encryption zones selected occupy relatively 

small fractions of the CAS object compared to the whole object size. 

The rest of the paper is organized as follows: in Section 2, we review some previous work 

related to the security of CAS systems. In Section 3, we present the threat model assumed in this 

work. In Section 4, we describe the main design features of PLEDGE and its architectural 

components. Section 5 formulates a mathematical model for performance of the policy-based 

encryption used in PLEDGE. Results for a prototype PLEDGE implementation are shown in 

Section 6, and conclusions are presented in Section 7. 

2. RELATED WORK 

As stated previously, two main requirements must be satisfied to achieve the confidentiality and 

integrity of fixed content entities in a CAS environment. The first requirement is securing the 

data at rest in the CAS storage nodes, while the second is protecting the data during its 

marshalling over the network links in the CAS enterprise network. 

2.1 Storage Security  

CAS environments usually store sensitive information, such as medical records and financial 

documents, whose confidentiality and integrity should be guaranteed in any situation and under 

any circumstance. While PLEDGE is unique in using a policy-based approach, which has been 

successfully applied in other domains [11-14], other solutions have been proposed to enhance 

the performance of secure storage systems. Lakshmanan [26] proposed a design for a distributed 

store integrating replication and secret sharing, providing better flexibility and higher 

performance. The human immune system was also an inspiration for artificial immune 

strategies, aiming at improving the security of data storage and resolving the problem of 

resource sharing in a storage area network. The approach presented in [27] assigns for each user 
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a vaccine which is pseudo-noise that is used when writing or reading the data. Another solution 

proposed a three stage authentication procedure for both the client and the server, to provide a 

virtual encryption of the data between the client and the server [28]. A new approach was 

presented in [29], which groups sensitive data before encrypting it, thus reducing the encryption 

overhead and improving performance. To prevent tampering or deleting the stored data, or to 

protect data in compromised systems, an internal audit of all requests was proposed in [30], in 

addition to keeping a copy of older versions of the data for a certain period of time. This 

solution is said not to affect performance, especially when data compression is used. An 

infrastructure for large-scale systems was proposed as OceanStore in [17]. It provides support 

for naming and access control, archival storage, and an update model to allow concurrent 

updates. This infrastructure takes into consideration security and assumes that data servers are 

untrustworthy, thus server-side operations are designed to be done on encrypted information. 

2.2 Network Security  

Most CAS solutions secure their data objects over the network links using bulk encryption 

protocols such as SSL and TLS. These raw security protocols impose a large performance 

overhead on the client due to the huge amount of data this machine should process from the 

typically large size (tens of megabytes and even gigabytes) of fixed-content data objects. Add to 

this the fact that the client machine should be dedicated for analyzing and processing these data 

objects (consider the X-Ray analysis client application) which makes the performance impact 

even higher. Moreover, SSL encrypts data objects without regard to their type or sensitivity. To 

SSL, network data is of one type, and there is no categorization of this network data based on 

content or sensitivity. Thus, when using SSL, all the fixed-content objects are encrypted by the 

same cryptographic key-strength, which can be unnecessary or even undesirable for some  

CAS applications. It is worth mentioning here that the SSL protocol provides its data security 

services in a point-to-point mode that protects the network communication channel from the 

socket on the client process to the socket on the web server process. This mode of operation 

makes SSL unfeasible for securing storage data entities at rest.  

3. THREAT MODEL 

The threat model assumed in this paper is described as follows: we have a CAS storage network 

consisting of 3 main components: a CAS storage device for storing fixed-content objects, a set 

of client devices capable of generating fixed-content objects, and an application server for 

interfacing the client application with the CAS box and providing the necessary middleware 
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functionality. The attacker in PLEDGE’s threat model is capable of jeopardizing the integrity 

and confidentiality of network traffic by executing man-in-the-middle attacks on the network 

links. In other words, the attacker is supported with the necessary tools and expertise to conduct 

any type of sniffing, modification, and fabrication attacks on the network data. Moreover, the 

threat model is strong enough to incorporate the ability of the attacker to break into one of the 

network devices, particularly the client device and the CAS storage box.  

4. PLEDGE DESIGN AND ARCHITECTURE 

In this section we present the main components of the PLEDGE architecture and their 

interactions to provide a scalable and customizable security system. Figure 1 presents a 

conceptual view of the different components comprising this security architecture. A more 

comprehensive and functional description of each component is presented later in this section. 

PLEGDE follows a policy-driven approach in securing fixed content entities over the network 

links and in the CAS storage nodes. The main components constituting the PLEDGE 

architecture are the client device, the applications server, the security engine, and the CAS 

storage system.  The security engine is the component responsible of ensuring the 

confidentiality, integrity, and authenticity of the fixed data elements in the PLEDGE system. 

The security services supported by the PLEDGE's security engine are controlled and configured 

based on information present in a policy configuration file attached to each data entity generated 

or captured by the client device. The policy configuration file provides the primary information 

source that the security engine consults for taking security decisions and carrying out security-

related mechanisms and procedures. A very important design goal achieved in PLEDGE is the 

ability to make the security system transparent to the CAS storage devices. The CAS storage 

system operation and all its interfaces with the enterprise network are not affected in any way by 

PLEDGE’s security mechanisms and policies. 

The rest of this section will be devoted to presenting the role, functionality, and interaction of 

the different security components building the PLEDGE architecture. Moreover, the detailed 

steps of the PLEDGE security protocol in storing and retrieving fixed content objects and in 

generating ciphering keys and other security-related parameters are presented.  

4.1 The Security Policy 

Every fixed content entity to be stored and secured in the CAS enterprise network is linked to a 

security policy file that specifies the security behaviour and operation of the PLEDGE security 

architecture. The most important criteria that the security policy identifies is the part (or parts) 

of the CAS object to be secured and the level or degree of encryption to be applied to these 

parts.  In other words, the security policy consists of a set of conditions and rules over which the 

policy should be applied, and a set of actions that should be executed in the event of satisfying 

the policy conditions. The source information of this policy is encoded in an XML formatted 

file which is produced upon the CAS object creation or capturing by the client device. Utilizing 

a customizable security policy in the architecture enhances to a great degree the scalability, 

flexibility, and customization of the security system. Moreover, it facilitates the process of 

managing and administering the different elements composing the security architecture. This is 

considered very vital in today’s complex and intricate enterprise systems where the process of 

managing and securing business data is not in any way a simple task. To facilitate the policy 

creation procedure, PLEDGE provides a user-friendly graphical user interface utility on the 

client device that facilitates the creation and management of security policy configuration files 

and helps the security administrator create and administer these policy files rapidly without 

requiring knowledge of the exact details of the policy file syntax. This assists in the construction 

of valid and error-free policy configuration files. 
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                                                Figure 2. PLEDGE Policy Generation GUI 

 
The policy administration utility plays a major role in checking the syntactic and semantic 

structure of the policy file and determining whether this policy file is compatible with the device 

and network resources and other security performance constraints. As will be illustrated later in 

the implementation and performance section, the CAS application implemented and secured by 

the PLEDGE protocol is an X-Ray radiology capturing system in a hospital network. The X-

Ray radiology scans are captured and generated by the client device, secured by the client-side 

or application server security engine, and transmitted for secure storage in the CAS storage 

nodes. 

The security policy consists of the following three main sections: 

The security parameters section: this section specifies the security attributes that should be 

globally applied on the fixed data entities in securing their transmission and storage in the CAS 

environment. Some possible attributes are: the encryption algorithm, the hashing algorithm, the 

key exchange algorithm, and the data encoding protocol. 

The metadata section: this section specifies some metadata properties that are linked to the 

CAS object and which could be used as searching criteria when querying the CAS storage box. 

The policy may specify that some or all of these metadata properties be encrypted for 

confidentiality issues or added to the hash chain for data integrity purposes. The policy may also 

indicate the encryption or security level that should be applied on the specified metadata 

properties. The number of encryption levels that the policy-based architecture can provide 

depends on the different key lengths supported by the encryption algorithm used. The following 

four encryption levels are provided: a High_Security level which is equivalent to 256-bit AES 

[7] encryption; a Medium_Security level which is equivalent to 192-bit AES encryption; a 

Low_Security level which is equivalent to 128-bit AES encryption, and a No_Security level 

which represents no encryption or security on the field. It should be noted that as the key length 

increases, the security of the system and the processing requirements of the algorithm increase. 

 The CAS entity section: this is the most crucial section in the security policy that specifies the 

encryption mechanisms that should be applied on the CAS object. It indicates the object ranges 

that should be secured in the fixed content entity and the level of security to be applied. It 

should be noted that the range could be the entire object. The range specification is 

implementation-dependent and relies on the type of application and the nature of the fixed 

content entity. In the sample implementation we show in this paper, we deal with X-Ray 
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radiography images; the range is specified in the form of rectangular regions by indicating the X 

and Y coordinates of the top left point and the width and height of the rectangle sides. It should 

be noted that the partial image encryption algorithm for securing the various regions of the X-

Ray images is implementation dependent and the implementer can choose from a wide variety 

of algorithms targeting this subject [18-25]. 

In PLEGDE’s sample implementation the policy is constructed using a very intuitive GUI 

incorporated into the medical software used for capturing the X-Ray scans. Figure 2 presents a 

screenshot of the policy generation tool interface. The tool GUI is Java-based and developed 

using the Swing API toolkit. It incorporates all the required constructs and components to 

generate and edit the different sections of the security policy. The left part of the frame 

(including the diagnosis results) produces the fields of the metadata section of the security 

policy. This includes the definition of the security strength on the different fields, and the ability 

to add custom metadata attributes. 

The rightmost section of the GUI displays the X-Ray image on which the user can define the 

various regions to be encrypted by the content-based security engine. The specification of the 

secure rectangular boundaries is facilitated using simple mouse selection schemes.  The top 

middle section of the GUI renders the global attributes of the security parameters section of the 

policy. This is followed by the fields of the CAS entity section, where the user can indicate the 

security level of the different regions selected on the X-Ray image.  

The XML representation shown in Figure 3 is a sample security policy generated by the GUI 

presented in Figure 2. As clearly seen in Figure 3, the structural elements composing the XML 

file provide a direct mapping to the different sections of the security policy. This mapping is 

illustrated as follows: 

- The <security_parameters> element represents the security parameters section of the policy. 

This element includes a specification of the global security attributes, such as the encryption, 

hashing, key management, and data encoding algorithms. 

- The <metafields> XML element encloses the representation of the different metadata fields 

included in the metadata section of the security policy. This is accompanied by indicating the 

security properties of each metadata field using the encrypt, level, and integrity_enforcement 

XML attributes. 

- The <CAS_entity> element represents the CAS entity section of the security policy. The 

encrypt_all attribute causes the content-based security engine to switch to the raw encryption 

mode. Although this mode is not recommended, it might be employed when the enterprise 

application is not performance-critical or when comparing the performance of the content-based 

security engine against raw encryption mechanisms.  

A very important child element of the <CAS_entity> element is <SecureRange>. From its 

name, <SecureRange> specifies the image security zones and their security properties. The 

security zones are rectangular regions defined by the (x,y) coordinates of the top left rectangle 

point using the <X> and <Y> elements respectively; and by the width and height of the 

rectangle sides using the <W> and <H> elements respectively. 

Securing specific regions in the CAS entity is considered a very vital design goal achieved in 

PLEDGE. For example in securing financial contracts and bank check images it is sufficient to 

encrypt certain parts of the document that are related to  the customer identity and the monetary 

amount. In the X-Ray radiography scan application, the only image parts that need to be 

encrypted are the patient’s personal information on the image and any image parts showing 

serious health problems such as tumours which usually occupy relatively small portions of the 

X-Ray scan compared to the whole image size. 
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Figure 3. PLEDGE Sample XML Security Policy 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<Pledge version=1.0 platform=”EMC Centera x.x”> 

<security_parameters> 

<encryption_algorithm>Rijndael</encryption_algorithm> 

<hashing_algorithm>MD5</hashing_algorithm> 

<key_management>Diffie-Hellman </key_management> 

<data_encoding>Hexadecimal</data_encoding> 

</security_parameters> 

<metafields encrypt_all=”false” integrity_enforcement=”false”> 

<metafield encrypt=”true” level=”high” integrity_enforcement=”true”> 

 <name>PatientID</name> 

 <value>Stephen Martin</value> 

</metafield> 

<metafield encrypt=”true” level= “low” integrity_enforcement=”true”> 

 <name>Age</name> 

 <value>29</value> 

</metafield> 

<metafield encrypt=”false” integrity_enforcement=”false”> 

 <name>Gender</name> 

 <value>Male</value> 

</metafield> 

<metafield encrypt=”false”  integrity_enforcement=”false”> 

 <name>Height</name> 

 <value>6 ft</value> 

</metafield> 

<metafield encrypt=”true”  level = “low” integrity_enforcement=”true”> 

 <name>Weight</name> 

 <value>78 Kg</value> 

</metafield> 

<metafield encrypt=”true” level = “high” integrity_enforcement=”true”> 

 <name>Analysis Results</name> 

 <value> disc space narrowing in the neck 

Severe brain gliomas and ependymomas in different regions (medulla oblongata, right cerebrum)</value> 

</metafield> 

<metafield encrypt=”false” integrity_enforcement=”true”> 

 <name>Case No</name> 

 <value> 59392110</value> 

</metafield> 

</metafields> 

<CAS_entity encrypt_all=”false”> 

<EntityID> 23876</EntityID> 

<EntitySize>133 MB</EntitySize> 

<SecureRange id=”1” encrypt=”true” level = “medium” integrity_enforcement=”true”> 

<X>210</X> 

<Y>24</Y> 

<W>43</W> 

<H>62</H> 

</SecureRange > 

<SecureRange id=”2” encrypt=”true” level = “high” integrity_enforcement=”true”> 

<X>110</X> 

<Y>175</Y> 

<W>122</W> 

<H>86</H> 

</SecureRange > 

<SecureRange id=”3” encrypt=”true” level = “low” integrity_enforcement=”true”> 

<X>70</X> 

<Y>285</Y> 

<W>88</W> 

<H>72</H> 

</SecureRange > 

<Entity_Info encrypt=”true” level=”high”/> 

</CAS_entity> 

</Pledge> 
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This, in addition to guaranteeing the patients rights in keeping their health status and record 

private and protected against any form of misuse or disclosure, contributes to decreasing the 

number of encryption operations and controlling their level which results in great flexibility and 

an overall performance improvement. 

4.2 The Security Engine 

The security engine is the most important component in the security architecture due to the great 

role it plays in providing, directly or indirectly, the essential security services needed for 

protecting the CAS enterprise data and securing its storage. The security engine is responsible 

for providing authentication and data confidentiality and integrity services. It participates in 

carrying out an efficient and secure key generation mechanism and ensures the storage security 

of the ciphering keys and other sensitive parameters on the client device/application server. The 

security services supported by the security engine are controlled and configured based on 

information present in the policy runtime process which provides the primary information 

source the security engine consults for taking security decisions at runtime.  

The operation of the security engine is functionally divided into two main phases: The secure 

object storage phase and the secure object retrieval phase. In the first phase the client 

application takes the responsibility of capturing the CAS object θ n, generating its corresponding 

security policy P, and encrypting its content based on the rules specified in the security policy. 

The encryption operations are also applied on the object’s metadata attributes. The encrypted 

result is appended to the object’s content address Ψn (generated by hashing the policy-based 

encryption result of θ n) and its identification number n. The resulting message is sent 

authenticated with a message authentication code (MAC) to the application server. The key w to 

the MAC function is a key shared between the client and application server at system 

initialization time using public-key algorithms. The public-key algorithm used to share the 

symmetric key w is implementation dependent. For instance, the implementer may use an 

authenticated version of the Diffie-Hellman key management protocol [31] between the 

client and application server to securely agree on a shared key w, or the client can generate w at 

random and send it encrypted with the application server’s public key. The application server 

can then decrypt the encrypted content with his private key to retrieve the shared secret w. Note 

that the public key distribution mechanism is based on the traditional public-key certificates 

approach. This mechanism assumes that each client device is securely embedded with the 

public-key certificate of the application server. The same argument applies to the generation of 

the shared secret X between the application server and the CAS storage device. The multi-level 

ciphering keys used by the content-based security engine are produced by hashing a session key 

EKn with 128-bit, 192-bit, and 256-bit hash functions. 

Upon receiving the client’s message, the application server forwards it to the CAS storage nodes 

after verifying the authenticity of the MAC value. On the storage side, the CAS node stores the 

encrypted object and generates a system identifierϒ  that virtually points to the logical storage 

location of the object. Whenever the CAS node is requested to retrieve a stored object, it 

converts the handle ϒ  to a physical address by employing an internal mapping process. ϒ is sent 

authenticated to the application server to be stored in a local database. 

In the secure object retrieval phase, the client application sends the content address Ψn to the 

application server. The latter queries its local database to retrieve the object’s handle ϒ and send 

it to the CAS storage device. Usingϒ, the CAS nodes can determine the physical address of the 

object to retrieve it and send it with MAC integrity authentication to the application server. The 

application server receives the policy-encrypted object and sends it to the client application after 

verifying the authenticity of the MAC. Together with the encrypted object, the application 

server presents the client with the object’s encrypted metadata attributes, its content address Ψn, 

and its identification number n. 
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On the client side, the security engine decrypts the contents of the object after generating the 

session key EKn and the encryption keys EHn, EMn, ELn, using n and EK0. The detailed steps of 

the PLEDGE security protocol in the secure storage and retrieval of fixed content objects and 

the functional role of the security engine in this protocol are illustrated in Figures 4 and 5 

respectively.  
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The design of the Security Engine makes it impossible for an attacker capturing the client 

device to disclose session keys generated before the time of the attack. If the attacker captures 

the device after EKn is generated, she will only be able to retrieve EKn from the memory of the 

device. Since EKn is derived using a one-way hash function from EKn-1, the attacker will not be 

able to deduce EKn-1, and as a result the encryption keys EHn-1, EMn-1, and ELn-1 derived from 

EKn-1 are also protected. With such design, the privacy and confidentiality of the session keys 

are assured and the authenticity of the hash chain is guaranteed. It should be noted here that an 

attacker capturing the master key EK0 would jeopardize the security of the whole model. This 

issue can be practically solved by setting EK0 to a client memorized secret that is entered once 

at system initialization time and scrubbed from the device’s memory once EK1 is generated. EK1 

and the following session keys and their corresponding encryption keys in the hash chain are 

similarly swiped from memory once their encryption/decryption task is completed. Moreover, 

for the safety of the master key EK0, the client should enter the memorized secret EK0 every 

time a CAS object is to be decrypted (see steps 5 and 10 in Figure 4 and steps 10 and 12 in 

Figure 5). 

As shown in Figure 1, the policy-based security architecture can be implemented to operate on 

the proxy server side to provide the data assurance to an entire Intranet site or Local Area 

Network (LAN). This scenario is suitable for providing policy-based security services to mobile 

devices with limited resources that are not capable of running the security engine natively.  

4.3 The Policy Runtime Process 

The policy runtime process is a compact, internal representation of the security policy in the 

memory of the client device or the application server, depending on where the PLEDGE 

security engine is running. This runtime process is initialized at policy generation time and is 

the primary source that the security engine consults for taking security decisions and carrying 

out security-related operations at runtime. 



International Journal of Network Security & Its Application (IJNSA), Vol.2, No.1, January 2010 

 

109 

 

4.4 Policy Security 

The security policy contains sensitive information that controls the various security operations 

in PLEDGE. Any malicious modification to this information may lead to dangerous security 

attacks. Thus, assuring the integrity of the policy information must be given exceptional 

attention. MACs and digital signatures are used to guarantee the authenticity of the policy 

information on the client device. 

5. SYSTEM PERFORMANCE MODEL 

This section presents a formal mathematical analysis of the performance of PLEDGE. Most of 

the equations presented in this performance analysis are conducted in a platform-neutral manner 

without relying on any device hardware or operating system. In the rest of this section we will 

use the following notation:  

- N is the number of encryption levels supported by the policy-based security 

architecture. This depends on the number of key lengths supported by the encryption 

algorithm (N = 3 in PLEDGE’s implementation). 

- T = SizeOf(θ n) is the size in bytes of the nth fixed content entity. 

- ET = SizeOf(E
P
(θ n))  is the number of bytes encrypted in the n

th
 fixed content entity (this 

is the sum of the sizes of the security ranges specified in the security policy). 

- µi  is the percentage of bytes encrypted by the i
th encryption level based on the 

specifications of the security policy 

5.1 Percent Decrease in Encrypted Bytes 

PDE is the percent decrease in encryption operations resulting from the use of policy-based 

encryption mechanisms. Compared to bulk encryption, the percent decrease in encryption 

operations is obtained as follows: 

100TT E
PDE

T

−
= ×     (1) 

5.2 Performance Gain 

We now calculate the performance gain achieved due to the policy-based security. 

Defining Wi to be the number of bytes encrypted by the i
th

 encryption level, the percentage of 

bytes encrypted according to the i
th
 encryption level is obtained as follows: 

100i

i

W
µ

T
= ×      (2) 

Let Ci be the cost of an encryption operation using the i
th
 encryption level. This cost may be the 

number of CPU cycles to perform an encryption operation or the RAM footprint consumed by 

an encryption operation, or a function of both. It should be noted that the values of the different 

Ci s are platform-dependent but C1 < Ci < CN since the complexity, and therefore cost, of 

encryption increases with the size of the encryption key. Assume that the traditional security 

approach of securing all the fixed content entity uses an encryption strength equivalent to Cr; we 

define  

1

 
100

N
i

i

i

µ
J C

=

=  ×∑     (3) 
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The performance gain G, resulting from the use of policy-based security mechanisms relative to 

the traditional approach which encrypts all the object will be 

 
100i

i

C J
G

C

−
= ×     (4) 

If the policy-based architecture uses a three-level encryption scheme (low, medium, and high) 

utilizing an encryption algorithm with three key sizes such as AES (128, 192, and 256 bit keys) 

then the percentage of bytes encrypted according to the high, medium and low encryption levels 

are respectively obtained as follows: 

3
3 100

W
µ

T
= ×      (5) 

2
2 100

W
µ

T
= ×      (6) 

 
1

1 100
W

T
µ = ×      (7)  

Assume that the traditional security approach of securing all the contents of the CAS entity uses 

an encryption strength equivalent to the medium encryption level that is, Cr = C2, we will have: 

1 2 3
1 2 3

100 100 100

µ µ µ
J C C C= × + × + ×   (8) 

and 

2

2

 
100

C J
G

C

−
= ×     (9) 

Consider a 150 MB CAS image object with ET = 17 MB. Assume that the user wants to secure 

the image using 3 security regions according to the following specifications: 4 MB are 

encrypted using the low encryption level ( 1µ  = 2.67 %), 8 MB are encrypted using the medium 

encryption level ( 2µ = 5.33 %), and 5 MB encrypted according to the high encryption level 

( 3µ = 3.33 %). From equation 1, we get PDE = 95.33 %. 

To calculate the performance gain G, let 1C  = 50 performance units, 2C  = 90 performance 

units and 3C  = 175 performance units. From equation 8, we get J =  11.96 ⇒ G = 86.71 %. 

6. PLEDGE IMPLEMENTATION 

In this section we present briefly PLEDGE’s sample implementation in a real CAS environment 

using Gen 3 and Gen 4 EMC Centera [4] storage devices configured to operate in the 

Compliance Edition Plus (CE+) security mode. Building the security architecture on top of the 

EMC CAS storage model made it inherently comply with the HIPPA and SEC Rule 17a-4 [6] 

compliance regulations. The compliance requirements realized are summarized in the following 

points: 

1. It should be impossible to change the value or transform the format of stored data. 

2. It should be impossible to delete any stored object until a certain predefined retention period 

has expired. 

3. Data shredding should be enforced to ensure that any deleted object can’t be restored. EMC 

Centera supports data shredding by overwriting the deleted object with seven passes of random 

binary strings. This is also the number of passes recommended by the DoD 5015.2 regulations.  
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4. There should be an implementation of an event-based retention mechanism which ensures 

that a certain stored object can not be deleted until after a specified or predictable event takes 

place. This feature is very crucial in medical as well as financial, mortgage, and insurance 

industry operations. Event-based retention is also recommended by DoD 5015.2.  

Along with all the above features implemented, PLEDGE adds the selective cryptographic 

protection mechanisms to secure data in transit and in the CAS storage nodes.  

As mentioned previously, the application simulated is an X-Ray radiography scanning system 

for the secure generation, storage and retrieval of X-Ray images in a healthcare enterprise 

network environment.  The client devices used are a) a Pentium (R) M laptop with a 2.13 GHz 

processor and 512 MB RAM running Microsoft Windows XP SP2,  b) an Asus MyPal A730 

Pocket PC device having an Intel 512 MHz processor and 64 MB RAM running Microsoft 

Windows Mobile for Pocket PC 2003, c) a Nokia E61i smart phone having an ARM9-based 222 

MHz processor and 60 MB RAM running the Symbian 9.1 operating system. The Asus MyPal 

and the Nokia E61i devices come with integrated WiFi connectivity which was useful to test the 

interactions with the application server over the wireless network. The application server used is 

an Intel Pentium 4 server with a 2 GHz processor and 2 GB RAM. The application server 

operating system is Windows Server 2003 Enterprise Edition SP1. The protocol implementation 

for clients a and b used the Gen 4 EMC Centera running the CentraStar 3.1 operating code and 

the client c device was tested with the Gen 3 EMC Centera running the CentraStar 3.0 operating 

code.   

Over 300 radiography digital scans were used in the sample tests ranging in size from 10 MB 

for standard X-Ray images to over 1.5 GB for oncology tests and studies. We utilized the 

expertise of many radiographers and oncologists to select reasonable regions in the X-Ray scans 

to secure based on the policy-driven approach proposed. The benchmarks performed are done in 

two main stages to calculate the overall performance of the system in terms of the number of 

bytes processed per second. The first stage computes the number of bytes processed per second 

from the time the X-Ray image is provided to the Security Engine on the client device or on the 

application server (depending on the configuration) to the time it is safely stored in the CAS 

device. The second stage calculates the number of bytes processed per second from the time the 

X-Ray image is queried and fetched from the CAS storage node to the time it is decrypted by 

the Security Engine on the client-side. The experimental results of configuration 1 are presented 

in Figure 6. In the secure storage stage, PLEDGE policy-based security approach achieves a 

speedup factor of 3 over the raw encryption approach that encrypts the entire CAS object. 

Almost the same speedup factor is achieved when securely retrieving the object from the CAS 

nodes and decrypting it on the client-side. The experimental results of configurations 2 and 3 

are presented in Figures 7 and 8 respectively. The significance of these results resides in the 

presence of a mobile device on the client tier. The content-based security mechanisms take into 

consideration the limited memory, processing, and energy resources of these devices and 

provide the suitable encryption services based on the application requirements and data 

sensitivity. In configuration 2, PLEDGE realizes a performance speedup factor of 3.2 over raw 

encryption in the secure storage phase, and a speedup factor of 3 in the secure retrieval stage. In 

configuration 3, which uses a relatively low-end mobile phone, the content-based security 

approach attains speedup factor of 3.57 in the secure storage and 3.72 in the secure retrieval 

phase.      
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Figure 6. PLEDGE Secure Storage/Retrieval Performance 

Client: Windows XP SP2 Pentium (R) M 2.13 GHz 512 MB DDR2 RAM 

Application Server: Windows Server 2003 Enterprise Edition SP1 Pentium IV 2 GHz 2 GB RAM 

CAS Device: EMC Centera Gen 4 Compliance Edition Plus (CE+) 

Figure 7. PLEDGE Secure Storage/Retrieval Performance 

Client: Pocket PC with Microsoft Windows Mobile 2003 Intel 512 MHz Processor 64 MB RAM 

Application Server: Windows Server 2003 Enterprise Edition SP1 Pentium IV 2 GHz 2 GB RAM 

CAS Device: EMC Centera Gen 4 Compliance Edition Plus (CE+) 
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7. CONCLUSIONS 

In this paper we presented PLEDGE, a new customizable security protocol for 

protecting the confidentiality, integrity, and authenticity of fixed content objects in 

enterprise CAS environments. PLEDGE enhances the overall performance of the CAS 

system by utilizing a policy-driven security protocol that encrypts the CAS entity based 

on its content and sensitivity rather that encrypting its entire contents. PLEDGE’s 

design and architecture are presented and a formal mathematical performance model 

was introduced.  The paper presented a sample implementation of the protocol on a real 

CAS enterprise network using an EMC Centera CAS box. Implementation showed 

PLEDGE to be more than three times faster than bulk encryption protocols. Future 

research will focus on enhancing and simplifying the security policy creation 

mechanisms and on providing automated validation to the policy semantics to prevent 

any security leaks and flaws.    
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