
International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

DOI : 10.5121/ijnsa.2012.4407 109

HOW TO AVOID THE N-1 ATTACK WITHOUT

COSTLY IMPLEMENTATIONS

David Tinoco Varela

Computational Science Graduate Program, Facultad de Estudios Superiores Cuautitlán,

Universidad Nacional Autónoma de México, Edo. de Mex. 54740, México
dativa19@comunidad.unam.mx

ABSTRACT

Simple Power Analysis (SPA) attacks are widely used against several cryptosystems, principally against

cryptosystems based on modular exponentiation. Many types of SPA have been reported in the literature,

Yen et al. introduced the N-1 attack, which uses chosen input messages to obtain relevant information

from the attacked cryptosystem. Their attack was implemented on the square-and-multiply always and on

the BRIP algorithm, both algorithms in left-to-right form. There are possible countermeasures against

this attack, but all of them are costly and time consuming. In this paper, a computationally efficient and

effective method to avoid the N-1 attack is investigated.

KEYWORDS

Simple Power Analysis, N-1 Attack, Modular Exponentiation, Embedded Devices.

1. INTRODUCTION

Since Kocher [1] described the first Side Channel Attack (SCA), many physical attacks against

cryptosystems implemented on embedded devices have been developed. Because SCAs

represent a serious threat, it is necessary to avoid them to obtain reliable cryptographic modules.

When a device executes operations of encryption or decryption, there are several measurable

physical signals, such as operating times [1], power consumption [2], and electromagnetic

radiation [3], that are correlated with the secret parameters of the cryptosystem. Basically, the

SCA obtains useful information from a device, such as a smart card, by measuring these

physical signals. The information can be used to reveal the secret key used to protect the

processed data within the appliance, and thus, the security of the cryptosystem can be

compromised.

Simple Power Analysis (SPA) and Differential Power Analysis (DPA) are well-known attacks,

both described by Kocher in [2]. The secret values from a cryptosystem can be obtained using

SPA by measuring one or few power traces from the device that is executing the algorithm. It is

possible to determine the value of the system's secret key from these measurements. To obtain

the secret key using DPA, many power consumption traces of the same algorithm with different

input messages are collected, and a statistical analysis of the traces is performed.

Primarily, an SCA is used to attack the modular exponentiation, which is the core operation of

many cryptosystems, such as RSA. Because the modular exponentiation is mainly calculated in

binary form, attacks use the measured signals to determine the binary representation of the

exponent; usually, the exponent is the secret key of the cryptosystem.

Square-and-multiply is a classic algorithm that is used to calculate the modular exponentiation.

This algorithm can be used in right-to-left or left-to-right form. This algorithm uses few

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

110

registers, and it is the simplest and the fastest of all known algorithms. However, this algorithm

is vulnerable to SPA because it calculates a modular multiplication and a square if the exponent

bit being processed is 1 and only a square if the exponent bit being processed is 0. Thus, an

attacker can measure the power consumption or the operating times of the algorithm's execution

to determine the binary string of the cryptosystem’s secret key.

Many modular exponentiation algorithms have been designed to prevent SPA, e.g., [4], [5], [6],

[7], [8], [9], [10], and [11]. Coron [12] provided the first algorithm created specifically to defeat

SPA using the square-and-multiply always (SaMA) algorithm, which works in a regular form.

That is, the algorithm will always calculate a multiplication followed by a square, independent

of the value of the exponent bit being processed (0 or 1).

There are many SPA techniques [13], [14]. For example, chosen-message is a technique used to

obtain relevant information from a device that is executing a cryptographic algorithm. Chosen-

message uses an input message that has a specific behaviour during the execution of the

algorithm, and that behaviour can be observed by the attacker who can obtain the secret

parameters of the cryptosystem.

 Fouque and Valette proposed and implemented the Doubling Attack (DA) [13], a chosen-

message attack, against the left-to-right SaMA. In that attack, two related messages, M and
2

M , are chosen, and the behaviours of both messages in the attacked algorithm are used to

obtain the secret key. The relative Doubling Attack (RDA), an idea similar to DA, was proposed

by Yen et al. in [14]. These authors used RDA to attack the Montgomery powering ladder

algorithm [5].

One of the simplest chosen-message attacks is the 1−N attack proposed by Yen et al. in [15].

Though they explained the theoretical form of their attack against the left-to-right SaMA and

BRIP algorithms [16], Miyamoto et al. demonstrated the effectiveness of an 1−N attack in

practice [17].

Intermediate even exponents were proposed in [19] to protect the Montgomery powering ladder

algorithm against an attack that is based in the Jacobi symbol.

2. PRELIMINARIES

2.1. Modular exponentiation

The classical modular exponentiation algorithm (algorithm 1) uses the binary string of the

exponent to calculate the correct result of
∑
−

==

1

0

2
n

i
i

i d
d

mm . In each of the iterations, this

algorithm executes a square operation and a conditional modular multiplication. Because of the

conditional multiplication, an attacker can determine the binary string of the exponent by

observing the power consumption of the device. The algorithm consumes more power when the

bit of the exponent is 1 than when the bit is 0.

Coron designed the SaMA algorithm (algorithm 2) to avoid the SPA. This algorithm is regular,

i.e., it does not have conditional multiplications and executes the same number of operations in

each of the iterations. However, algorithm 2 uses dummy operations, which can be vulnerable to

Safe Error Attacks [18].

Mamiya et al. proposed the BRIP algorithm, algorithm 3. This algorithm is regular, but it does

not use dummy operations. Randomization of the input message protects the algorithm against

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

111

DPA. The authors claimed that their algorithm is secure against SPA, but Yen et al.

demonstrated that algorithm 3 is vulnerable to an 1−N attack, which is a type of SPA.

Algorithm 1 Square-and-multiply left-to-right

1: Input Gm ∈ , 201)(ddd n K
−

=

2: Output Gms
d

∈=

3: 1]0[←R

4: for 1−n to 0 do

5: NRR mod]0[]0[
2

←

6: if 1=id then

7: NmRR mod]0[]0[⋅←

8: end if

9: end for

10: Return]0[R

Algorithm 2 Square-and-multiply always, left-to right

1: Input Gm ∈ , 201)(ddd n K
−

=

2: Output Gms
d

∈=

3: 1←R

4: for 1−n to 0 do

5: NRR mod]0[
2

←

6: NmRR mod]0[]1[⋅←

7: NdRR i mod][←

8: end for

9: Return R

Algorithm 3 BRIP

1: Input Gm ∈ , 201)(ddd n K
−

=

2: Output Gms
d

∈=

3: rR ←]0[

4: 1]1[−
← rR

5: 1]2[−
⋅← rmR

4: for 1−n to 0 do

5: NRR mod]0[]0[
2

←

6: if 0=id then

7: NRRR mod]1[]0[]0[⋅=

8: else

9: NRRR mod]2[]0[]0[⋅=

10: end if

11: end for

12: Return NRR mod]1[]0[⋅

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

112

2.2. N-1 Attack

In 2005, Yen et al. proposed the 1−N attack in [15]. They implemented it against modular

exponentiation algorithms 2 and 3. This attack assumes that the power traces obtained from a

device that is performing computations can be measured and compared to determine when two

values or operations are equal, even if the adversary does not know what values are being

processed. For example, if A and B are values, where AB = , the collisions of 2
A and 2

B can

be detected, even if A and B are unknown.

This attack is based on two observations:

1. - If a cryptosystem works with modulo N , NN mod 1)1(2
≡− . This observation can

be extended to obtain NN j mod 1)1(≡− , for any even integer j .

2. - If a cryptosystem works with modulo N , NNN k mod)1()1(−≡− , for any odd

integer k .

If a chosen value equal to 1−N is the input message, the value at the end of each of the

iterations of the attacked algorithm can take only one of two values: 1 if the bit being processed

is 0 or 1−N if the bit being processed is 1. Therefore, an attacker can observe only two patterns

in the power traces and thus can determine the binary string of the exponent.

In 2008, Miyamoto et al. [17] demonstrated and analyzed the effectiveness of the 1−N attack in

practice. They obtained power traces in which it is possible to identify when an exponent bit is 0

and when it is 1.

In [19], it was claimed that any d
m could be calculated using only even intermediate exponents

in a modular exponentiation algorithm. This idea was used to protect the Montgomery powering

ladder algorithm against an attack based on the Jacobi symbol. In section 3, this idea is used to

avoid the 1−N attack.

3. PROPOSED ALGORITHMS

In this section, the algorithms previously described and attacked with the 1−N attack are

modified to protect them against the mentioned threat.

3.1. Modified algorithms

If an attacker wants to break a cryptosystem and knows the value of the modulus N of the

cryptosystem, he can choose an input message that is equal to 1−N . The attacker sends the

chosen message to a device that runs an algorithm to encrypt and decrypt secret information.

The attacker collects one or few power traces from the device and searches for two patterns in

the power traces. Each pattern corresponds to a specific value. In this case, the value is 1 if

0=id and 1−N if 1=id .

When the attacker has found the patterns, he can determine two possible exponents, d and d ,

where d is the binary inverse of d , i.e., if 101101d = , then 010010=d . Using d and d , a

trial-and-error approach can be used to find the correct exponent and to break down the security

of the cryptosystem.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

113

This scheme is illustrated in table 1, which shows the behaviour of algorithm 3 when it is

subjected to an 1−N attack. In this example, it is assumed that 1−= Nm and d =89=1011001.

Algorithm 3 was chosen to demonstrate that two patterns could be recognized, even with a

blinded message.

Table 1. Algorithm 3 executed with an input message equal to 1−N .

i di Intermediate steps Result (Pattern)

6 1

rmR

rR

⋅=

=

]0[

]0[2

rN ⋅−)1(

5 0

rmR

rmR

⋅=

⋅=

2

22

]0[

]0[

r⋅)1(

4 1

rmR

rmR

⋅=

⋅=

5

24

]0[

]0[

rN ⋅−)1(

3 1

rmR

rmR

⋅=

⋅=

11

210

]0[

]0[

rN ⋅−)1(

2 0

rmR

rmR

⋅=

⋅=

22

222

]0[

]0[

r⋅)1(

1 0

rmR

rmR

⋅=

⋅=

44

244

]0[

]0[

r⋅)1(

0 1

rmR

rmR

⋅=

⋅=

89

288

]0[

]0[

rN ⋅−)1(

As shown in table 1, the presence of odd and even exponents in the intermediate steps of the

algorithm lead to two patterns in the power trace, and thus, the secret key of the cryptosystem

can be discovered.

This attack is powerful and can be easily implemented. However, to obtain the secret key, two

patterns must be present in the power trace. This attack can be avoided if there is only one

pattern in the power trace of each iteration, regardless of the processed bit. This idea is the

premise of the proposed algorithms. To implement this idea, recall that it is possible to work

with only even intermediate exponents in an algorithm [19]. Therefore, it is possible to obtain

only one visible pattern in the measured power trace. Based on this statement, algorithms 2 and

3 have been modified to obtain algorithms 4 and 5, respectively.

In algorithms 4 and 5, the first step is to change the input value m to 2
m , this square value will

affect all of the calculations in the algorithms. In each of the iterations, only even intermediate

exponents will be used in calculations. Therefore, an attacker will not be able to obtain any

information because all of the executed iterations in the algorithm will have the same pattern,

independent of the processed bit. This behavior is illustrated in table 2.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

114

Algorithm 4 Modified square-and-multiply always, left-to-right

1: Input Gm ∈ , 201)(ddd n K
−

=

2: Output Gms
d

∈=

3: 1←R

4: mmM ⋅=

5: for 1−n to 1 do

6: NRR mod]0[
2

←

7: NMRR mod]0[]1[⋅←

8: NdRR i mod][←

9: end for

10: if 00 =d then

11: Return R

12: else

13: Return mR ⋅

14: end if

Algorithm 5 Modified BRIP

1: Input Gm ∈ , 201)(ddd n K
−

=

2: Output Gms
d

∈=

3: rR ←]0[

4: 1]1[−
← rR

5: 1
]2[

−
⋅⋅← rmmR

4: for 1−n to 1 do

5: NRR mod]0[]0[
2

←

6: if 0=id then

7: NRRR mod]1[]0[]0[⋅=

8: else

9: NRRR mod]2[]0[]0[⋅=

10: end if

11: end for

12: if 10 =d then

13: NmRRR mod]1[]0[]0[⋅⋅=

14: else

15: NRRR mod]1[]0[]0[⋅=

16: end if

12: Return]0[R

3.2. Principle of the proposed algorithms

The explanation presented in this subsection is an extended version of that given in [19], but

here; equation (13) is presented for first time. This equation is a mathematical representation of

algorithms that work with intermediate even exponents.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

115

Table 2. Algorithm 5 executed with an input message equal to 1−N and an exponent d

=89=1011001.

i di Intermediate steps Result (Pattern)

6 1

rmR

rR

⋅=

=

2

2

]0[

]0[

r⋅)1(

5 0

rmR

rmR

⋅=

⋅=

4

24

]0[

]0[

r⋅)1(

4 1

rmR

rmR

⋅=

⋅=

10

28

]0[

]0[

r⋅)1(

3 1

rmR

rmR

⋅=

⋅=

22

220

]0[

]0[

r⋅)1(

2 0

rmR

rmR

⋅=

⋅=

44

244

]0[

]0[

r⋅)1(

1 0

rmR

rmR

⋅=

⋅=

88

288

]0[

]0[

r⋅)1(

0 1 89188
]1[]0[]0[mmrrmmRRR =⋅⋅⋅=⋅⋅=

−

The attacked algorithms (2 and 3) are in the left-to-right form. According to Moreno and Hasan

[11], this execution form is based in the following property; given the result of a
m , it is

possible to obtain 'a
m , where 'a is calculated by adding the bit b to a . Note that baa += 2' ,

and thus

babaa mmmm ⋅==
+ 22')(. (1)

If equation (1) is used to calculate d
m in a modular exponentiation algorithm (algorithms 2 and

3), where ∑
−

=

⋅=

1

0

2

n

i

i
idd , it is possible to obtain the following representation of it

0121 222)))(((
dddd

mmmm nn ⋅⋅ −− LL , (2)

where n is the bit length of the exponent being processed.

If the modified algorithms (algorithms 4 and 5) were executed from iteration 1−n to 0, the

following representation could be obtained

 0121 2222222
)))(((

dddd
mmmm nn ⋅⋅ −− LL . (3)

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

116

To understand why the proposed algorithms are executed from 1−n to 1 and why an if

statement is used in their last lines, we must consider the behaviours of equations (2) and (3)

when they are calculated using a modular exponentiation algorithm. The behaviours of both

equations will be represented using the assumption that they are executed from bit 1−nd to 0d .

In both representations, ink −−= 1 , and each step represents an iteration. The behaviour of

equation (2) at each of the iterations of an algorithm is given by equations (4) - (7):

)(2)(2)(2)(2)(2 0132
0

1
1

)))(((1 Step
ddddd

mmmm nnn ⋅⋅ −−−
+

LL (4)

 MM

)(2)(2)(2)(2)(2)(2 011
0

2
1

1)))(((Step
dddddd

mmmmi kkn
i

n
i

⋅⋅ −−

−

−
+++

LL
L (5)

 MM

)(2)(2)(2)(2 01
0

2
3

1
2

)(2 Step
dddd

mmn n
n

n
n

⋅−
+++

−

−

−

−
L (6)

)()(2)(2)(2 01
1

2
2

1
1

 1 Step
dddd

mmn n
n

n
n

⋅−
+++

−

−

−

−
L (7)

The behaviour of equation (3) is given by equations (8) - (11):

)(22)(22)(22)(2)(2 0132
10

1
11

)))(((1 Step
ddddd

mmmm nnn ⋅⋅ −−

+

−

+
+

LL (8)

 MM

)(22)(22)(22)(2)(2)(2 011
10

2
11

1
1

)))(((Step
dddddd

mmmmi kkn
i

n
i

⋅⋅ −

+

−

+−

−

+
+++

LL
L (9)

 MM

)(22)(2)(2)(2 01
10

2
13

1
12

)(2 Step
dddd

mmn n
n

n
n

⋅−

+

−

+−

−

+−
+++ L (10)

)(2)(2)(2)(2 01
11

2
12

1
11

 1 Step
dddd

mmn n
n

n
n

⋅−

+

−

+−

−

+−
+++ L (11)

It is possible to see that equation (7) is the correct result of calculating d
m . Note that the

underlined part of equation (10), ()(2)(2)(2 1
1

2
2

1
1 ddd n

n
n

n
m

+++
−

−

−

−
L), is similar to equation (7).

To obtain equality between equations (7) and (10), the last square and the multiplication by
)(2 0d

m in equation (10) are deleted. The following expression is obtained:

)(2)(2)(2 1
1

2
2

1
1

ddd n
n

n
n

m
+++

−

−

−

−
L

 (12)

Now, equation (12) must be multiplied by)(0d
m , and thus, the correct value of d

m is obtained.

Equation (3) is the representation of classic exponentiation algorithms. Here, the equation (13)

is presented, which is the representation of algorithms that work with intermediate even

exponents:

 01221 2222222
)))(((

ddddd
mmmmm nn ⋅⋅⋅ −− LL (13)

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

117

Because the proposed algorithms run from 1−n to 1, thereby eliminating the last square and the

last multiplication by)(2 0d
m , and use the if statement, which is the multiplication by)(0d

m

where }1,0{0 ∈d , the correct value of d
m is computed.

3.3. Possible countermeasures

There are possible countermeasures against the 1−N attack. However, the countermeasures

have characteristics that make them impractical. Some possible countermeasures and their

disadvantages are discussed below:

1. Blind the message. In this countermeasure, the message, m , is blinded using a random

value, r . This idea can be seen as a correct form to protect the modular exponentiation.

However, it can be observed that algorithm 3 blinds the message and it remains vulnerable

to the 1−N attack [15]. The best technique for message blinding under this scheme is that

proposed by Fumaroli and Vigilant [20]. However, their technique requires an additional

register to save 1−
r and n additional square operations, where n is the number of bits of

the exponent.

2. Blind the modulus, mentioned in [6, section 3.2]. In this countermeasure, the modulus, N ,

is blinded using a random value, r . This idea seems like a good proposal, however, there

are two disadvantages in its implementation:

2.1. The bit length of the modulus is increased, for what the operations will be calculated

with bigger integers; thus, the runtime of the algorithm will be longer, and the power

consumption of the algorithm will be higher.

2.2. There are standards used in the manufacturing of crypto devices, such as smart cards. If

the bit length of the modulus is increased, the modulus will not be coupled with the

standards.

3. Block the special input message, 1−N . This might be the most logical reaction against this

type of attack. However, according to Yen et al. [15], it is possible to choose messages with

a modified 1−N value. For example, the attacker can choose two input values, im and

ij mNm ⋅−=)1(, and collect the two related power consumption traces of computing

Nm d
i mod and Nm d

j mod . The adversary can detect the collisions when

Nmm k
j

k
i mod ≡ and deduce the value of d . To avoid this modified attack, the

relationship between two input messages can be checked to determine if

NNmm ij mod)1(−⋅≡ for every pair i and j . According to Yen et al. this is extremely

difficult and infeasible to implement in practice because the input messages, im and jm ,

might not be consecutive messages, and it is not possible to store all of the previous

messages required to perform the detection of that relationship.

In table 3, it is possible to see the behaviour of two executions of the algorithm 2 when two

input messages equal to 1m and 12)1(mNm ⋅−= are used in the algorithm. In this example, it

was assumed that d =89=1011001.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

118

Table 3 shows that the visible patterns in both executions of algorithm 2 are equal when the bit

being processed is 0 and are different when the bit being processed is 1. This characteristic can

be used by an attacker to recognize the binary string of the secret key, d .

Table 3. Comparison of executions of algorithm 2 using input message 1m and input message

)1(12 −⋅= Nmm .

i di Intermediate steps

when the input is

equal to m1.

Intermediate steps

when the input is

equal to m2.

Comparison of

the pattern of

the register R.

6 1

1

1]1[

1]0[

mR

mR

R

=

=

=

)1(

)1(]1[

1]0[

1

1

−⋅=

−⋅=

=

NmR

NmR

R

Different

5 0

2
1

3
1

2
1

]1[

]0[

mR

mR

mR

=

=

=

2
1

3
1

2
1

)1(]1[

]0[

mR

NmR

mR

=

−⋅=

=

Equal

4 1

5
1

5
1

4
1

]1[

]0[

mR

mR

mR

=

=

=

)1(

)1(]1[

]0[

5
1

5
1

4
1

−⋅=

−⋅=

=

NmR

NmR

mR

Different

3 1

11
1

11
1

10
1

]1[

]0[

mR

mR

mR

=

=

=

)1(

)1(]1[

]0[

11
1

11
1

10
1

−⋅=

−⋅=

=

NmR

NmR

mR

Different

2 0

22
1

23
1

22
1

]1[

]0[

mR

mR

mR

=

=

=

22
1

23
1

22
1

)1(]1[

]0[

mR

NmR

mR

=

−⋅=

=

Equal

1 0

44
1

45
1

44
1

]1[

]0[

mR

mR

mR

=

=

=

44
1

45
1

44
1

)1(]1[

]0[

mR

NmR

mR

=

−⋅=

=

Equal

0 1

89
1

89
1

88
1

]1[

]0[

mR

mR

mR

=

=

=

)1(

)1(]1[

]0[

89
1

89
1

88
1

−⋅=

−⋅=

=

NmR

NmR

mR

Different

3.4. Advantages of and commentaries on our modified algorithms

The modified algorithms have almost the same runtime as the original versions of them. They

only require an additional if statement. Algorithm 4 requires one more register than algorithm 2

to save mmM ⋅= , but algorithm 5 does not require any extra register.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

119

The proposed algorithms do not require that the message be blinded to avoid an 1−N attack
1

because in each intermediate step, the resulting value will always be equal to 1 (if the input

message is equal to 1−N) regardless of the value of the exponent's bit being processed by the

algorithm. The attacker cannot determine the secret key because there is only one observable

pattern in the power trace.

The bit length of the modulus, or any other value, does not need to be increased in the proposed

algorithms. Therefore, the algorithms are in accordance with the standards used to manufacture

crypto devices.

Additionally, this strategy is useful to avoid attacks that use a modified 1−N value because the

congruence Nmm
k

j
k

i mod 1 ≡⋅ will always be true in each intermediate step of the algorithm,

disregarding the value of the exponent bit being processed. Therefore, it is not necessary to

check the relationship between input messages, which is very costly and impractical. This

protection can be observed in table 4, where it is possible to see the behaviour of two executions

of the algorithm 4 when input messages, 1m and 12)1(mNm ⋅−= , are used in the algorithm. In

this example, it was assumed that d =89=1011001.

In table 4, it is possible to see that the patterns of the two executions of the algorithm are equal.

Therefore, an attacker cannot distinguish between a bit that is 0 and a bit that is 1. It is important

to note that line 4 in algorithm 4 eliminates the value 1−N of the message 2m :

2
1

2
1

22
1

2
11122 1)1())1(())1(())1((mmNmNmNmNmmmM =⋅=−⋅=−⋅=−⋅⋅−⋅=⋅=

Owing to the characteristics described in this section, it is possible to say that this method is

better than existing methods.

As was said before, this method can be easily implemented in practice. Therefore, it can be

implemented in protocols where embedded devices and cryptosystems based in modular

exponentiation are used; an example of a possible application is given in [21].

4. CONCLUSIONS

In this paper, we have presented two algorithms based in the intermediate even exponents that

are secure against the 1−N attack.

The proposed algorithms do not require additional runtime because they perform the same

number of operations as the original versions (algorithms 2 and 3). Additionally, they do not

increase the bit length of their parameters, i.e., they do not require a larger modulus to be secure

against this type of attack. Therefore, they are in accordance with the manufacturing standards

of embedded devices, such as smart cards.

Through this paper, has been shown that the proposed algorithms provide security against

attacks in which the input message is equal to 1−N and in which the input message is a

modification of the 1−N value, like mN ⋅−1 , without costly steps and without impractical

solutions.

1
 We are referring to the characteristics of the method against an 1−N attack, but it is necessary to blind

the message to avoid other types of attacks on the algorithms.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

120

This protection against 1−N attacks is easy to implement. Because it does not require

additional implementation costs, it can be used in practice. This strategy does not sacrifice

runtime and offers better security than existing methods.

ACKNOWLEDGEMENTS

We would like to thank the referee for carefully reading this paper and for his constructive

suggestions. This paper was supported, in part, by project CONS-18 of FES-C UNAM.

Table 4. Comparison of two executions of algorithm 4, one using an input message 1m and the

other using an input message)1(12 −⋅= Nmm .

i di Intermediate steps

when the input is

equal to m1.

Intermediate steps

when the input is

equal to m2.

Comparison of

the pattern of

the register R.

6 1

2
1

2
1]1[

1]0[

mR

mR

R

=

=

=

2
1

2
1]1[

1]0[

mR

mR

R

=

=

=

Equal

5 0

4
1

6
1

4
1

]1[

]0[

mR

mR

mR

=

=

=

4
1

6
1

4
1

]1[

]0[

mR

mR

mR

=

=

=

Equal

4 1

10
1

10
1

8
1

]1[

]0[

mR

mR

mR

=

=

=

10
1

10
1

8
1

]1[

]0[

mR

mR

mR

=

=

=

Equal

3 1

22
1

22
1

20
1

]1[

]0[

mR

mR

mR

=

=

=

22
1

22
1

20
1

]1[

]0[

mR

mR

mR

=

=

=

Equal

2 0

44
1

46
1

44
1

]1[

]0[

mR

mR

mR

=

=

=

44
1

46
1

44
1

]1[

]0[

mR

mR

mR

=

=

=

Equal

1 0

88
1

90
1

88
1

]1[

]0[

mR

mR

mR

=

=

=

88
1

90
1

88
1

]1[

]0[

mR

mR

mR

=

=

=

Equal

0 1
1

88
11 mmmRR ⋅=⋅=

89
1mR =)1(

)1(

1
88

1

1

−⋅⋅=

−⋅⋅=

NmmR

NmRR

)1(89
1 −⋅= NmR

Different

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

121

REFERENCES

[1] P. Kocher, (1996), “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems.” In Koblitz, N., ed.: Advances in Cryptology-CRYPTO 96. Volume 1109 of Lecture in

Notes in Computer Science, pp. 104-113.

[2] P.C. Kocher, J. Jaffe, and B. Jun, (1999), “Differential Power Analysis.” In Wiener, M., Ed.:

Advances in Cryptology-CRYPTO ’99. Volume 1666 of Lecture Notes in Computer Science, pp.

388-397.

[3] J.J. Quisquater and D. Samyde, (2001), “Electromagnetic analysis (ema): Measures and counter-

measures for smart cards”. Smart Card Programming and Securit, pp. 200-210.

[4] M. Joye, (2002), “Recovering lost efficiency of exponentiation algorithms on smart cards”. IET

Electronics Letters, Vol. 38, No. 19, pp. 1095-1097.

[5] M. Joye and S.M. Yen. (2002), “The montgomery powering ladder.” In Cryptographic Hardware

and Embedded Systems-CHES 2002, 2523 of Lecture Notes in Computer Science, pp. 291-302.

[6] C. Giraud, (2006), “An rsa implementation resistant to fault attacks and to simple power analysis”.

IEEE Transactions on computers, Vol. 55, No. 9, pp. 1116-1120.

[7] J.C. Ha, J.H. Park, S.J. Moon and S.M. Yen, (2007), “Provably secure countermeasure resistant to

several types of power attack for ECC”. Springer Information Security Applications, pp. 333-344.

[8] D.Z. Sun, J.P. Huai, J.Z. Sun and Z.F. Cao, (2007), “An efficient modular exponentiation

algorithm against simple power analysis attacks”, IEEE Transactions on Consumer Electronics,

Vol. 53, No. 4, pp. 1718-1723.

[9] M. Joye, (2007), “Highly regular right-to-left algorithms for scalar multiplication.” Cryptographic

Hardware and Embedded Systems-CHES 2007, 4727 of Lecture in Notes in Computer Science, pp.

135–147.

[10] J.C. Ha, C.H. Jun, J.H. Park, S.J. Moon, and C.K. Kim, (2008), “A new crt-rsa scheme resistant to

power analysis and fault attacks.” Third 2008 International Conference on Convergence and

Hybrid Information Technology, pp. 351-356.

[11] C. Moreno and M.A. Hasan, (2011), “SPA-resistant binary exponentiation with optimal execution

time”, Springer Journal of Cryptographic Engineering, pp. 1-13.

[12] J.S. Coron, (1999), “Resistance against differential power analysis for elliptic curve

cryptosystems.” In Ko, Paar, C., Eds.: Cryptographic Hardware and Embedded Systems-CHES

2002. Vol. 1717 of Lecture Notes in Computer Science, pp. 292-302.

[13] P.A. Fouque and F. Valette, (2003), “The doubling attack–why upwards is better than

downwards.” In Cryptographic Hardware and Embedded Systems-CHES 2003, LNCS 2779, pp.

269-280.

[14] S.M. Yen, L.C. Ko, S.J. Moon, and J.C. Ha, (2005), “Relative doubling attack against montgomery

ladder.” In Information Security and Cryptology-ICISC 2005, 3935 of Lecture Notes in Computer

Science, pp. 117-128.

[15] S.M. Yen, W.C. Lien, S.J. Moon, and J.C. Ha, (2005), “Power analysis by exploiting chosen

message and internal collisions-vulnerability of checking mechanism for rsa-decryption.” Progress

in Cryptology–Mycrypt 2005, 3715 of Lecture Notes in Computer Science, pp. 183-195.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.4, July 2012

122

[16] H. Mamiya, A. Miyaji, and H. Morimoto, (2004), “Efficient countermeasures against rpa, dpa, and

spa.” Cryptographic Hardware and Embedded Systems-CHES 2004, 3156 of Lecture Notes in

Computer Science, pp. 343-356.

[17] A. Miyamoto, N. Homma, T. Aoki and A. Satoh, (2008), “Enhanced power analysis attack using

chosen message against RSA hardware implementations.” IEEE International Symposium on

Circuits and Systems, pp. 3282-3285.

 [18] S.M. Yen, S. Kim, S. Lim, and S. Moon, (2001), “A countermeasure against one physical

cryptanalysis may benefit another attack”. Information Security and Cryptology-ICISC 2001, 2288

of Lecture Notes in Computer Science, pp.414-427.

[19] D. Tinoco Varela, (2012), “Blinded Montgomery Powering Ladder Protected Against the Jacobi

Symbol Attack”, International Journal of Security (IJS), Vol. 6, No. 3, pp. 15-27.

[20] G. Fumaroli and D. Vigilant, (2006), “Blinded fault resistant exponentiation.” Fault Diagnosis and

Tolerance in Cryptography, 4236 of Lecture Notes in Computer Science, pp. 62-70.

[21] Hayam K. Al-Anie, Mohammad A. Alia and Adnan A. Hnaif, (2011), “E-Voting protocol based on

public-key cryptography.” International Journal of Network Security & Its Applications (IJNSA),

Vol.3, No.4, pp. 87-98.

