
International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

DOI : 10.5121/ijnsa.2012.4503 25

HANDOFF BASED SECURE CHECKPOINTING AND

LOG BASED ROLLBACK RECOVERY FOR

MOBILE HOSTS

Priyanka Dey
1
 and Suparna Biswas

2

1
Department of Computer Science & Engineering, West Bengal University of

Technology, Salt Lake, Kolkata
priyankadey24@yahoo.co.in

2
Department of Computer Science & Engineering, West Bengal University of

Technology, Salt Lake, Kolkata
mailtosuparna@gmail.com

ABSTRACT

An efficient fault tolerant algorithm based on movement-based secure checkpointing and logging for

mobile computing system is proposed here. The recovery scheme proposed here combines independent

checkpointing and message logging. Here we consider mobility rate of the user in checkpointing so that

mobile host can manage recovery information such as checkpoints and logs properly so that a mobile

host takes less recovery time after failure. Mobile hosts save checkpoints when number of hand-off

exceeds a predefined hand-off threshold value. Current approaches save logs in base station. But this

approach maximizes recovery time if message passing frequency is large. If a mobile host saves log in its

own memory, recovery cost will be less because log retrieval time will be small after failure. But there is

a probability of memory crash of a mobile host. In that case logs can not be retrieved if it is saved only in

mobile node. If the failure is transient then logs can be retrieved from the memory of mobile node.

Hence in this algorithm mobile hosts also save log in own memory and base station. In case of crash

recovery, log will be retrieved from base station and in case of transient failure recovery logs will be

retrieved from mobile host. In this algorithm recovery probability is optimized and total recovery time is

reduced in comparison to existing works. Logs are very small in size. Hence saving logs in mobile hosts

does not cause much memory overhead. Hand-off threshold is a function of mobility rate, message

passing frequency and failure rate of mobile hosts. This algorithm describes a secure checkpointing

technique as a method for providing fault tolerance while preventing information leakage through the

checkpoint data.

KEYWORDS

Fault-Tolerance, Mobile Computing, Checkpointing, Logging, hand-off, recovery time, crash failure,

transient failure.

1. INTRODUCTION

Fault tolerant mobile computing systems are increasingly being used in such application as e-

commerce, banking, different mobile monitoring devices in hospital and mission critical

application, where privacy and integrity of data as important as uninterrupted operation of

services provided.

The checkpointing and logging technique is one such distributed service to provide fault

tolerance for the system. Checkpoint which is a consistent snapshot of the system contains

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

26

process’s state, register, segment and actual data of process [1]. Many checkpointing-recovery

schemes have been proposed for the distributed systems. However, these schemes cannot be

directly used in the mobile environment because of mobile computing system has many

constraints [2][3] e.g. mobility, low bandwidth, less stable storage and frequent disconnection.

In light of the above constraint, this paper presents a movement-based checkpointing strategy

combined with logging for recovery of individual hosts in mobile computing environments. In

this approach Mobile host (MH) takes a checkpoint when handoff exceeds threshold of

mobility. The threshold depends on log arrival rate, failure rate and mobility rate of MH. Our

proposed approach mobile host saves log in its own memory to reduce the recovery time and

increase recovery probability after failure. This type of log saving schemes is applicable to such

kind of mobile device which can support large amount of storage of message and in which

instant recovery is required after failure. This log saving approach is applicable in hospital

while several mobile monitoring devices are attached to patient to monitor their temperature,

pulse and so on. If failure is occur these devices should be recovered instantly [4]. But due to

probability of memory crash, mobile hosts save log in both own memory and base station. We

prove here our log saving technique takes less time and more recovery probability than already

proposed log saving technique through our simulation results. This case is suitable in a mission

critical application providing communications and shared situational awareness to an active

military unit. The failure rate and mobility rate in such a mobile environment is likely to be

very high. At the same time, fast recovery from failures is more important than minimizing cost

of failure-free operations. For this type of system after failure it is necessary to retrieve every

message and instant recovery is preferable.

The network is one of the common places where security threats exist [5][6]. In this algorithm

each mobile host encrypts checkpoint and saves in base station. This prevents information

leakage from checkpoint while being transferred through wireless channel. Similarly at the time

of recovery, encrypted checkpoint will be retrieved and decrypted by the failed mobile host.

Thus our proposed low overhead, movement based, secure checkpointing and rollback recovery

algorithm ensures fault tolerance of applications running on mobile hosts as well as

confidentiality of checkpoint data.

The rest of the paper is structured as follows: Section 2 discusses some of the related

works, our observation and problem definitions. Section 3 describes system model &

preliminary assumptions. Section 4 elaborates data structures and notations used. Section 5

explains proposed checkpointing scheme, basic ideas and describes the algorithm. Section

6 gives Necessary correctness proofs. Section 7 elaborates simulation and performance

analysis. In Section 8 we conclude our work.

2. RELATED WORKS

An overview of different types of checkpointing and logging techniques and roll back recovery

techniques based on the different types of checkpoint based and log based can be found in [7]

[8].

Prakash and Singhal describe in [9] a checkpointing algorithm for Mobile Computing

System. This checkpoint collection algorithm is synchronous and non-blocking. A minimum

number of nodes are forced to take checkpoints. Each mobile host (MH)maintains a

dependence vector of MHs.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

27

T.Park et.al has presented an efficient movement based recovery scheme in [10]. Main

feature of this algorithm is that a host carrying its information to the nearby mobile support

station (MSS) can recover instantly in case of a failure. For failure-free execution there is a

concept of a ‘certain range’ is introduced. An MH moving inside a range , recovery

information remains in host MSS otherwise it moves recovery information to nearby

MSS.

Sapna E. George et .al [11] describes a checkpointing and logging scheme based on mobility of

MHs. A checkpoint is saved when hand-off count exceeds a predefined optimum

threshold. Recovery probability is calculated and recovery cost is minimized in this scheme. In

case of logging when MH receives message, saves this log in MSS. They compute recovery

time and recovery probability by varying log arrival rate and failure rate.

2.1. Our Observations

Many checkpointing-recovery schemes have been proposed for the distributed systems;

however, these schemes cannot be directly used in the mobile environment because of mobile

computing constraints. In [10] and [11] it is described that independent checkpointing and

message logging is suitable for failure recovery in mobile devices if we consider movement

based checkpointing and logging.

In [10] they will take checkpoint on periodic basis. Periodic checkpointing may not be suitable

for mobile environment due to following reason-

1. If the frequency of check pointing is high, the additional overhead is large.

2. If the frequency is low, the recovery cost may be very large.

 In [11] a movement based checkpointing and logging scheme is introduced in which

checkpoint is taken based on movement threshold instead of periodic. In this algorithm log is

saved in base station. So recovery time increases due to log retrieval cost.

Security is also an important issue in case of wireless network. In [10] and [11] checkpoint is

always saved in base station. But after failure Checkpoint needs to be transferred. So

checkpoint data may change where it is saved or when it is transferred. So security of

checkpoint is required.

2.2. Problem definition

Based on the above analysis we propose an efficient fault tolerant algorithm based on

movement-based secure checkpointing and logging which identifies problems and tries to

provide proper solutions.

• Transient failure of mobile hosts: Occurrence of transient fault can not affect memory

content of mobile host. No need to save log in base station. Log can be saved and retrieved

from memory of mobile host itself.

• Crash recovery: If we save log only in base station recovery overhead will increase. So we

consider a case in log saving techniques where log will be kept in mobile host’s own

memory. If mobile host’s memory is crashed, log saved inside memory can’t recover. So

we consider another case in log saving techniques where log will be saved in both base

station and mobile host’s memory. If memory crash occur log can be retrieved from base

station.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

28

• Security attack to checkpoint in wireless channel: Mobile computing system is used in

various financial transactions where fault tolerance is necessary. To provide fault tolerance

secure check pointing is an important issue. Checkpoint is transferred to base station over

insecure wireless channel. Again if a mobile host fails, checkpoint needs to be transferred

to the mobile host over wireless channel. The checkpoint can be attacked, compromised

and corrupted in-transit by any intruder or malicious node. The mobile can not recover

using modified checkpoint data. Hence rollback recovery of a failed mobile host from last

saved state will not be possible. So, security of checkpoint data in wireless network is

required to ensure fault tolerance of the processes running on the mobile hosts. Here we

encrypt checkpoint so that checkpoint data does not changed.

• Random movement and handoff of mobile hosts: Mobility of mobile host is an important

concern in case of mobile environment because depending on mobility, logs and

checkpoints of a mobile host are saved in different base stations. So, recovery cost depends

on checkpoint and log retrieval cost. The optimum movement threshold value ensures that

checkpoints can be saved nearer to recovery base station, logs are not scattered too much so

that overhead of unnecessary checkpoints and logs can be avoided.

• Overhead: Overhead is optimized by saving log in mobile host’s own memory so that log

retrieval cost will be zero during recovery from transient failure.

3. SYSTEM MODEL

The mobile computing system considered here consists of n number of mobile nodes called

mobile host (MH) and m number of static nodes called base station (BS). MHs are connected to

BSs through wireless network and BSs are connected with each other though wired network.

An MH can communicate with other MHs through messages. An MH can be directly connected

to at most one BS at any given time. An MH can communicate with other MHs and BSs only

through the BS to which it is directly connected. The links in the wired network support FIFO

message communication. In this system the channel between an MH is connected to a BS also

ensures FIFO communication in both the directions. Message transmission through these links

takes an unpredictable, but finite amount of time during transmission. During normal operation,

no messages are lost in transit. The system does not have any shared memory or a global clock

among nodes. So, all communication and synchronization takes place through messages.

Proposed algorithm is non-blocking while taking checkpoint.

3.1. Assumptions

• During checkpoint interval messages sent, received are saved into log file.

• Every MH takes and transfers encrypted checkpoint.

• Mobile host will move only in forward direction.

4. DATA STRUCTURE AND NOTATION

mh_id = mobile host id. BScurrent= currently connected base station id. BSprev=previous visited

base station id.hc= handoff counter which keeps the record of number of handoff occurs.

BSlog=base station id where logs are saved..BSchkp=base station id where checkpoint is saved. hc =

number of hopcount.lc = count the number of log. chkpt_intv=checkpoint interval.

Movement_threshold=number of handoff required to take checkpoint. r = Ratio of bandwidth

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

29

of wireless network to wired network. Tchkp_take_time = time required to take checkpoint.

Tchkpencrypt_time = time required to encrypt checkpoint. Trec= time required to recovery after

failures. Tsave_chkp_bs = time required to transfer checkpoint.T1=time required to send the
checkpoint request to BSchkp. T2=time required to transfer checkpoint from BSchkp to

BScurrent.T3= time required to save checkpoint. T4=time required to send the request of BSlog to

send log file. T5 = time required to transfer log from BSlog to BScurrent .T6=time required to

transfer log to MH from BScurrent. T7 = time required to replay log. T8= time required to decrypt

checkpoint. RP=recovery probability of mobile host. p=percentage of memory crash.

5. PROPOSED WORK

The system is composed of n number of mobile nodes called MH and m number of stationary

nodes called BS. When MH will connect with first BS it has to save its code through which it

can be authenticated. When MH will change BS it will be authenticated first. There is a handoff

counter which will increment every time when MH will move one cell to another. We consider

some threshold value. When MH’s handoff counter will exceed the threshold value MH will

take checkpoint. During checkpointing, MH will first save the states and encrypt it and then

save it in the stable storage .Then the handoff counter will initialized to zero.

MH can communicate with other MH through message. The receiver MH will save the received

message in log file. Log file will contain the message, the sender and receiver ID, message

sequence no. and the interval of receiver.

When failure is occurred MH will connect to any BS (not necessary the BS where failure is

occurred) .When it will connect with any BS authentication will occur. If authentication is

successful MH can connected to BS. MH then gives the BS id to the BScurrent to get the

checkpoint. The BScurrent will then send request to the BSchkp where checkpoint is saved to get

checkpoint. BSchkp then response the request and send the checkpoint. The current BS then

sends the encrypted checkpoint to the MH. MH then decrypts the checkpoint and rollback to its

last taking checkpoint.

In case of logging we consider two cases based on log saving techniques of different mobile

computing devices. Two cases are illustrated in the following-

Case1: MH will save log in its own memory. It will not copy the log in BS. In this case when

failure is occurred it has to only retrieve the checkpoint. Then MH will rollback to its last

checkpoint and replay the log.

Case2: MH will save log in its own memory and also copy the log in BSlog. In case1 there is a

probability of MH memory crash. So if memory crash occurs MH can retrieve log from BSlog

otherwise from memory.

5.1. Working example

The above proposed work is illustrated through the following example cellular network. For

example we consider number of MH in this figure is. Here C1,1 denotes MH1 takes its

checkpoint at interval 1.When MH1 will take next checkpoint the checkpoint is denoted by

C1,2.The checkpoint for other MH’s are denoted in the similar way. When MH1 moves from one

BS to another BS its handoff counter i.e. hc is incremented by 1.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

30

Figure 1. Working example of our proposed algorithm

MH1 will take checkpoint when handoff counter i.e. hc=2.In this example we consider threshold

value 2.So When hc=2 every MH in this example will take checkpoint. No process has to block

checkpoint. No process has to communicate with each while taking checkpoint. When MH1

will take point hc will initialized to zero and hc will be again incremented when MH1will move

to another BS. This will be applicable for MH2 and MH3.When MH1, MH2, MH3 will receive

message they will first save in memory and then save to BS. So if memory crash is occurred

MH can retrieve log from BS. Every MH also maintain log counter which count number of

message received till last checkpoint. For MH1 after taking C1.2 it receives m7 so log counter

will be 1.After taking checkpoint log counter will be initialized to zero. If failure is occurred

before taking checkpoint MH check log counter to decide how many log it has to replay.

Suppose MH3 fails before taking checkpoint C3,3 then MH3 will rollback to C3,2 and replay one

log i.e. m6 as its log counter will be 1 .Thus MH3 will recover from failure.

5.2. Algorithm

1. MH initially connects to BS after successful authentication.

2. MH sends message to the another MHs. Receiver MH saves the messages in log. Then for

case1 MH can save log in memory and for case2 in BSlog.

3. MH moves one BS to another BS and increment handoff counter.

4. If value of handoff counter is greater than movement threshold Checkpoint will be taken.

After encryption checkpoint will be saved in BSchkp.

5. After failure recovery process of MH is explained in the following pseudo code.

 failure Recovery()

{

 failed MH reconnects to any BS arbitratrily ;

 MH will give the BSchkp id where checkpoint is saved .

 BScurrent will send request to the BSchkp where check

 point is saved .

 BSchkp then send checkpoint .

 BScurrent then send the encrypted checkpoint to MH.

 MH then decrypt checkpoint.

if(failure is memory crash){

 MH will give the BSlog id where logs are saved.

 BScurrent will send request to the BSlog.

 BSlog then send log to BScurrent.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

31

 BScurrent then send the logs to MH.

}

else

{

 MH will retrieve all the log from memory.

}

MH will rollback to last checkpoint and replay all the log.

}

6. CORRECTNESS AND PROOF

Theorem 1: The Proposed algorithm ensures consistent global checkpointing

lemma 1: No orphan or lost message is generated by the technique

Proof: To prove this we consider two cases on the basis of Fig.1.-

Case1:MH1 fails after taking checkpoint C1,2 and receiving m7 from MH2.

In this case m7 is considered as lost message because the state of MH2 reflects sending it but

MH1 does not reflects receive it. So m7 can be considered as loss message because it cant

replay after failure.

According to our algorithm m7 is not considered as lost message because when MH1 receives m7

it saves in its own memory. After failure when MH1 rollbacks to C1,2 and replays m7.

Case2: MH2 fails before taking checkpoint C2,3 after sending m6 to MH1

In this case m6 considers as orphan message because the state of MH3 saves m6 is received from

MH2 but as MH2 fails , its state has no record about the event that MH2 sends m6 to MH3. So

m6 can be considered as orphan message.

According to our algorithm m6 is not considered as orphan message because when

MH1receives m6 it saves in its own memory. So after failure MH1 can replay it.

So theorem1 is proved.

7. PERFORMANCE ANALYSIS

We simulate this algorithm for mobile environment using C language. We use rand () function

in C to generate join, leave, send and receive function randomly. We simulated encryption and

decryption of checkpoints using a very simple cryptography technique to verify the working of

the proposed secure checkpointing algorithm. In Practical purpose strength of security

technique is a big issue. Public key cryptography using elliptic curve cryptography is already

well established for PDAs. Implementation of Elliptic curve cryptography algorithm is out of

scope of this work. We have implemented random movement, handoff, computation message

sending and receiving, logging, checkpoint, failure and rollback recovery of mobile hosts to get

different parameters for the performance analysis of the proposed algorithm. Only encryption

and decryption times of checkpoint are taken same as ECAES encrypt and ECAES decrypt time

mentioned in [12]. In our system the following parameter values are kept constant. The ratio of

bandwidth of wireless to wired network is .1 as mentioned in [11]. Size of each character of

each message is considered as 1 bit. Failure rate and log arrival rate are considered to be of

exponential distribution. In this system many parameters such log arrival rate, failure rate, and

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

32

movement threshold were varied across runs. These values do not assume a specific application

or environment. These values were chosen for simulation and performance analysis only. Here

we consider MH will move only in forward direction. Here we calculate failure rate by

assuming failure is occurred when handoff counter=movement threshold-1.

In this performance analysis we compare the result of log taking scheme used in [11] with our

log taking scheme. For this comparison we consider three cases. We consider this to compare

with our own case to calculate the overhead. These cases are

Case1: MH will save the log to the BS where it will save checkpoint and delete the message

from own memory. MH will retrieve log from BSlog for recovery.

Case2: MH will save log in its own memory. It will not copy the log in BSlog. This case is

considered only for transient failure. But there is a possibility of memory crash. So we consider

case3.

Case3: MH will save log in its own memory and also copy the log in BSlog.In case memory is

crashed it can retrieve log from BSlog otherwise from MH’s memory.

• Secure checkpoint cost

 This cost will be same for case1, case2 and case3 because checkpoint taking techniques for

three cases are same.

Tchkp_take_time + Tsave_chkp_bs+ Tchkpencrypt_time

=.003+.234+1.759 =1.996s

If we consider encrypted checkpoint overhead will increase by 1.759s.

• Recovery Time

For case1: Trec =(T1+hc*(T2))*r+T3+T4+lc*hc*(T5)*r+T6+(lc * T7)

For case2: Trec =(T1 +hc*(T2))*r + T3 + T8+ (lc * T7)

For case3: Trec = (T1 + hc *(T2))*r +T3 + T8+p*(lc*T7)) + ((1-p)*(T4+lc*hc*(T5)*r

 + T6+ (lc * T7))

• Recovery Probability

For case1: RP= (No. of times successfully retrieve checkpoint and logs)/ (No. of attempts to

 retrieve checkpoint and log)

For case2: RP= (No. of times successfully retrieve checkpoint)/(No. of attempts to

 retrieve checkpoint)

For case3: RP= p*((No. of times successfully retrieve checkpoint and logs)/ (No. of attempts to

retrieve checkpoint and log))+(1-p)*((No. of times successfully retrieve

checkpoint)/(No. of attempts to retrieve checkpoint))

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

33

Figure 2(a).failure vs. recovery time log. (b).log arrival rate vs. recovery time

In figure 2(a) we take log arrival rate .667 as constant. By varying failure rate we get recovery

time we see that if failure rate increases recovery time will decreases because if failure rate

increases less log will be taken. So during recovery less no. of log needs to be transferred. In

this figure we compare the result of case1 and case2.

In figure 2(b) we get recovery time by varying log arrival rate and keep failure rate .34 as

constant. We see that if log arrival rate increases recovery time will increase because if log

arrival rate is increased more number of logs will be taken. So recovery time will be increased.

In this figure we compare the result of case1 and case2.

In both figure we can see that recovery time overhead increases in case1 than case2 as in case2

log transfer cost does not consider as log will be saved in mobile host’s own memory.

By considering this memory crash probability we compute recovery time by varying log arrival

rate and keeping constant the failure rate .34 and .69.

Figure 3 log arrival rate vs. recovery time (a) when memory crash probability=30%(b) when

memory crash probability=50% (c) when memory crash probability=70%

In the above all the figure we compare the recovery time of case1 with case3 by varying log

arrival rate and keeping constant the failure rate .34 and .69.

In the above figure 3(a) we compare the recovery time of case1 with case3 by considering

memory crash probability =30%.According to our result the recovery time overhead for case1

increases 18.27s than case3 while considering constant failure rate=.34 and 11.774s than case3

while considering constant failure rate=.69. Recovery time of case1 is greater than case3

because only 30% time (if memory crash probability 30%) log will be retrieved from base

station otherwise log retrieved from own memory. So case3’s recovery time is less than case1.

In the above figure 3(b) we compare the recovery time of case1 with case3 by considering

memory crash probability =50%.According to our result the recovery time overhead for case1

is increases 13.006s than case3 while considering constant failure rate=.34 and 6.8257s than

case3 while considering constant failure rate=.69. Recovery time of case1 is greater than case3

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

34

because only 50% time (if memory crash probability 50%) log will be retrieved from base

station otherwise log retrieved from own memory. So case3’s recovery time is less than case1.

In the above figure 3(c) we compare the recovery time of case1 with case3 by considering

memory crash probability =70%. According to our result the recovery time overhead for case1

increases 7.832s than case3 while considering constant failure rate=.34 and 5.2794s than case3

while considering constant failure rate=.69. Recovery time of case1 is greater than case3

because only 70% time (if memory crash probability 70%) log will be retrieved from base

station otherwise log retrieved from own memory. So case3’s recovery time is less than case1.

Now by considering this memory crash probability we compute recovery time by varying

failure rate and keeping constant the log arrival rate .667 and 1.16.

Figure 4 Failure rate vs.recovery time (a) when memory crash probability=30% (b) when

memory crash probability=50% (c) when memory crash probability=70%

In all the above figure we compare the recovery time of case1 with case3 time by varying

failure rate and keeping constant the log arrival rate.667 and 1.16 .

In the above figure 4(a) we compare the recovery time of case1 with case3 by considering

memory crash probability =30%. According to our result the recovery time overhead for case1

increases 8.77s than case3 while considering constant log arrival rate=.667 and 13.221s than

case3 while considering constant log arrival rate=1.16. Recovery time of case1 is greater than

case3 because only 30% time (if memory crash probability 30%) log will be retrieved from

base station otherwise log retrieved from own memory. So case3’s recovery time is less than

case1.

In the above figure 4(b) we compare the recovery time of case1 with case3 by considering

memory crash probability =50%.According to our result the recovery time overhead for case1

increases 7.6625s than case3 while considering constant log arrival rate =.667 and 9.8685s

while considering constant log arrival rate=1.16. Recovery time of case1 is greater than case3

because only 50% time (if memory crash probability 50%) log will be retrieved from base

station otherwise log retrieved from own memory. So case3’s recovery time is less than case1.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

35

In the above figure 4(c) we compare the recovery time of case1 with case3 by considering

memory crash probability =70%.According to our result the recovery time overhead for case1

increases 4.032s than case3 while considering constant log arrival rate=.667 and 5.6672s while

considering constant log arrival rate=1.16. Recovery time of case1 is greater than case3 because

only 70% time (if memory crash probability 70%) log will be retrieved from base station

otherwise log retrieved from own memory. So case3’s recovery time is less than case1.

In the above figure if we observe the differences of recovery time between case1 and case3 by

varying log arrival rate and keep constant failure rate and vice versa we can get the following

figure which indicates the approx difference between case1 and case3

Figure.5. recovery time overhead comparison between case1 and case3 for memory crash

probability 30%, 50%, & 70% (a) varying log arrival rate and constant failure rate .34(b)

varying log arrival rate constant failure rate .69 (c) for varying failure rate and constant log

arrival rate .667 (d) for varying failure rate and constant log arrival rate 1.16.

In the above figure 5(a) and 5(b) as memory crash probability increases we can see that

recovery time overhead decreases because probability of retrieve log from base station

increases with memory crash probability. So we can see that case3 also gives less recovery time

than case1.This two figures are drawn after observing the recovery time differences in figure

3(a), 3(b) and 3(c).

In the above figure 5(c) and 5(d) as memory crash probability increases we can see that

recovery time overhead decreases because probability of retrieve log from base station

increases with memory crash probability. So we can see that case3 also gives less recovery time

than case1.This two figures are drawn after observing the recovery time differences in figure

4(a), 4(b) and 4(c).

We encrypts checkpoint in our proposed algorithm. In the below we analyze for encryption

how much time is increased.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

36

Figure 6(a) log arrival rate vs recovery time(for comparision decryption time overhead) (b)

failure rate vs recovery time(for comparision decryption time overhead) (c) Recovery time vs.

movement threshold

In the above figure 6(a) and 6(b) we consider two cases. In case1 we calculate recovery time by

considering decryption time of checkpoint. In case2 we calculate recovery time by not

considering decryption. We can see that recovery time overhead increases by 1.759s.

 In figure 6(c) we compare recovery time of case1 with case2 by varying movement threshold.

We can see if movement threshold increases recovery time also increases because if movement

threshold increases checkpoint interval between two checkpoint increases so checkpoint

transfer cost will be high and more number will be taken between this interval.Recovery time

for case1 is more than case2 because in case2 log is saved in own memory.

Figure 7(a) failure rate vs recovery probability (b) Log arrival rate vs recovery probability

Failure rate is directly proportional to recovery probability.If failure rate is increased rate of

change of base station may decrease.So mobile host may recconect to base station which is

nearest to the base station where checkpoint is saved.So probability to retrieve checkpoint is

increased.If failure rate is frequent mobile host will take less no. of log.So successful log

retrieval probability will also increase.Thus if failure rate is increased recovery probability will

increased.In the above figure 7(a) we compare failure rate vs. recovery probability of case1 and

case2.We can see that recovery probability of case2 is higher than case1 because in case1 both

checkpoint and logs will be saved in base station.So after failure both checkpoint and log needs

to be retrieved.But in case of case2 only checkpoint is saved in base station.So only checkpoint

needs to be retrieved after failure as logs are always saved in mobile host’s memory. So after

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

37

failure if logs are not retrieve properly mobile host cant recover properly.As this log retrieval

does not exist in case2, recovery probability of case2 is greater than case1.

Log arrival rate is inversely proportional to recovery probability.If log arrival rate is high more

no. of log needs to be retrieved. In the above figure 7(b) recovery probability of case2 is higher

than case1 as in case1 logs are always saved in base station instead of mobile host’s memory.So

recovery probability of case2 and case1 differs as in case1 there is a chance of inproper

retrieval of log for which mobile host cant recover after failure.

If we observe the abaove fiigure we can get the difference of recovery probability between

case1 and case2. This difference is represented through the following graph.

Figure.8 recovery probability overhead comparison between case1 and case2 for.(a) varying

log arrival rate(b) varying failure rate

In the above figure 8(a) we can show that recovery probability of case2 is .158 higher than

recovery probability of case1.Here we vary log arrival rate and keep constant failure rate as

.03.After observation of figure 7(a) we draw this figure 8(a).

In the above figure 8(b) we can show that recovery probability of case2 is .06 higher than

recovery probability of case1.Here we vary failure rate and keep constant log arrival rate as .14.

After observation of figure 7(b) we draw this figure 8(b).

Figure.9 log arrival rate vs. recovery probability (a) when memory crash probability=30%(b)

when memory crash probability=50% (c) when memory crash probability=70%

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

38

In the above figure 9(a) we compare recovery probability of case1 and case3.Here we consider

memory crash probability = 30% by varying log arrival rate and keep constant failure rate as

.03. In this case recovery probability of case3 is higher than case1 because in case3 mobile host

will retrieve logs from base station when memory crash occurs i.e. 30%.But in case1 every time

logs need to be retrieved when failure is occurred. So recovery probability of case3 is greater

than case1.

In the above figure 9(b) we compare recovery probability of case1 and case3.Here we consider

memory crash probability = 50% by varying log arrival rate and keep constant failure rate as

.03. In this case recovery probability of case3 is higher than case1 because in case3 mobile host

will retrieve logs from base station when memory crash occurs i.e. 50%.But in case1 every time

logs need to be retrieved when failure is occurred. So recovery probability of case3 is greater

than case1.

 In the above figure 9(c) we compare recovery probability of case1 and case3.Here we consider

memory crash probability = 70% by varying log arrival rate and keep constant failure rate as

.03. In this case recovery probability of case3 is higher than case1 because in case3 mobile host

will retrieve logs from base station when memory crash occurs i.e. 70%.But in case1 every time

logs need to be retrieved when failure is occurred. So recovery probability of case3 is greater

than case1.

Figure.10. failure rate vs. recovery probability (a) when memory crash probability=30%(b)

when memory crash probability=50% (c) when memory crash probability=70%

In the above figure 10(a) we compare recovery probability of case1 and case3.Here we consider

memory crash probability = 30% by varying failure rate and keep constant log arrival rate as

.14. In this case recovery probability of case3 is higher than case1 because in case3 mobile host

will retrieve logs from base station when memory crash occurs i.e. 30%.But in case1 every time

logs need to be retrieved when failure is occurred. Recovery probability increases with failure

rate. So recovery probability of case3 is greater than case1.

In the above figure 10(b) we compare recovery probability of case1 and case3.Here we

consider memory crash probability = 50% by varying failure rate and keep constant log arrival

rate as .14. In this case recovery probability of case3 is higher than case1 because in case3

mobile host will retrieve logs from base station when memory crash occurs i.e. 50%.But in

case1 every time logs need to be retrieved from base station when failure is occurred. Recovery

probability increases with failure rate. So recovery probability of case3 is greater than case1.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

39

In the above figure 10(c) we compare recovery probability of case1 and case3.Here we consider

memory crash probability = 70% by varying failure rate and keep constant log arrival rate as

.14. In this case recovery probability of case3 is higher than case1 because in case3 mobile host

will retrieve logs from base station when memory crash occurs i.e. 70%.But in case1 every time

logs need to be retrieved from base station when failure is occurred. Recovery probability

increases with failure rate. So recovery probability of case3 is greater than case1.

If we observe the above figure we can get the difference of recovery probability between case1

and case3. This difference is represented through the following graph.

Figure.11. recovery probability overhead comparison between case1 and case3 for memory

crash probability 30%, 50%, & 70% (a) for varying log arrival rate and constant failure rate .03

 (b) for varying failure rate and log arrival rate .14

In the above figure 11(a) we can show that recovery probability of case3 is .182 higher than

recovery probability of case1 when memory crash probability =30%.Recovery probability of

case3 is .132 higher than recovery probability of case1 when memory crash probability

=50%.Recovery probability of case3 is .08 higher than recovery probability of case1 when

memory crash probability =70%.In all the cases we vary log arrival rate and keep constant

failure rate as .03.We can see that difference between recovery probability case1 and case3

decreases as memory crash probability increases.

In the above figure 11(b) we can show that recovery probability of case3 is .042 higher than

recovery probability of case1 when memory crash probability =30%.Recovery probability of

case3 is .03 higher than recovery probability of case1 when memory crash probability

=50%.Recovery probability of case3 is .014 higher than recovery probability of case1 when

memory crash probability =70%.In all the cases we vary failure rate and keep constant log

arrival rate as .14. We can see that difference between recovery probability case1 and case3

decreases as memory crash probability increases.

8. CONCLUSIONS

Mobile computing has been developing very rapidly in recent years. Some of the checkpointing

and recovery techniques proposed for mobile computing systems did not take checkpoints

regard to the mobility rate of the mobile host and unnecessarily incur additional overhead in

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

40

maintaining recovery data. In our proposed scheme, a mobile host takes a checkpoint only after

its handoff count exceeds a predefined threshold value. In our proposed approach, in case of

transient failure logs are retrieved from mobile host’s own memory to reduce the recovery time

after failure. But due to probability of memory crash, mobile hosts save logs both in their own

memory and base station. In case of crash failure logs are retrieved from base station. Saving

two copies of log may seem to cause memory overhead but log searching and transfer cost from

base station gets reduced. This algorithm proposes a secure checkpointing system as a method

for providing checkpointing capability while simultaneously preventing information leakage of

application data saved in checkpoint.

REFERENCES

[1] G.Hong, S.J.Ahn, S.C.Han, T. Park, H.Y. Yeom, Y.Cho,(2000) “ Kckpt: Checkpoint and

 Recovery Facility on UnixWare Kernel” [J], Computers and Applications, pp. 303-308.

[2] G.H.Forman, J.Zahorjan, (1994)“ Challenges of Mobile Computing ”, Journal Computer

Volume 27 Issue 4, April IEEE Computer Society Press Los Alamitos, CA, USA. pp. 31-40.

[3] Mobile Communications (2nd Edition), by Jochen Schiller, Publisher: Addison Wesley.

[4] W.Adis,(2005)“Mobile Computing for Hospitals: Transition Problems”, Communications

IIMA 67 volume 5 Issue 2. pp. 67-76.

[5] H.Nam , J.Kim , S.J.Hong , S.Lee, (2003) ”Secure checkpointing”, Journal of Systems

Architecture 48,pp. 237–254.

[6] D.P.Agrawal, H.Deng, R.Poosarla, S.Sanyal, (2003) “Secure mobile computing”, IWDC,–

Springer.pp.1-9

[7] E.N. (Mootaz) Elnozahy, L.Alvisi, Y.Wang and D.B. Johnson, (September 2002), “A Survey of

Rollback Recovery Protocol in Message Passing System”ACM Comput. Surv., Vol. 34, No. 3.

pp. 375-408.

[8] P.Kumar, R.Garg,(2010)”Checkpointing Based Fault Tolerance in Mobile Distributed Syst-

 ems”.International Journal of Research and Reviews in Computer Science (IJRRCS), Vol. 1,

No. No. 2, June,pp83-93.

[9] R.Prakash, M.Singhal, (1996) “Low Cost Checkpointing and Failure Recovery in Mobile

Computing Systems”, IEEE Transacrions on Parallel and Distrinuted Systems, vol. 7, october

.pp.1-38.

[10] T.Park, N. Woo, H.Y. Yeom,(2003) “An Efficient recovery scheme for fault-tolerant mobile

computing systems”, Future Generation Computer System, pp. 37-53.

[11] S.E.George,I.R.Chen,Y.Jin,(2006)“Movement-Based Checkpointing andLogging for Recovery

in Mobile Computing Systems”, MobiDE '06 Proceedings of the 5th ACM international

workshop on Data engineering for wireless and mobile access ,pp. 51-58.

[12] J.Lopez, R.Dahab,(2000) “An overview of Elliptic Curve Cryptography”, Technical

 Report

 IC-00-10, State University of Campinas,.pp:1-34

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.5, September 2012

41

Authors

Priyanka Dey: She completed her B.Tech in Information Technology from Techno India College of

Technology (affiliated to West Bengal University of Technology). Presently she is pursuing her M.Tech

in Software Engineering (Dept. of Computer Science & Engg.) from West Bengal University of

Technology. Her research interest is “Fault tolerance in mobile computing”.

Suparna Biswas:She obtained her B.Tech in Electronics & Communication Engineering from

University of Kalyani and M.E. in Software Engineering from Jadavpur University. She is currently

working as an Assistant Professor in the Dept. of Computer Science & Engg. in West Bengal University

of Technology. Her areas of research interests are Fault Tolerant Mobile Computing, Software

Engineering.

