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ABSTRACT 

Simple Power Analysis (SPA) attacks are widely used against several cryptosystems, principally against 

cryptosystems based on modular exponentiation. Many types of SPA have been reported in the literature, 

Yen et al. introduced the N-1 attack, which uses chosen input messages to obtain relevant information 

from the attacked cryptosystem. Their attack was implemented on the square-and-multiply always and on 

the BRIP algorithm, both algorithms in left-to-right form. There are possible countermeasures against 

this attack, but all of them are costly and time consuming. In this paper, a computationally efficient and 

effective method to avoid the N-1 attack is investigated. 
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1. INTRODUCTION 

Since Kocher [1] described the first Side Channel Attack (SCA), many physical attacks against 

cryptosystems implemented on embedded devices have been developed. Because SCAs 

represent a serious threat, it is necessary to avoid them to obtain reliable cryptographic modules. 

When a device executes operations of encryption or decryption, there are several measurable 

physical signals, such as operating times [1], power consumption [2], and electromagnetic 

radiation [3], that are correlated with the secret parameters of the cryptosystem. Basically, the 

SCA obtains useful information from a device, such as a smart card, by measuring these 

physical signals. The information can be used to reveal the secret key used to protect the 

processed data within the appliance, and thus, the security of the cryptosystem can be 

compromised. 

Simple Power Analysis (SPA) and Differential Power Analysis (DPA) are well-known attacks, 

both described by Kocher in [2]. The secret values from a cryptosystem can be obtained using 

SPA by measuring one or few power traces from the device that is executing the algorithm. It is 

possible to determine the value of the system's secret key from these measurements. To obtain 

the secret key using DPA, many power consumption traces of the same algorithm with different 

input messages are collected, and a statistical analysis of the traces is performed. 

Primarily, an SCA is used to attack the modular exponentiation, which is the core operation of 

many cryptosystems, such as RSA. Because the modular exponentiation is mainly calculated in 

binary form, attacks use the measured signals to determine the binary representation of the 

exponent; usually, the exponent is the secret key of the cryptosystem.  

Square-and-multiply is a classic algorithm that is used to calculate the modular exponentiation. 

This algorithm can be used in right-to-left  or left-to-right form. This algorithm uses few 
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registers, and it is the simplest and the fastest of all known algorithms. However, this algorithm 

is vulnerable to SPA because it calculates a modular multiplication and a square if the exponent 

bit being processed is 1 and only a square if the exponent bit being processed is 0. Thus, an 

attacker can measure the power consumption or the operating times of the algorithm's execution 

to determine the binary string of the cryptosystem’s secret key. 

Many modular exponentiation algorithms have been designed to prevent SPA, e.g., [4], [5], [6], 

[7], [8], [9], [10], and [11]. Coron [12] provided the first algorithm created specifically to defeat 

SPA using the square-and-multiply always (SaMA) algorithm, which works in a regular form. 

That is, the algorithm will always calculate a multiplication followed by a square, independent 

of the value of the exponent bit being processed (0 or 1). 

There are many SPA techniques [13], [14]. For example, chosen-message is a technique used to 

obtain relevant information from a device that is executing a cryptographic algorithm. Chosen-

message uses an input message that has a specific behaviour during the execution of the 

algorithm, and that behaviour can be observed by the attacker who can obtain the secret 

parameters of the cryptosystem. 

 Fouque and Valette proposed and implemented the Doubling Attack (DA) [13], a chosen-

message attack, against the left-to-right SaMA. In that attack, two related messages, M  and 
2

M , are chosen, and the behaviours of both messages in the attacked algorithm are used to 

obtain the secret key. The relative Doubling Attack (RDA), an idea similar to DA, was proposed 

by Yen et al. in [14]. These authors used RDA to attack the Montgomery powering ladder 

algorithm [5]. 

One of the simplest chosen-message attacks is the 1−N  attack proposed by Yen et al. in [15]. 

Though they explained the theoretical form of their attack against the left-to-right SaMA and 

BRIP algorithms [16], Miyamoto et al. demonstrated the effectiveness of an 1−N  attack in 

practice [17]. 

Intermediate even exponents were proposed in [19] to protect the Montgomery powering ladder 

algorithm against an attack that is based in the Jacobi symbol. 

 

2. PRELIMINARIES 

2.1. Modular exponentiation  

The classical modular exponentiation algorithm (algorithm 1) uses the binary string of the 

exponent to calculate the correct result of 
∑
−

==

1

0

2
n

i
i

i d
d

mm . In each of the iterations, this 

algorithm executes a square operation and a conditional modular multiplication. Because of the 

conditional multiplication, an attacker can determine the binary string of the exponent by 

observing the power consumption of the device. The algorithm consumes more power when the 

bit of the exponent is 1 than when the bit is 0.  

Coron designed the SaMA algorithm (algorithm 2) to avoid the SPA. This algorithm is regular, 

i.e., it does not have conditional multiplications and executes the same number of operations in 

each of the iterations. However, algorithm 2 uses dummy operations, which can be vulnerable to 

Safe Error Attacks [18]. 

Mamiya et al. proposed the BRIP algorithm, algorithm 3. This algorithm is regular, but it does 

not use dummy operations. Randomization of the input message protects the algorithm against 



International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012 

111 

 

 

 

DPA. The authors claimed that their algorithm is secure against SPA, but Yen et al. 

demonstrated that algorithm 3 is vulnerable to an 1−N  attack, which is a type of SPA. 

Algorithm 1 Square-and-multiply left-to-right 

1:  Input Gm ∈ , 201 )( ddd n K
−

=  

2:  Output Gms
d

∈=  

3: 1]0[ ←R  

4:  for 1−n  to 0  do 

5:          NRR mod]0[]0[
2

←  

6:  if 1=id  then 

7:     NmRR mod]0[]0[ ⋅←  

8: end if 

9:  end for 

10: Return ]0[R  

 

Algorithm 2 Square-and-multiply always, left-to right 

1:  Input Gm ∈ , 201 )( ddd n K
−

=  

2:  Output Gms
d

∈=  

3: 1←R  

4:  for 1−n  to 0  do 

5:          NRR mod]0[
2

←  

6:  NmRR  mod ]0[]1[ ⋅←  

7: NdRR i mod][←  

8:  end for 

9:  Return R  

 

Algorithm 3 BRIP 

1:  Input Gm ∈ , 201 )( ddd n K
−

=  

2:  Output Gms
d

∈=  

3: rR ←]0[  

4: 1]1[ −
← rR  

5: 1]2[ −
⋅← rmR   

4:  for 1−n  to 0  do 

5:          NRR mod]0[]0[
2

←  

6:                if 0=id  then      

7:                      NRRR  mod ]1[]0[]0[ ⋅=  

8:               else 

9:                      NRRR  mod ]2[]0[]0[ ⋅=    

10:             end if  

11: end for   

12: Return NRR  mod ]1[]0[ ⋅  
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2.2. N-1 Attack 

In 2005, Yen et al. proposed the 1−N attack in [15]. They implemented it against modular 

exponentiation algorithms 2 and 3. This attack assumes that the power traces obtained from a 

device that is performing computations can be measured and compared to determine when two 

values or operations are equal, even if the adversary does not know what values are being 

processed. For example, if A  and B  are values, where AB = , the collisions of 2
A  and 2

B  can 

be detected, even if A  and B are unknown. 

This attack is based on two observations: 

1. - If a cryptosystem works with modulo N , NN  mod 1)1( 2
≡− . This observation can 

be extended to obtain NN j  mod 1)1( ≡− , for any even integer j . 

2. - If a cryptosystem works with modulo N , NNN k  mod )1()1( −≡− , for any odd 

integer k . 

If a chosen value equal to 1−N  is the input message, the value at the end of each of the 

iterations of the attacked algorithm can take only one of two values: 1 if the bit being processed 

is 0 or 1−N  if the bit being processed is 1. Therefore, an attacker can observe only two patterns 

in the power traces and thus can determine the binary string of the exponent. 

In 2008, Miyamoto et al. [17] demonstrated and analyzed the effectiveness of the 1−N  attack in 

practice. They obtained power traces in which it is possible to identify when an exponent bit is 0 

and when it is 1. 

In [19], it was claimed that any d
m could be calculated using only even intermediate exponents 

in a modular exponentiation algorithm. This idea was used to protect the Montgomery powering 

ladder algorithm against an attack based on the Jacobi symbol. In section 3, this idea is used to 

avoid the 1−N  attack. 

3. PROPOSED ALGORITHMS  

In this section, the algorithms previously described and attacked with the 1−N  attack are 

modified to protect them against the mentioned threat.   

3.1. Modified algorithms 

If an attacker wants to break a cryptosystem and knows the value of the modulus N  of the 

cryptosystem, he can choose an input message that is equal to 1−N . The attacker sends the 

chosen message to a device that runs an algorithm to encrypt and decrypt secret information. 

The attacker collects one or few power traces from the device and searches for two patterns in 

the power traces. Each pattern corresponds to a specific value. In this case, the value is 1 if 

0=id  and 1−N  if 1=id . 

When the attacker has found the patterns, he can determine two possible exponents, d  and d , 

where d  is the binary inverse of d , i.e., if  101101d = , then 010010=d . Using  d  and d , a 

trial-and-error approach can be used to find the correct exponent and to break down the security 

of the cryptosystem.  
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This scheme is illustrated in table 1, which shows the behaviour of algorithm 3 when it is 

subjected to an 1−N  attack. In this example, it is assumed that 1−= Nm  and d =89=1011001. 

Algorithm 3 was chosen to demonstrate that two patterns could be recognized, even with a 

blinded message. 

Table 1.  Algorithm 3 executed with an input message equal to 1−N . 

i di  Intermediate steps Result (Pattern) 

6 1 

rmR

rR

⋅=

=

]0[

]0[ 2
 

 

rN ⋅− )1(  

5 0 

rmR

rmR

⋅=

⋅=

2

22

]0[

]0[
 

 

 

r⋅)1(  

4 1 

rmR

rmR

⋅=

⋅=

5

24

]0[

]0[
 

 

 

rN ⋅− )1(  

3 1 

rmR

rmR

⋅=

⋅=

11

210

]0[

]0[
 

 

 

rN ⋅− )1(  

2 0 

rmR

rmR

⋅=

⋅=

22

222

]0[

]0[
 

 

 

r⋅)1(  

1 0 

rmR

rmR

⋅=

⋅=

44

244

]0[

]0[
 

 

 

r⋅)1(  

0 1 

rmR

rmR

⋅=

⋅=

89

288

]0[

]0[
 

 

 

rN ⋅− )1(  

 

As shown in table 1, the presence of odd and even exponents in the intermediate steps of the 

algorithm lead to two patterns in the power trace, and thus, the secret key of the cryptosystem 

can be discovered. 

This attack is powerful and can be easily implemented. However, to obtain the secret key, two 

patterns must be present in the power trace. This attack can be avoided if there is only one 

pattern in the power trace of each iteration, regardless of the processed bit. This idea is the 

premise of the proposed algorithms. To implement this idea, recall that it is possible to work 

with only even intermediate exponents in an algorithm [19]. Therefore, it is possible to obtain 

only one visible pattern in the measured power trace. Based on this statement, algorithms 2 and 

3 have been modified to obtain algorithms 4 and 5, respectively. 

In algorithms 4 and 5, the first step is to change the input value m  to 2
m , this square value will 

affect all of the calculations in the algorithms. In each of the iterations, only even intermediate 

exponents will be used in calculations. Therefore, an attacker will not be able to obtain any 

information because all of the executed iterations in the algorithm will have the same pattern, 

independent of the processed bit. This behavior is illustrated in table 2. 
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Algorithm 4 Modified square-and-multiply always, left-to-right 

1:  Input Gm ∈ , 201 )( ddd n K
−

=  

2:  Output Gms
d

∈=  

3: 1←R  

4: mmM ⋅=  

5:  for 1−n  to 1 do 

6:          NRR mod]0[
2

←  

7:  NMRR  mod ]0[]1[ ⋅←  

8: NdRR i mod][←  

9:  end for 

10: if 00 =d  then      

11:           Return R  

12: else 

13:      Return mR ⋅  

14: end if 

 

Algorithm 5 Modified BRIP 

1:  Input Gm ∈ , 201 )( ddd n K
−

=  

2:  Output Gms
d

∈=  

3: rR ←]0[  

4: 1]1[ −
← rR  

5: 1
]2[

−
⋅⋅← rmmR   

4:  for 1−n  to 1 do 

5:          NRR mod]0[]0[
2

←  

6:                if 0=id  then      

7:                      NRRR  mod ]1[]0[]0[ ⋅=  

8:               else 

9:                      NRRR  mod ]2[]0[]0[ ⋅=    

10:             end if  

11: end for 

12: if 10 =d  then  

13:          NmRRR  mod ]1[]0[]0[ ⋅⋅=      

14: else 

15:   NRRR  mod ]1[]0[]0[ ⋅=  

16: end if   

12: Return ]0[R  

 

3.2. Principle of the proposed algorithms 

The explanation presented in this subsection is an extended version of that given in [19], but 

here; equation (13) is presented for first time. This equation is a mathematical representation of 

algorithms that work with intermediate even exponents. 

 



International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012 

115 

 

 

 

Table 2.  Algorithm 5 executed with an input message equal to 1−N  and an exponent d

=89=1011001. 

i di  Intermediate steps Result (Pattern) 

6 1 

rmR

rR

⋅=

=

2

2

]0[

]0[
 

 

 

r⋅)1(  

5 0 

rmR

rmR

⋅=

⋅=

4

24

]0[

]0[
 

 

 

r⋅)1(  

4 1 

rmR

rmR

⋅=

⋅=

10

28

]0[

]0[
 

 

 

r⋅)1(  

3 1 

rmR

rmR

⋅=

⋅=

22

220

]0[

]0[
 

 

 

r⋅)1(  

2 0 

rmR

rmR

⋅=

⋅=

44

244

]0[

]0[
 

 

 

r⋅)1(  

1 0 

rmR

rmR

⋅=

⋅=

88

288

]0[

]0[
 

 

 

r⋅)1(  

0 1 89188
]1[]0[]0[ mmrrmmRRR =⋅⋅⋅=⋅⋅=

−  

 

The attacked algorithms (2 and 3) are in the left-to-right form. According to Moreno and Hasan 

[11], this execution form is based in the following property; given the result of a
m , it is 

possible to obtain 'a
m , where 'a  is calculated by adding the bit b  to a . Note that baa += 2' , 

and thus 

babaa mmmm ⋅==
+ 22' )( .                                                (1)  

If equation (1) is used to calculate d
m  in a modular exponentiation algorithm (algorithms 2 and 

3), where ∑
−

=

⋅=

1

0

2

n

i

i
idd , it is possible to obtain the following representation of it 

0121 222 )))(((
dddd

mmmm nn ⋅⋅ −− LL ,                                       (2) 

where n  is the bit length of the exponent being processed. 

If the modified algorithms (algorithms 4 and 5) were executed from iteration 1−n  to 0, the 

following representation could be obtained 

 

       0121 2222222
)))(((

dddd
mmmm nn ⋅⋅ −− LL .                                     (3) 
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To understand why the proposed algorithms are executed from 1−n  to 1 and why an if 

statement is used in their last lines, we must consider the behaviours of equations (2) and (3) 

when they are calculated using a modular exponentiation algorithm. The behaviours of both 

equations will be represented using the assumption that they are executed from bit 1−nd  to 0d . 

In both representations, ink −−= 1 , and each step represents an iteration. The behaviour of 

equation (2) at each of the iterations of an algorithm is given by equations (4) - (7): 

)(2)(2)(2)(2)(2 0132
0

1
1

)  ))(((                           1 Step
ddddd

mmmm nnn ⋅⋅ −−−
+

LL                             (4) 

   MM                                                                                       

)(2)(2)(2)(2    )(2)(2 011
0

2
1

1   )  ))(((                Step
dddddd

mmmmi kkn
i

n
i

⋅⋅ −−

−

−
+++

LL
L                  (5) 

   MM                                                                                      

)(2)(2    )(2)(2 01
0

2
3

1
2

  )(                             2  Step
dddd

mmn n
n

n
n

⋅−
+++

−

−

−

−
L                                    (6) 

)()(2    )(2)(2 01
1

2
2

1
1

                                   1  Step
dddd

mmn n
n

n
n

⋅−
+++

−

−

−

−
L                                       (7) 

 

The behaviour of equation (3) is given by equations (8) - (11):  

)(22)(22)(22)(2)(2 0132
10

1
11

)  ))(((                       1 Step
ddddd

mmmm nnn ⋅⋅ −−

+

−

+
+

LL                      (8) 

   MM                                                                                       

)(22)(22)(22)(2    )(2)(2 011
10

2
11

1
1

  )  ))(((          Step
dddddd

mmmmi kkn
i

n
i

⋅⋅ −

+

−

+−

−

+
+++

LL
L          (9) 

   MM                                                                                      

)(22)(2    )(2)(2 01
10

2
13

1
12

  )(                           2  Step
dddd

mmn n
n

n
n

⋅−

+

−

+−

−

+−
+++ L                          (10) 

)(2)(2    )(2)(2 01
11

2
12

1
11

                                   1  Step
dddd

mmn n
n

n
n

⋅−

+

−

+−

−

+−
+++ L                           (11) 

 

It is possible to see that equation (7) is the correct result of calculating d
m . Note that the 

underlined part of equation (10), ( )(2    )(2)(2 1
1

2
2

1
1 ddd n

n
n

n
m

+++
−

−

−

−
L ), is similar to equation (7). 

To obtain equality between equations (7) and (10), the last square and the multiplication by 
)(2 0d

m  in equation (10) are deleted. The following expression is obtained: 

)(2    )(2)(2 1
1

2
2

1
1

ddd n
n

n
n

m
+++

−

−

−

−
L

                                          (12) 

Now, equation (12) must be multiplied by )( 0d
m , and thus, the correct value of d

m  is obtained. 

Equation (3) is the representation of classic exponentiation algorithms. Here, the equation (13) 

is presented, which is the representation of algorithms that work with intermediate even 

exponents: 

                                      01221 2222222
)))(((

ddddd
mmmmm nn ⋅⋅⋅ −− LL                                 (13)  
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Because the proposed algorithms run from 1−n  to 1, thereby eliminating the last square and the 

last multiplication by )(2 0d
m , and use the if statement, which is the multiplication by )( 0d

m  

where }1,0{0 ∈d , the correct value of d
m  is computed. 

3.3. Possible countermeasures 

There are possible countermeasures against the 1−N  attack. However, the countermeasures 

have characteristics that make them impractical. Some possible countermeasures and their 

disadvantages are discussed below:  

1. Blind the message. In this countermeasure, the message, m , is blinded using a random 

value, r . This idea can be seen as a correct form to protect the modular exponentiation. 

However, it can be observed that algorithm 3 blinds the message and it remains vulnerable 

to the 1−N  attack [15]. The best technique for message blinding under this scheme is that 

proposed by Fumaroli and Vigilant [20]. However, their technique requires an additional 

register to save 1−
r  and n  additional square operations, where n  is the number of bits of 

the exponent.  

2. Blind the modulus, mentioned in [6, section 3.2]. In this countermeasure, the modulus, N , 

is blinded using a random value, r . This idea seems like a good proposal, however, there 

are two disadvantages in its implementation: 

2.1. The bit length of the modulus is increased, for what the operations will be calculated 

with bigger integers; thus, the runtime of the algorithm will be longer, and the power 

consumption of the algorithm will be higher. 

2.2. There are standards used in the manufacturing of crypto devices, such as smart cards. If 

the bit length of the modulus is increased, the modulus will not be coupled with the 

standards. 

3. Block the special input message, 1−N . This might be the most logical reaction against this 

type of attack. However, according to Yen et al. [15], it is possible to choose messages with 

a modified 1−N  value. For example, the attacker can choose two input values, im  and 

ij mNm ⋅−= )1( , and collect the two related power consumption traces of computing 

Nm d
i  mod  and Nm d

j  mod . The adversary can detect the collisions when 

Nmm k
j

k
i  mod ≡  and deduce the value of d . To avoid this modified attack, the 

relationship between two input messages can be checked to determine if 

NNmm ij  mod )1( −⋅≡  for every pair i  and j . According to Yen et al. this is extremely 

difficult and infeasible to implement in practice because the input messages, im  and jm , 

might not be consecutive messages, and it is not possible to store all of the previous 

messages required to perform the detection of that relationship.  

In table 3, it is possible to see the behaviour of two executions of the algorithm 2 when two 

input messages equal to 1m  and 12 )1( mNm ⋅−=  are used in the algorithm. In this example, it 

was assumed that d =89=1011001. 
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Table 3 shows that the visible patterns in both executions of algorithm 2 are equal when the bit 

being processed is 0 and are different when the bit being processed is 1. This characteristic can 

be used by an attacker to recognize the binary string of the secret key, d . 

Table 3.  Comparison of executions of algorithm 2 using input message 1m  and input message 

)1(12 −⋅= Nmm . 

i di  Intermediate steps 

when the input is 

equal to m1. 

Intermediate steps 

when the input is 

equal to m2. 

Comparison of 

the pattern of  

the register R. 

6 1 

1

1]1[

1]0[

mR

mR

R

=

=

=

 

)1(

)1(]1[

1]0[

1

1

−⋅=

−⋅=

=

NmR

NmR

R

 

Different  

5 0 

2
1

3
1

2
1

]1[

]0[

mR

mR

mR

=

=

=

 

2
1

3
1

2
1

)1(]1[

]0[

mR

NmR

mR

=

−⋅=

=

 

 

Equal 

4 1 

5
1

5
1

4
1

]1[

]0[

mR

mR

mR

=

=

=

 

)1(

)1(]1[

]0[

5
1

5
1

4
1

−⋅=

−⋅=

=

NmR

NmR

mR

 

Different 

3 1 

11
1

11
1

10
1

]1[

]0[

mR

mR

mR

=

=

=

 

)1(

)1(]1[

]0[

11
1

11
1

10
1

−⋅=

−⋅=

=

NmR

NmR

mR

 

Different 

2 0 

22
1

23
1

22
1

]1[

]0[

mR

mR

mR

=

=

=

 

22
1

23
1

22
1

)1(]1[

]0[

mR

NmR

mR

=

−⋅=

=

 

Equal 

1 0 

44
1

45
1

44
1

]1[

]0[

mR

mR

mR

=

=

=

 

44
1

45
1

44
1

)1(]1[

]0[

mR

NmR

mR

=

−⋅=

=

 

Equal 

0 1 

89
1

89
1

88
1

]1[

]0[

mR

mR

mR

=

=

=

 

)1(

)1(]1[

]0[

89
1

89
1

88
1

−⋅=

−⋅=

=

NmR

NmR

mR

 

Different 

 

3.4. Advantages of and commentaries on our modified algorithms 

The modified algorithms have almost the same runtime as the original versions of them. They 

only require an additional if statement. Algorithm 4 requires one more register than algorithm 2 

to save mmM ⋅= , but algorithm 5 does not require any extra register. 
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The proposed algorithms do not require that the message be blinded to avoid an 1−N  attack
1
 

because in each intermediate step, the resulting value will always be equal to 1 (if the input 

message is equal to 1−N ) regardless of the value of the exponent's bit being processed by the 

algorithm. The attacker cannot determine the secret key because there is only one observable 

pattern in the power trace. 

The bit length of the modulus, or any other value, does not need to be increased in the proposed 

algorithms. Therefore, the algorithms are in accordance with the standards used to manufacture 

crypto devices.  

Additionally, this strategy is useful to avoid attacks that use a modified 1−N  value because the 

congruence Nmm
k

j
k

i  mod 1 ≡⋅  will always be true in each intermediate step of the algorithm, 

disregarding the value of the exponent bit being processed. Therefore, it is not necessary to 

check the relationship between input messages, which is very costly and impractical. This 

protection can be observed in table 4, where it is possible to see the behaviour of two executions 

of the algorithm 4 when input messages, 1m  and 12 )1( mNm ⋅−= , are used in the algorithm. In 

this example, it was assumed that d =89=1011001. 

In table 4, it is possible to see that the patterns of the two executions of the algorithm are equal. 

Therefore, an attacker cannot distinguish between a bit that is 0 and a bit that is 1. It is important 

to note that line 4 in algorithm 4 eliminates the value 1−N of the message 2m :  

2
1

2
1

22
1

2
11122 1)1())1(())1(())1(( mmNmNmNmNmmmM =⋅=−⋅=−⋅=−⋅⋅−⋅=⋅=  

Owing to the characteristics described in this section, it is possible to say that this method is 

better than existing methods.  

As was said before, this method can be easily implemented in practice. Therefore, it can be 

implemented in protocols where embedded devices and cryptosystems based in modular 

exponentiation are used; an example of a possible application is given in [21]. 

4. CONCLUSIONS 

In this paper, we have presented two algorithms based in the intermediate even exponents that 

are secure against the 1−N  attack. 

The proposed algorithms do not require additional runtime because they perform the same 

number of operations as the original versions (algorithms 2 and 3). Additionally, they do not 

increase the bit length of their parameters, i.e., they do not require a larger modulus to be secure 

against this type of attack. Therefore, they are in accordance with the manufacturing standards 

of embedded devices, such as smart cards. 

Through this paper, has been shown that the proposed algorithms provide security against 

attacks in which the input message is equal to 1−N  and in which the input message is a 

modification of the 1−N  value, like mN ⋅−1 , without costly steps and without impractical 

solutions.  

                                                 
1
 We are referring to the characteristics of the method against an 1−N  attack, but it is necessary to blind 

the message to avoid other types of attacks on the algorithms. 
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This protection against 1−N  attacks is easy to implement. Because it does not require 

additional implementation costs, it can be used in practice. This strategy does not sacrifice 

runtime and offers better security than existing methods. 
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Table 4.  Comparison of two executions of algorithm 4, one using an input message 1m  and the 

other using an input message )1(12 −⋅= Nmm . 

i di  Intermediate steps 

when the input is 

equal to m1. 

Intermediate steps 

when the input is 

equal to m2. 

Comparison of 

the pattern of  

the register R. 

6 1 

2
1

2
1]1[

1]0[

mR

mR

R

=

=

=

 

2
1
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1]1[

1]0[

mR

mR

R

=

=
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=

=
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=

=
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mR

=

=
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10
1

10
1
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1
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=

=
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=

=
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=

=
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1

46
1

44
1

]1[

]0[

mR

mR

mR

=

=

=

 

44
1

46
1

44
1

]1[
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mR

mR

mR

=

=

=

 

Equal 

1 0 

88
1

90
1

88
1

]1[
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mR

mR

mR

=

=

=

 

88
1

90
1

88
1
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mR

mR

mR

=
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Equal 

0 1 
1

88
11 mmmRR ⋅=⋅=  

89
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NmmR
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