
International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

DOI : 10.5121/ijnsa.2011.3520 257

Error Detection and Correction for Distributed

Group Key Agreement Protocol

P.Vijayakumar
1
, S.Bose

1
, A.Kannan

2

1
Department of Computer Science & Engineering,

Anna University, Chennai, India -600025
vijibond2000@gmail.com, sbs@cs.annauniv.edu
 2

Department of Information Science & Technology,

Anna University, Chennai, India-600025
kannan@annauniv.edu

Abstract

Integrating an efficient Error detection and correction scheme with less encoding and decoding

complexity to support the distribution of keying material in a secure group communication is an

important issue, since the amount of information carried out in the wireless channel is high which

produces more errors due to noise available in the communication channel. Moreover, the key must be

sent securely to the group members. In this paper, we propose a new efficient group key computation

protocol that provides more security and also integrates an encoding method in sender side and

decoding method in the receiver side. To achieve security in key computation process, we propose

Euler’s totient function based Diffie-hellman key distribution protocol. To provide efficient error

detection and correction method while distributing the Keying and re-keying information, we introduce

tanner graph based encoding stopping set construction algorithm in sender and receiver side of the

group communication. Two major operations in this scheme are joining and leaving operations for

managing group memberships. The encoding and decoding complexity of this approach is computed in

this paper and it is proved that this proposed approach takes less decoding time complexity.

Keywords

Group Communication, Key Computation, Euler’s Totient Function, Tanner Graph, Pseudo tree,

Encoding Stopping set.

1 INTRODUCTION

Wireless multimedia services such as videoconferences, sporting events, audio and video

broadcasting are based upon Group communication where multimedia messages are shared to a

group of members with less computation, communication cost due to the limitation of battery

power. In such a scenario only registered members of a group can receive multimedia data.

Group can be classified into static and dynamic groups. In static groups, membership of the

group is predetermined and does not change during the communication. In dynamic groups,

membership can change during multicast group communication. When a new member joins

into the service, it is the responsibility of the Group Centre (GC) to disallow new members

from having access to previous data. This provides backward secrecy in a secure multimedia

communication. Similarly, when an existing group member leaves from any group, he/she do

not have access to future data. This achieves forward secrecy. GC also takes care of the job of

distributing the Secret key and Group key to group members. Therefore, in dynamic group

communication, members may join or depart from the service at any time. The number of keys

to be updated is high when there is a change in group membership. Moreover all those keys are

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

258

needed to be communicated to the group members with minimal computation and

communication time. In this paper, we propose a new group key Distribution scheme based on

Eulers totient function that reduces the computation time compared with other existing

approaches.

Most basic key distribution schemes mainly focuses on the domain of key computation

which aims at reducing the storage and computation complexity. However, some of the

literatures focus on packet loss and packet recovery in turn. In this paper we propose a new key

distribution protocol along with error detection and correction techniques. Hence, this approach

provides a good way for the group members to construct the original key even if the

keying/Rekeying information’s that are sent through the wireless channel are lost. The

remainder of this paper is organized as follows: Section 2 provides the features of some of the

related works. Section 3 discuses the overview of key distribution protocol. Section 4 provides

the detailed explanation of the proposed Eulers Totient Function (ETF) based key computation

work. Section 5 shows the performance results. Section 6 discuses the integration of Error

detection and correction to our proposed key computation method. Section 7 gives the

concluding remarks and suggests a few possible future enhancements.

2 LITERATURE SURVEY

There are many related works on key management and key distribution that are present

in the literature [1-3], [10, 14-16] that can be divided into two types of group key management

namely centralized and distributed key management scheme. In Centralized key management

scheme, entire key generation and computation is performed by a single entity known as Group

Centre (GC). A Special case is the scenario where the key is generated by some Trusted Third

Party (TTP) which is not a group member [4, 8]. This type of key management is called as

distributed key management scheme. In distributed key management scheme, each group

member makes an independent contribution to the group key. We make a further distinction

among two slightly different flavors of contributory key agreement namely Partially

Contributory and Fully Contributory. In Partially Contributory key management, some

operations result in contributory and others in centralized key agreement. In Fully Contributory

key management, all key management operations are contributed by each group member.

Centralized key agreement is the most intuitive and the most natural. It has been used in a

number of past and current mechanisms and its use is commensurate with important advantages

as well as certain drawbacks. One such drawback is the overall reliance on a single party.

Among the various works on Centralized key distribution, Maximum Distance Separable

(MDS) [5] method focuses on error control coding techniques for distributing re-keying

information. In MDS, the key is obtained based on the use of Erasure decoding functions [6] to

compute session keys by the GC/group members. The main limitation of this scheme is that it

increases both computation and storage complexity since it uses more parameters. The

computational complexity is obtained by formulating lr+(n-1)m where lr is the size of r bit

random number used in the scheme and m is the number of message symbols to be sent from

the group center to group members. If lr=m=l, computation complexity is nl. The storage

complexity is given by ������� + 	 bits for each member. L is number of levels of the Key tree.

Hence Group Center has to store
�������� + 	�bits. Wade Trappe, et al proposed a Parametric

One Way Function (POWF) [7] based binary tree Key Management. The storage complexity is

given by����
� + 2 keys for a group centre. The amount of storage needed by the individual

user is given as
�������

��
 keys. Computation time is represented in terms of number of

multiplication required. The number of multiplication needed to update the KEKs using bottom

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

259

up approach is ����
 − 1 . Multiplication needed to update the KEKs using top down

approach is
������������������

�
. Here � represents the degree of the tree. In the domain of group

communication, contributory key agreement has been, for the most part, restricted to the

cryptographic literature [8, 13-17]. A new group keying method that uses one-way functions [8]

to compute a tree of keys, called the One-way Function Tree (OFT). In this method, the keys

are computed up the tree, from the leaves to the root. This approach reduces re-keying

broadcasts to only about log n keys. The major limitation of this approach is that it consumes

more space. However, time complexity is more important than space complexity.

The scheme MABS-B [11] provides perfect resilience against packet loss by eliminating

the correlation among the packets that are sent. For ensuring such a scheme, Merkle tree which

is based on hash functions is constructed and found to be very efficient for providing batch

signature and verification. Meanwhile, due to the limitations in MABS-B, an efficient method

for multicast communication with forward security, ForwardDiffSig was proposed [20]. This

scheme was found to be very efficient in terms of speed, exhibiting low delay even for long

keys. The proposed contribution of this work is that a variation of LDPC (Low Density Parity

Check) error correction codes [18], [21-24]. LDPC is an error correcting code that constructs a

parity check matrix M, which is multiplied with the original data words, d to provide a list of

code words, c. If the original data word consists of 8 bits, then LDPC (8, 16) parity check

matrix is generated. LDPC codes can also be described by their parity check matrix [25] or

tanner graph. So the degree of the bit node in a tanner graph is equivalent to the column weight

of the corresponding column of the parity check matrix. Different Column of a parity matrix

will have different column weights. Different row of a matrix will have different row weights.

Initially, Tanner graphs [26] were developed for the process of decoding using LDPC codes, in

fact, they can be used for the encoding of LDPC codes [12] In order to provide efficient error

correction, and we make use of the idea of Tanner graphs. The Tanner graph may produce

pseudo tree [19], based encoding stopping set [18]. In the proposed algorithm, the time

complexity of error correction procedure is significantly minimized and the proof is given in

section 6.2. In this paper we propose a new fully contributed binary tree based key management

scheme using Euler’s Totient Function φ�n� [9]. We have also compared the result obtained

from this approach with the previously proposed key computation protocols [14], [16-17]. From

the results it is clearly evident that our proposed algorithm reduces computation time. We also

Integrates error detection and correction algorithm both in sender and receiver side for the

proposed group key computation protocol.

3 PROPOSED KEY COMPUTATION PROTOCOL

The proposed framework works in three phases. The first phase is the Group

Initialization, where the multiplicative group is created. In the second phase of Member Initial

Join, the members send the joining request to the existing group members and obtain all the

necessary keys for participation. The final phase of Rekeying deals with all the operations to be

performed after a member leaves/joins from the group (providing forward/backward secrecy).

3.1 Group Initialization

Initially, the group members select a large prime number p. This value, p helps in

defining a multiplicative group !"
∗ and a secure one-way hash function H(.). The defined

function, H(.) is a hash function defined from $ × & = (where X and Y are non-identity

elements of !"
∗ . Since the function H(.) is a one way hash function, x is computationally

difficult to determine from the given function Z = y
x
(mod p) and y.

International Journal of Network Security & Its Applications (IJNSA),

3.2 Member Initial Join

Whenever a new user ‘i’ is authorized to join in a group for the first time, the user selects

a secret key Ki from the group !"
∗

Totient Function value of it. The result is represented as

component in secure one way hash function. Next, it computes the Public key by using the

parameter p (group Size) and a value

New user ‘i’ sends join request along with its public key to the entire remaining user’s and also

gets all users public key for computing the group key.

3.3 Rekeying

Whenever some new member join or some old member leave the group, the existing

group members need to compute the new Group Key (GK) in such a way that all the existing

members should have the same group key. In such computational scenario, the new group k

should be computed in minimal computation time. During the key computation process one

node will be designated as a support node, where this node will usually be located nearest to the

member leave/join node. If the tree is unbalanced the support node w

right most area. If the tree is a balanced one, any node can become a support node.

4 KEY COMPUTATION PROTOCOL (ETF)

In distributed key management environment, the GC is not responsible for computing the

GK and SGK. Each member is g

Each member Mi holds a pairs of keys called Secret K

notations used to represent the secret and public key are K

PK+, = Y./0 mod p (the Public key of member M

joins until it leaves. With the help of each user’s Public keys a group key is computed when a

member join or leave from the service. Group key can be used to encryp

that is shared between the group members. In this key management scheme a binary key tree is

formed in which each node v represents a secret (private) key K

key can be calculated by using the function

parameters for that group. The function

Kv. Every member holds the secret keys along the key path from his leaf node to the root node.

Fig.1. Calculation of a node value

For simplicity, we assume that each member knows the public keys of all other group members

who are in the key tree. Initially, each member randomly selects the secret key of a leaf node.

The secret key of a non-leaf node v can

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

Whenever a new user ‘i’ is authorized to join in a group for the first time, the user selects

"
∗ , which is known only to the user Ui who computes the Euler’s

Totient Function value of it. The result is represented as 5 = 6�7,� which is used as a

component in secure one way hash function. Next, it computes the Public key by using the

parameter p (group Size) and a value y which is selected from the group !"
∗ such that y < p.

sends join request along with its public key to the entire remaining user’s and also

gets all users public key for computing the group key.

Whenever some new member join or some old member leave the group, the existing

group members need to compute the new Group Key (GK) in such a way that all the existing

members should have the same group key. In such computational scenario, the new group k

should be computed in minimal computation time. During the key computation process one

node will be designated as a support node, where this node will usually be located nearest to the

member leave/join node. If the tree is unbalanced the support node will be located in shallowest

right most area. If the tree is a balanced one, any node can become a support node.

KEY COMPUTATION PROTOCOL (ETF)

In distributed key management environment, the GC is not responsible for computing the

member is generating GK via each user’s and internal nodes public key.

a pairs of keys called Secret Key (SK) and Public Key (PK). They

notations used to represent the secret and public key are KMi (the secret key of member M

the Public key of member Mi), which will remain valid from the time

joins until it leaves. With the help of each user’s Public keys a group key is computed when a

member join or leave from the service. Group key can be used to encrypt and decrypt the data

that is shared between the group members. In this key management scheme a binary key tree is

formed in which each node v represents a secret (private) key Kv and a Public Key PK

key can be calculated by using the function PK8 = yφ�:;� mod p where y and p are public

The function φ�K<� represents euler’s totient value of the secret key

Every member holds the secret keys along the key path from his leaf node to the root node.

Calculation of a node value

For simplicity, we assume that each member knows the public keys of all other group members

who are in the key tree. Initially, each member randomly selects the secret key of a leaf node.

leaf node v can be generated as shown in Fig.1.

Vol.3, No.5, Sep 2011

260

Whenever a new user ‘i’ is authorized to join in a group for the first time, the user selects

who computes the Euler’s

which is used as a

component in secure one way hash function. Next, it computes the Public key by using the

such that y < p.

sends join request along with its public key to the entire remaining user’s and also

Whenever some new member join or some old member leave the group, the existing

group members need to compute the new Group Key (GK) in such a way that all the existing

members should have the same group key. In such computational scenario, the new group key

should be computed in minimal computation time. During the key computation process one

node will be designated as a support node, where this node will usually be located nearest to the

ill be located in shallowest

In distributed key management environment, the GC is not responsible for computing the

enerating GK via each user’s and internal nodes public key.

ey (PK). They

(the secret key of member Mi) and

), which will remain valid from the time Mi

joins until it leaves. With the help of each user’s Public keys a group key is computed when a

t and decrypt the data

that is shared between the group members. In this key management scheme a binary key tree is

and a Public Key PKv. Public

where y and p are public

represents euler’s totient value of the secret key

Every member holds the secret keys along the key path from his leaf node to the root node.

For simplicity, we assume that each member knows the public keys of all other group members

who are in the key tree. Initially, each member randomly selects the secret key of a leaf node.

International Journal of Network Security & Its Applications (IJNSA),

Since the member 2v+1 knows the Public Key of member 2v+2 the member 2v+1 can calculate

the value of node v by,

 =7> = ?7�8��
@�ABC��� =

Similarly member 2v+2 knows the public key of 2v+1

value by,

 =7> = ?7�8��
@�ABC�B�

The computed values shown in equation (1) and equation (2) should be same.

generate GK via all others and intermediate nodes Public key. For example in Fig.2

M1 can generate group key via the following steps:

• Using K7 and PK8, the node key K

• After computing K3, K3 and Public key PK

• Finally, using K1 and PK

The same procedure is used by all other members of the group for computing the GK

there is a change in group membership.

4.1 Member joins

Consider a binary tree depicted in Fig.3 that has n members {M

member Mn+1 initiate the protocol by broadcasting a join request message that contains its own

Public Key PKn+1. This message is distinct from any JOIN messages generated by the

underlying communication system. Each current member receives this message and first

determines the insertion point in the tree. The insertion point is the shallowest rightmost no

where the join does not increase the height of the key tree. The member which is located in that

insertion point becomes a support node. Otherwise, if the key tree is fully balanced, any of the

leaf nodes can act as support node

support node has to find the insertion point for the new member. After finding the insertion

point, the support node creates a new intermediate node, a new member node, and promotes the

new intermediate node to be the paren

The support node is responsible for updating all the internal node keys located in the path from

leaf node to the root node. After the updation process, the support node broadcasts the public

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

Fig.2. Binary tree Key management scheme

Since the member 2v+1 knows the Public Key of member 2v+2 the member 2v+1 can calculate

= �D@�ABC�B��
@�ABC���

E�F G (1)

v+2 knows the public key of 2v+1, this member can compute the node

� ' �D@�ABC����
@�ABC�B�E�F G (2)

The computed values shown in equation (1) and equation (2) should be same. Each user can

generate GK via all others and intermediate nodes Public key. For example in Fig.2 the member

can generate group key via the following steps:

node key K3 is calculated

and Public key PK4 are used to calculate the node key K

and PK2 the root key K0 (Group Key) is calculated

The same procedure is used by all other members of the group for computing the GK

there is a change in group membership.

Consider a binary tree depicted in Fig.3 that has n members {M1, M2…Mn}. The new

initiate the protocol by broadcasting a join request message that contains its own

. This message is distinct from any JOIN messages generated by the

underlying communication system. Each current member receives this message and first

determines the insertion point in the tree. The insertion point is the shallowest rightmost no

where the join does not increase the height of the key tree. The member which is located in that

insertion point becomes a support node. Otherwise, if the key tree is fully balanced, any of the

support node to insert the new member in the key tree structure. The

support node has to find the insertion point for the new member. After finding the insertion

point, the support node creates a new intermediate node, a new member node, and promotes the

new intermediate node to be the parent of both the insertion node and the new member node.

The support node is responsible for updating all the internal node keys located in the path from

leaf node to the root node. After the updation process, the support node broadcasts the public

Vol.3, No.5, Sep 2011

261

Since the member 2v+1 knows the Public Key of member 2v+2 the member 2v+1 can calculate

(1)

this member can compute the node

(2)

Each user can

the member

are used to calculate the node key K1

The same procedure is used by all other members of the group for computing the GK when

}. The new

initiate the protocol by broadcasting a join request message that contains its own

. This message is distinct from any JOIN messages generated by the

underlying communication system. Each current member receives this message and first

determines the insertion point in the tree. The insertion point is the shallowest rightmost node,

where the join does not increase the height of the key tree. The member which is located in that

insertion point becomes a support node. Otherwise, if the key tree is fully balanced, any of the

r in the key tree structure. The

support node has to find the insertion point for the new member. After finding the insertion

point, the support node creates a new intermediate node, a new member node, and promotes the

t of both the insertion node and the new member node.

The support node is responsible for updating all the internal node keys located in the path from

leaf node to the root node. After the updation process, the support node broadcasts the public

International Journal of Network Security & Its Applications (IJNSA),

key of updated key nodes to essential group members. On reception of the public keys, all other

members in the key tree update their group key. Only the required public keys for the

computation of group key are sent to the group members, since all the other keys are

known to them and it might appear to increase the network traffic. Fig.3 (a) and (b) illustrates

the case of member join/member leave.

the keys from the leaf node to the root node must be update

secrecy. First, the new joining user broadcasts its public key PK12 on joining.

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

ated key nodes to essential group members. On reception of the public keys, all other

members in the key tree update their group key. Only the required public keys for the

computation of group key are sent to the group members, since all the other keys are

known to them and it might appear to increase the network traffic. Fig.3 (a) and (b) illustrates

the case of member join/member leave. Suppose if member M8 want to join in this group then

the keys from the leaf node to the root node must be updated in order to provide backward

secrecy. First, the new joining user broadcasts its public key PK12 on joining.

(a) Before member M8 join/Leave

(b) After M8 join/Leave the group

Fig.3. Member join/Leave case

Vol.3, No.5, Sep 2011

262

ated key nodes to essential group members. On reception of the public keys, all other

members in the key tree update their group key. Only the required public keys for the

computation of group key are sent to the group members, since all the other keys are already

known to them and it might appear to increase the network traffic. Fig.3 (a) and (b) illustrates

Suppose if member M8 want to join in this group then

d in order to provide backward

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

263

After joining, the support node becomes the responsible node to update the keys that are located

in its path. It re-keys K5, K2, and K0 then broadcasts the public keys PK5 and PK2. The

members M1, M2 and M3 compute K0 from the given PK2. Members M5 and M6 compute

K2, K0 from the given public key PK5.

4.2 Member leaves

Assume that there are n members in the group currently where member Mn leaves the

group. Now, the support node becomes a responsible node to update the group key and to

broadcast all the required public keys in the key tree. When a member leaves from the tree, its

immediate left or right node will be uplifted higher by one level to reduce the number of keys to

be updated by the support node. During the member leave operation, all the keys from the leaf

node to the root node must be updated in order to prevent the access of future data by the left

members from the group. This provides forward secrecy. If member M8 wants to depart from

the service, the internal node keys K5, K2 and K0 must be renewed as shown in Fig.3b & Fig.3a.

During the update phase, the support node M4 becomes a responsible node to re-key the secret

keys K2 and K0 and broadcasts the Public keys PK2 and PK5. The members M1, M2 and M3

compute K0 from the given PK2. Members M5 and M6 compute K2, K0 from the given public

key PK5.

5 PERFORMANCE ANALYSIS

The proposed method has been implemented in JAVA for more than 500 users and we have

analyzed the computation time with existing approaches to perform the rekeying operation. The

BigInteger Java class was used for handling large numbers as key value in the key distribution

protocol. The graphical result shown in Fig.4 is used to compare the group members key

computation time that exists during the computation of group key of our proposed method with

the existing methods. We evaluated key computation time for various distributed and

collaborative key distribution protocols whose group sizes are considered starting from 128 to

576. The Tripartite Key Agreement protocol used in [14] is labeled as (TKA). The Diffie-

Hellman based group keying algorithm used in this paper [16] is denoted as TGK (Tree-based

Group Key agreement). The signature based secure group communication protocol proposed in

the paper [17] is denoted as BMS (Bilinear pairing and Multi-Signature) in this paper. We

implemented our proposed ETF (Euler Totient Function based) distributed key management

algorithm to measure the computation time for various group sizes and compared the

performance result with the various collaborative key distribution protocols and the result is

shown in Fig.4. The implemented experimental graph shown below clearly depicts that the

proposed Euler function based group keying approach has significant reduction in computation

complexity. It is observed that when the group size is 512, the key computation time taken in

ETF based approach by each group member is found to be 37ms, which is better in comparison

with existing schemes.

International Journal of Network Security & Its Applications (IJNSA),

Fig.4.Group member Key Com

6 ERROR CORRECTION USING LDPC CODES

This section discusses the error detection and correction

correcting the errors that happens dur

key management protocol.

6.1 Encoding at Sender

Encoding process at sender consists of three phases.

Phase 1: Conversion of original key information bits into binary values (0’s and 1’s)

Phase 2: Construction of Parity Check Matrix according to size of the key

Phase 3: Construction of Encoding stopping set

Phase 4: Generation and distribution of code words to group members

Algorithm:

 Consider an example, where the size of key information is 8 b

information bit is 8 bits [1 1 0 1 0 0 1 1] and its corresponding (8, 16) parity check matrix will

be generated as mentioned in phase 2 and used as shown below.

required to use the same size parity check matri

construct the Tanner graph. The algorithm coverts the tanner graph into Pseudo tree based

Encoding stopping set with maximum bit node degree 3 as explained in [1

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

Key Computation Time for various Key Distribution methods

ERROR CORRECTION USING LDPC CODES

discusses the error detection and correction methods used for detecting and

correcting the errors that happens during the dissemination of keying information in distributed

consists of three phases.

Phase 1: Conversion of original key information bits into binary values (0’s and 1’s)

2: Construction of Parity Check Matrix according to size of the key

Phase 3: Construction of Encoding stopping set

Phase 4: Generation and distribution of code words to group members

Consider an example, where the size of key information is 8 bits. If the original key

information bit is 8 bits [1 1 0 1 0 0 1 1] and its corresponding (8, 16) parity check matrix will

be generated as mentioned in phase 2 and used as shown below. The group members are

required to use the same size parity check matrix. From the parity check matrix the

construct the Tanner graph. The algorithm coverts the tanner graph into Pseudo tree based

Encoding stopping set with maximum bit node degree 3 as explained in [18] .

Vol.3, No.5, Sep 2011

264

methods

methods used for detecting and

in distributed

its. If the original key

information bit is 8 bits [1 1 0 1 0 0 1 1] and its corresponding (8, 16) parity check matrix will

The group members are

x. From the parity check matrix the sender can

construct the Tanner graph. The algorithm coverts the tanner graph into Pseudo tree based

International Journal of Network Security & Its Applications (IJNSA),

Parity Check Matrix of (8, 16) LDPC codes

Reevaluated bits:

The reevaluated bits r1 and r2 are found in a twofold constraint encoding stopping set with key

check nodes C7 and C8. The Key parity check equations for the check nodes C7 and

computed by using Fig.6.

 C7 = X11⨁X16

C8 = X4⨁X6⨁X12

Encoding Process:
The stages of encoding are given below:

1. Fill the values of the information bits in the bottom most level,

 i.e., [X5 X6 X7 X10 X11 X12 X14 X1

X16 = 0.

1 0 0 0 0 0 1 0 0

0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0

1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0

1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1

0 0 0 0 1 0 1 1 1 0

0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1

0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

Parity Check Matrix of (8, 16) LDPC codes

The reevaluated bits r1 and r2 are found in a twofold constraint encoding stopping set with key

check nodes C7 and C8. The Key parity check equations for the check nodes C7 and

X16

X12⨁X15

The stages of encoding are given below:

1. Fill the values of the information bits in the bottom most level,

[X5 X6 X7 X10 X11 X12 X14 X15] = [1 1 0 1 0 0 1 1]. Initially assign X4 = 0

Fig.5. The Pseudo tree at sender

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0

1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0

1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1

0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1

0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0

Vol.3, No.5, Sep 2011

265

The reevaluated bits r1 and r2 are found in a twofold constraint encoding stopping set with key

check nodes C7 and C8. The Key parity check equations for the check nodes C7 and C8 are

ssign X4 = 0 and

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

266

2. Encode the pseudo tree as shown in Fig.5 and compute the parity bits as follows

 X8 = X6 ⨁ X10 ⨁ X14 ⨁ X16 = 1

 X1 = X7 ⨁ X14 = 1

 X9 = X5 ⨁ X8 ⨁ X7 ⨁ X15 = 1

 X3 = X6 ⨁ X1 ⨁ X7 ⨁ X10 ⨁ X11 ⨁ X12 = 0

 X13 = X4 ⨁ X8 ⨁ X1 ⨁ X5 ⨁ X10 ⨁ X11 ⨁ X15 ⨁ X16 = 0

 X2 = X4 ⨁ X9 ⨁ X5 ⨁ X3 ⨁ X13 ⨁ X12 ⨁ X14 = 1

3. Compute the values of key parity check equations C7 and C8 for the diagram shown in Fig.6.

 C7 = X11 ⨁ X9 ⨁ X13 ⨁ X16 ⨁ X2 = 0

 C8 = X4 ⨁ X2 ⨁ X3 ⨁ X6 ⨁ X12 ⨁ X15 = 1

4. Since C7 = 0, C8 = 1, correct values of reevaluated bits X16 = 1, X4 = 0.

5. Compute all the parity bits again based on the new values of X16 and X4. The encoded code

word is [X5 X6 X7 X10 X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13 X2] = [1 1

0 1 0 0 1 1 0 1 0 1 0 1 1 0]

6.2 Decoding at Group Members side

Error correction process at each group member’s area consists of three phases.

Phase 1: Receive the code words from the sender/support node.

Phase 2: Construction of encoding of stopping set as shown in Fig.6 according to the parity

check matrix used by sender/support node.

Phase 3: Detection of errors by verifying the check node values.

Phase 4: Correction of errors.

Decoding Process:
The code word that is received from the sender is [X5 X6 X7 X10 X11 X12 X14 X15 X4

X16 X8 X1 X9 X3 X13 X2] = [1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0]. After the receipt

of the code word, the group members should place the values in the encoding stopping set, and

also should verify for the occurrence of errors. On encountering an error, the group members

should find out the type of error where in the error can be a single bit error, two bit error,..., n

bit error. For any type of errors, there are 3 cases available for the correction of errors and those

cases are explained below.

Case 1: Reevaluation bit

The errors in this case are found to be in the reevaluated bit. For example, [X5 X6 X7 X10

X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13 X2] = [1 1 0 1 0 0 1 1 0 0 0 1 0 1

1 0]. The reevaluated bit (X16) value 1 is changed to 0. This is a single bit error type. During

the decoding process parity bit values are computed, and during such computation X16 = 0.

This does not coincide with the received codeword, where the X16 bit value is 1. Hence, in

such a scenario the single bit error has been found. After the conclusion of the occurrence of

error, during the correction of errors the reevaluated bits are inverted as [X4 X16] = [0 1].

Even now if the error is not corrected then perform two bit error correction process. Again, the

parity bit values are computed from bottom to top (i.e.) calculate all the parity bit values up to

reach the last check nodes. If the key check node [C7 C8] values after parity computation are [0

0], then error has been rectified.

Case 2: Key Information bits

This is the case, where the error has been occurred in the original key information bits or

aggregation of information bits and reevaluated bits. Considering the example of received code

International Journal of Network Security & Its Applications (IJNSA),

words as follows, [X5 X6 X7 X10 X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13 X2

] = [1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0], X7 information bit value 0 is changed to 1. During

the decoding process some parity bit values will be cha

values will not end up as [0 0]. Hence, on finding such error, the correction follows the steps

given below:

Step 1:

For correcting the error, all combination of reevaluated bits are changed and even after

changing if the key check node [C7 C8] values does not become [0 0], migrate to step2.

Step 2:

This is the final stage of correction wherein, each information bit from left to right in the leaf

node are changed until the key check nodes [C7 C8] value becomes [0

been rectified. There are also some cases, where even during such a change the key check node

values may not become [0 0] and in such a situation, combination of two, three, …, n

information bits are changed in leaf node from left t

to be [0 0].

Fig.6. The Encoding Stopping set at

Case 3: Parity bits
In the second case, the error would have occurred in the parity bits: For example, considering

the bits received are [X5 X6 X7 X10 X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13

X2] = [1 1 0 1 0 0 1 1 0 1 0 1

changed to 1. During the decoding process while calculating the parity bit values, X9 = 0 will

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

words as follows, [X5 X6 X7 X10 X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13 X2

1 0 0 1 1 0 1 0 1 0 1 1 0], X7 information bit value 0 is changed to 1. During

the decoding process some parity bit values will be changed and hence the key check node

values will not end up as [0 0]. Hence, on finding such error, the correction follows the steps

For correcting the error, all combination of reevaluated bits are changed and even after

he key check node [C7 C8] values does not become [0 0], migrate to step2.

This is the final stage of correction wherein, each information bit from left to right in the leaf

node are changed until the key check nodes [C7 C8] value becomes [0 0], and the error has

been rectified. There are also some cases, where even during such a change the key check node

values may not become [0 0] and in such a situation, combination of two, three, …, n

information bits are changed in leaf node from left to right to obtain the key check node value

The Encoding Stopping set at SENDER

In the second case, the error would have occurred in the parity bits: For example, considering

the bits received are [X5 X6 X7 X10 X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13

X2] = [1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0]. In this example X9 parity bit value 0 is

changed to 1. During the decoding process while calculating the parity bit values, X9 = 0 will

Vol.3, No.5, Sep 2011

267

words as follows, [X5 X6 X7 X10 X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13 X2

1 0 0 1 1 0 1 0 1 0 1 1 0], X7 information bit value 0 is changed to 1. During

nged and hence the key check node

values will not end up as [0 0]. Hence, on finding such error, the correction follows the steps

For correcting the error, all combination of reevaluated bits are changed and even after

he key check node [C7 C8] values does not become [0 0], migrate to step2.

This is the final stage of correction wherein, each information bit from left to right in the leaf

0], and the error has

been rectified. There are also some cases, where even during such a change the key check node

values may not become [0 0] and in such a situation, combination of two, three, …, n

o right to obtain the key check node value

In the second case, the error would have occurred in the parity bits: For example, considering

the bits received are [X5 X6 X7 X10 X11 X12 X14 X15 X4 X16 X8 X1 X9 X3 X13

e X9 parity bit value 0 is

changed to 1. During the decoding process while calculating the parity bit values, X9 = 0 will

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

268

be obtained which is not in coincidence with the received codeword, where X9 bit value is 1.

This error can be rectified automatically while correcting the information bits. The following

proof gives the information regarding the number of changes for the different types of errors.

Lemma:

Any arbitrary LDPC codes has O�
�) time complexity during decoding process for n bit errors.

Proof:
Let ‘s’ be the number of leaf nodes which includes ‘n’ information bits and ‘r’ re-

evaluated bits received from the sender. The received bits are substituted in the encoding

stopping set generated at group member’s side. Now we apply the decoding process in

encoding stopping set.

An error is said to occur:

1. If the values of the level 1 check nodes (i.e., key check nodes) are not zero.

2. If the computed parity bit values and received parity bit values at each level, in

encoding stopping set are unequal.

We need to correct these errors. In case, if the re-evaluated bits are corrupted, then complexity

of correcting the re-evaluated bit is O�3�. Depending upon the number of encoding stopping

sets the complexity may increase. If there are two encoding stopping set then the decoding time

complexity is J�6� , in which J�3� for first encoding stopping set and another J�3�
computation for second encoding stopping set and so on. On occurrence of error in the

information bits, the following procedure has to be followed. Since the number of corrupted

bits and their position are unknown, we correct them step by step procedure. First we change

the 1
st

 bit of the leaf nodes from left to right. Next, we compute the new parity bit values. If the

key check node values are equal to zero, then the error is corrected.

Even now, if the key check node values are unequal to zero, then the second bit of the

information bit is changed and the procedure is repeated until reaching the last information bits

in the leaf level. From this it is very clear that the complexity for correcting one bit error is

O(n). If still error persists, the above procedure is repeated for all combination of two

information bits. Now the time complexity becomes O(n+(n(n-1)/2)). Even then if the error is

uncorrected, then the combination of ‘i’ (i=3,4,…..,n) information bits are changed to calculate

the new parity bit value, and the error is corrected. Hence the time complexity for the decoding

procedure is O�
�) as follows. For example if the total number of received information bits is 4

bits and all the four information bits are corrupted, then the decoding time complexity can be

computed as shown below.

= n + (n (n – 1) /2) +((n – 1) (n – 2) / 2)+1

= n+(�
� −
�/2)+(�
� − 3
 + 2�/2)+1

 =
� − n+2

= O�
�)

7 Concluding Remarks

In this paper, a new fully contributory binary tree based group key computation protocol

for n bit numbers as the key value has been proposed for creating and distributing keys in order

to provide effective security in group communications. The main advantages of our proposed

approach are, the computation time takes place between GC and group members get reduced by

using euler’s totient function and it recovers the original keying information bits if the keying

information’s are corrupted. In order to do that we introduced two algorithms in this proposed

work. First, combination of Euler’s Totient function and diffie-hellman algorithm based key

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

269

computation process. Second, Encoding stopping set is constructed in the sender and receiver

side in order to verify whether the received key material has no errors. If any error is found in

the received key at receiver side, decoding algorithm can correct the error in O(n�) time. The

main advantage of this approach is that the proposed approach can correct n-bit errors in less

decoding time. However the main concern of our proposed approach is that it also increases the

storage complexity since the number of keys stored by group members is increased. Further

extensions to this work are to devise techniques to reduce the storage complexity which is the

amount of storage required to store the key related information in group member’s area.

References

[1] P. Vijayakumar, S. Bose, A. Kannan, and S. Siva Subramanian, An effective key distribution protocol

for secure multicast communication, IEEE International Conference on Advanced Computing, Chennai ,

December 14-16, (2010) 102-107.

[2] Vijayakumar, P., Bose, S., Kannan,A., and Siva Subramanian, S, (2011) “A Secure Key Distribution

Protocol for Multicast Communication” Balasubramaniam, P. (eds.) Gandhigram-India,

2011.CCIS,vol.140, pp. 249-257. Springer, Heidelberg.

[3] Mingyan Li, Poovendran, R., David, A., McGrew, (2004) “Minimizing Center Key Storage in Hybrid

One-Way Function based Group Key Management with Communication Constraints” Elsevier,

Information Processing Letters, pp. 191-198.

[4] Patrick P.C.Lee, John C.S. Lui, David K.Y.Yau, (2002) “Distributed Collaborative Key Agreement

Protocols for Dynamic Peer Groups” Proceedings of the IEEE International Conference on Network

Protocols, pp. 322.

[5] Mario Blaum, Jehoshua Bruck, Alexander Vardy, (1996) “MDS Array Codes with Independent Parity

Symbols” IEEE Transactions on Information Theory, vol. 42, No.2, pp. 529-542.

[6] Lihao Xu, Cheng Huang, (2008) “Computation-Efficient Multicast Key Distribution” IEEE

Transactions on Parallel and Distributed Systems , vol 19, No. 5, pp .1-10.

[7] Wade Trappe, Jie Song, Radha Poovendran, Ray Liu, K.J, (2003) “Key Management and Distribution

for Secure Multimedia Multicast” IEEE Transactions on Multimedia, vol 5, No. 4, pp .544-557.

[8] David, A., McGrew and Alan T. Sherman, (1998) “Key Establishment in Large Dynamic Groups

using One-Way Function Trees” Cryptographic Technologies Group, TIS Labs at Network Associates.

[9] Tom, M.,Apostol,(1998) “Introduction to Analytic Number Theory” Springer International Students

Edition, First volume, pp.25-28.

[10] Wong,C., Gouda,M., and Lam,S, ,(2000) “Secure Group Communications using Key Graphs”

IEEE/ACM Transactions on Networking, vol. 8,pp.16-30.

[11] Yun Zhou, Xiaoyan Zhu, and Yuguang Fang, , (2010) “MABS: Multicast Authentication Based on

Batch Signature” IEEE Transactions on Mobile Computing, vol. 9, pp.982-993.

[12] R. G. Gallager, , (1963) “Low-Density Parity Check Codes” Cambridge, MA: MIT Press.

[13] Hongsong Shi, Mingxing He, A communication-efficient key agreement Protocol in Ad hoc

Networks, IEEE International Conference on Wireless Networks, Communications and Mobile

Computing,China, 2005.

[14] H.Seba, F.Tigrine and H.Kheddouci, A tree-based group key agreement scheme for secure multicast

increasing efficiency of rekeying in leave operation, IEEE Symposium on Computers and

Communications, Bourg-en-Bresse, France , 2009.

[15] Mahalingam Ramkumar, The subset keys and identity tickets (SKIT) key distribution scheme, IEEE

Transactions on Information Forensics And Security. 5(2010), pp.39-51.

International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5, Sep 2011

270

[16] Y.Kim, A.Perrig, and G. Tsudik, Tree-based Group Key Agreement, ACM Transactions on

Information and System Security.7(2004), pp. 60-96.

[17] R.Dutta, R.Barua, Dynamic Group Key Agreement in TreeBased Setting, 10th Australasian

Conference on Information Security and Privacy, LNCS 3574, Springer, pp.101-112, 2005.

[18] Jin Lu., and Jose M.F.Moura, , (2010) “Linear Time Encoding of LDPC Codes” IEEE Trans. Inf.

Theory, vol. 57, no. 1, pp. 233-249.

[19] Jin Lu., Jose M.F.Moura., and Haotian Zhang, (2003) “Efficient encoding of cycle codes: A

graphical approach” in Proc. 37th Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA,

pp. 69–73.

[20] Diana Berbecaru, Luca Albertalli, Antonio Lioy,(2010) “The ForwardDiffSig Scheme for Multicast

Authentication” IEEE/ACM Transactions on Networking, vol. 18, pp.1855-1868.

[21] Mittelholzer, T, (2002) “Efficient encoding and minimum distance bounds of Reed-Solomon-type

array codes” in Proc. IEEE Int. Symp. Information theory (ISIT 2002), Lausanne, Switzerland, p. 282.

[22] Jin Lu., and Jose M. F. Moura, (2007) “TS-LDPC codes: Turbo-structured codes with large girth”

IEEE Trans. Inf. Theory, vol. 53, no. 3, pp. 1080–1094.

[23] S. J. Johnson, and S. R. Weller,(2003) “A family of irregular LDPC codes with low encoding

complexity” IEEE Commun. Lett., vol. 7, no. 2, pp. 79–81.

[24] Freundlich, S., Burshtein, D., and Litsyn,S, (2007) “Approximately lower triangular ensembles of

LDPC codes with linear encoding complexity” IEEE Trans. Inf. Theory, vol. 53, no. 4, pp. 1484–1494.

[25] R.M.Tanner,(1981) “A recursive approach to low complexity codes” IEEE Trans.Inf.Theory,vol.27,

no.5, pp.533-547.

[26] Haley,D.,Grant,A.,and Buetefuer,J ,(2002) “Iterative encoding of low-density parity-check codes” in

Proc.IEEE Globecom,Taipei, Taiwan, ROC, vol.2, pp.1289-1293.

