
International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

DOI : 10.5121/ijnsa.2012.4101 1

OPTIMIZING ONE FAIR DOCUMENT EXCHANGE

PROTOCOL

Abdullah M. Alaraj

Department of IT, Computer College, Qassim University, Saudi Arabia
arj@qu.edu.sa

ABSTRACT

This paper presents an efficient fair document exchange protocol. The exchange of the documents will

be between two parties. The protocol is based on the verifiable and recoverable encryption of a

document’s key. This verifiable and recoverable encryption of the document’s key will allow one party

to verify the encrypted key. It will also ensure this party that the Semi Trusted Third Party will be able to

recover the key if the other party misbehaves. The protocol also incorporates the concept of enforcing

the honesty of one party. The proposed protocol consists of only three messages and is more efficient

than related protocols.

KEYWORDS
Fair Document Exchange, Fair Exchange Protocols, e-Commerce, Security, Protocols

1. INTRODUCTION

Individuals and businesses are relying on the Internet for conducting different types of

transactions. One of these transactions is the exchange of valuable documents (such as

electronic payment and products) between the parties. That is, party A will exchange its

valuable document for party B’s valuable document. As an example of such an exchange, party

A would like to buy an electronic product (e-product such as computer game) from party B. As

parties using communication networks, they cannot send their documents at the same time.

Rather, one party sends its document at a time. After receiving the document of the first party,

the second party sends its document.

There are risks associated with such exchange. One of the most important risks is the case

where party A sends its document to party B but the later either disappears before sending its

document to party A or sends an incorrect document. Therefore, party A will be the loser in

this scenario because the party who sends its document first will be at risk. This problem is

known as the fairness problem. The fairness problem is solved using fair exchange protocols

that ensure the fair exchange of documents between the parties involved. That is, fair exchange

protocols will ensure that either both parties get each other's item or none do.

The contribution of this paper is that it applies the concept of enforcing the honesty of one

party to the verifiable and recoverable encryption of a document’s key proposed by Zhang et al

[12]. The result of this application is a new optimized fair document exchange protocol as will

be shown in the comparison in section 5.

The paper is organized as follows. Section 2 will be discussing the literature survey. Section 3

will present the new protocol. The analysis of the proposed protocol and comparison will be

discussed in sections 4 and 5, respectively.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

2

2. LITERATURE SURVEY

A number of fair exchange protocols have been proposed in the literature

[1,2,3,4,7,9,10,11,12,14, 19]. These protocols are either based on a Trusted Third Party (TTP)

or gradual exchange protocols. The gradual exchange protocols [10] allow the parties to

exchange their items without involvement of any other party. The TTP-based protocols require

a TTP to be involved. The involvement of the TTP can be either online such as in [7, 9, 17] or

offline such as in [1, 2, 3, 4, 11, 12, 19]. The online TTP must be available during the

exchange of items between parties because one of the parties (or all of the parties involved)

will use it either for verification purposes or downloading items. The offline TTP will not be

involved during the exchange of items between parties. Rather, it will be contacted in case one

party misbehaves.

The fair exchange protocols can be used to exchange any two items between two (or more)

parties. The items can be valuable documents, a document and payment, two digital signatures

on a contract, and an email with a receipt. The focus in this paper is on fair exchange protocols

that are for the exchange of two valuable documents between two parties.

Zhang et al [12] proposed a fair document exchange protocol between two parties A and B.

The protocol is based on the verifiable and recoverable encryption of keys. Parties A and B

will first exchange their encrypted documents in the first two messages. Then, the parties will

exchange the decryption keys to decrypt the encrypted documents. If one party misbehaves,

the offline STTP (Semi Trusted Third Party that will not collude with any party but may

misbehave by itself) can be contacted to recover the key. To start the protocol, party A will

send its encrypted document to party B. Party B will then verify the correctness of the

encrypted document. If it is correct, then party B will send the following to party A: (a) its

encrypted document, (b) verifiable and recoverable encryption of the key that encrypts the

document, and (c) the authorization token. Party A will then verify the correctness of the

encrypted document, authorization token and the encrypted key. If these verifications are

correct, then it is safe for party A to send its decryption key to party B. Finally, once party B

decrypted the document, it sends its decryption key to party A. If party B misbehaves by either

sending an incorrect decryption key or not sending the decryption key to party A, then party A

can contact the STTP to recover the decryption key.

Ray et al [7] proposed a fair exchange protocol for the exchange of documents (e.g. digital

products and payments between customers and merchants). The protocol is based on cross

validation theorem that states [7] “if a message is encrypted with the product key of two

compatible keys and another message is encrypted with either of the two compatible keys and

the two encrypted messages compare, then the two original unencrypted messages must also

compare”.

In the protocol, a merchant M exchanges a digital product for a payment from a customer C.

Before the protocol starts, the merchant (M) needs to register with a trusted third party (TTP).

The TTP generates the key pair KM1 and KM1
-1. The TTP then provides M with KM1 and

keeps KM1
-1

 with itself. C needs to have an account in a bank. The bank generates the key

pairs KC1 and KC1
-1. The bank then provides C with KC1 and keeps KC1

-1 with itself. M needs

to send the digital product, its description and its price to the TTP. The TTP encrypts the

digital product using the key KM1 and then advertises it on its website. C needs to download

the encrypted digital product from the TTP.

The exchange part of Ray et al protocol [7] consists of four messages. C sends to M the first

message that includes the purchase order and the payment that is encrypted with the product

key of (KC1 x KC2). Then, M sends the second message to C. The second message includes the

digital product that is encrypted with the product key of (KM1 x KM2). On receiving the

second message, C compares the hash value of the encrypted digital product that was

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

3

downloaded from the TTP with the hash value of the encrypted digital product that is included

in the second message. If the two hash values are matched then C can be sure that the

unencrypted digital products will be matched as well. After verifying that the two hashes are

compared, C sends the third message to M. The third message includes the decryption key for

the encrypted payment. Finally, M sends the fourth message to C which includes the

decryption key of the encrypted digital product. If M misbehaves, C contacts the TTP for the

recovery of the decryption key of the digital product.

Alaraj and Munro [1] proposed a fair exchange protocol for the exchange of two documents

(the two documents can be a digital product and payment) between a customer and a merchant.

Alaraj and Munro proposed a new design approach for the exchange. They call it enforcing the

customer to be honest. The protocol works as follows. The merchant starts the protocol by

sending the first message to the customer. The first message includes the merchant’s document

encrypted with a key. This key is also encrypted using a shared public key between the

merchant and the TTP. On receiving the first message, the customer will verify the encrypted

document and the encrypted key. If they are correctly verified then the customer will send the

second message to the merchant. The second message includes the customer’s document

encrypted with a key that was sent to the customer by the merchant in the first message. On

receiving the second message, the merchant will use the key that it already has to decrypt the

customer’s document. When the document is decrypted correctly, the merchant will send the

decryption key to the customer. If the merchant refuses to send the decryption key, the

customer can contact the TTP to send the decryption key to the customer. This approach is

called enforcing the customer to be honest because the customer can not cheat by sending an

incorrect document because they are going to encrypt their document using a key that the

merchant already has. Using this approach, Alaraj and Munro [1] were able to propose a fair

exchange protocol using only three messages.

Alaraj and Munro [3] proposed a protocol that is similar to the protocol in [1]. The difference

is that the merchant is the one who is enforced to be honest in [3].

The design approach of most of the protocols proposed in the literature, apart from Alaraj and

Munro [1, 3], is to include at least four messages in the exchange protocol. The first two

messages are for the exchange of the encrypted items between the participating parties. The

last two messages are for the exchange of decryption keys to decrypt the items received in the

first two messages. The design approach of Alaraj and Munro [1, 3] is to have only three

messages in the protocol. The first message includes the encrypted item of the first party. The

other party will be able to verify it and if it is correctly verified then they will send the second

message to the first party. The second message includes the encrypted item of the second party

but the first party will be able to decrypt it as it is encrypted with a key that the first party

already has. Therefore, the second party has to send a correct item in order to receive the

decryption key of the first party’s item in the third message. Therefore, the design approach of

Alaraj and Munro protocols [1, 3] is based on the exchange of an item (i.e. that is included in

the second message) for a decryption key (i.e. that is included in the third message). The result

is to have more efficient protocol that includes only three messages.

The proposed protocol in this paper uses the concept of having one party to be enforced to be

honest to reduce the number of messages. Moreover, the concept of verifiable and recoverable

encryption of keys is also used. Therefore, more efficient protocol is proposed.

3. THE DOCUMENT EXCHANGE PROTOCOL

3.1 Notations

The following represents the notations used in the proposed protocol:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

4

• Pa: party a

• Pb: party b

• STTP: Semi Trusted Third Party is a party neither Pa nor Pb. STTP will not collude with

any other party but may misbehave by itself

• h(X): a strong-collision-resistant one-way hash function, such as SHA-1 [13]

• pkx = (ex, nx): RSA Public Key [16] of the party x, where nx is a public RSA modulus and

ex is a public exponent

• skx = (dx, nx): RSA Private Key [16] of the party x, where nx is a public RSA modulus and

dx is a private exponent

• Dx: the document of party x

• kx: a symmetric key that will be used for encryption and decryption of a document

• C.bt: the certificate for the shared public key between Pb and the STTP. C.bt is issued by

the STTP. A standard X.509 certificate [15] can be used to implement C.bt

• enc.pkx(Y): an RSA [16] encryption of Y using the public key pkx (ex, nx). The encryption

of Y is computed as follows. enc.pkx(Y) = Y
ex

 mod nx

• enc.skx(Z): an RSA [16] decryption of Z using the private key skx (dx, nx). The decryption

of Z is computed as follows. enc.skx(Z) = Z
dx

mod nx

• enc.kx(Y) : encryption of Y using a symmetric key kx (kx can be used for decrypting

enc.kx(Y))

• Sig.a (X): the RSA digital signature [16] of the party a on X. The digital signature of party

a on X is computed by encrypting the hash value of X using the private key ska (da, na).

This is computed as follows. Sig.a (X) = (h(x))da mod na

• A → B: X: A sends message X to B

• X + Y: concatenation of X and Y

• heDx: hash value of encrypted Dx using kx

3.2 Assumptions

The following represents the assumptions made for the proposed protocol:

• Each party (Pb, Pa and STTP) has its own public and private keys.

o The STTP’s public key is denoted as pkt = (et, nt) and its corresponding private

key is denoted as skt = (dt, nt).

o Pb’s public key is denoted as pkb = (eb, nb) and its corresponding private key is

denoted as skb = (db, nb).

o Pa’s public key is denoted as pka = (ea, na) and its corresponding private key is

denoted as ska = (da, na).

• Pb has a RSA-based public-key certificate C.bt = (Pb, pkbt, Wbt, Sig.t) issued by STTP

[12]. The content of C.bt is described as follows.

o Pb in C.bt is Pb’s identity to make C.bt valid only for Pb.

o The public key pkbt and its associated private key skbt are denoted as pkbt =

(ebt, nbt) and skbt = (dbt, nbt), respectively, where nbt is a product of two distinct

large primes chosen randomly by STTP. This pair of keys needs to be

produced in relation to Pb’s public key pkb = (eb, nb) so that ebt = eb and nbt > nb

[12]. STTP does not allow any other party, including Pb, to know skbt, and it

sends only C.bt to Pb. One C.bt certificate will be issued for Pb, and Pb can use

C.bt for as many document exchanges as Pb wishes [12]

o Wbt in C.bt is defined as Wbt = (h(skt + pkbt)
-1

 * dbt) mod nbt, where skt is

STTP’s private key, and h(skt + pkbt)
-1 is the multiplicative inverse of h(skt +

pkbt) modulo nbt,

i.e. h(skt + pkbt)
-1

h(skt + pkbt) mod nbt = 1.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

5

Wbt is included in C.bt in order to eliminate the need for STTP to store and

safe-keep private key skbt [12]. Therefore, STTP will compute it from Wbt, i.e.

dbt = (h(skt + pkbt) Wbt) mod nbt

o Sig.t in C.bt is STTP’s RSA signature on h(Pb, pkbt, Wbt), i.e. Sig.t=enc.skt(h(Pb

+ pkbt + Wbt))

• The following is known to Pb before the exchange protocol is executed:

o heDa = h(enc.ka(Da)) which is the hash value of encrypted Da with ka

• The following is known to Pa before the exchange protocol is executed:

o ekb = enc.pkb(kb) which is the encryption of kb with the public key of Pb

3.3 Protocol description

Semi Trusted Third Party (STTP) will be used in the proposed protocol. The STTP may

misbehave but it will not collude with any other party involved in the exchange [18].

The idea of the proposed protocol is to have one party (Pb) sends its first message to the other

party (Pa). The first message includes the encrypted document, verifiable and recoverable

encryption of Pb’s key (this key is used to encrypt Pb’s document) and the authorization token.

The verifiable and recoverable encryption of Pb’s key allows Pa to verify it and if it is correct

then Pa can be sure that STTP will be able to recover the key in case Pb does not sends it i.e. if

Pb misbehaves. So, when Pa verifies this verifiable and recoverable encryption correctly then Pa

will send its message that contains its encrypted document using a key that was sent to Pa by

Pb. Then, Pa will wait for the third message from Pb that includes the decryption key for the

encrypted document received in the first message. If Pb did not send the third message then Pa

will contact STTP to recover the key. The STTP will verify the authorization token generated

by Pb to make sure that Pa provided what Pb wants.

Therefore, for Pb to produce this verifiable and recoverable encryption of Pb’s key kb, Pb

chooses a large prime rb relatively prime to nb in Pb’s public key pkb=(eb, nb) and then

computes the following [12]:

 Xb= rb*kb, where chosen rb needs to ensure that xb <nb

 Yb= rb
eb mod (nb * nbt), with key pkbt =(ebt, nbt) and nb<nbt

 Zb= kb
eb

 mod (nb * nbt)

 Xb, Yb and Zb form the verifiable and recoverable encryption of Pb’s key kb. Note that Yb can

be decrypted using either skb or skbt [7]. Therefore, either Pb or STTP can recover rb.

The Pb’s authorization token will be defined by Pb. Pb’s authorization token represents Pb’s

RSA signature on h(C.bt+Yb+Ya+Pa) [12]. That is, Sb= skb(h(C.bt + Yb + Ya + Pa)),where:

 Ya = h(enc.ka(Da)), this Ya is specified by Pb.

The authorization Sb represents Pb’s conditional authorization stating that STTP can recover rb

from Yb (which will enable Pa to derive kb from Xb) if and only if Pa provides an item “i.e.

enc.ka(Da)” for STTP such that h(enc.ka(Da))=Ya. STTP will verify this Sb and if it is correct

then STTP can be sure that this “enc.ka(Da)” is the one that Pb is looking for.

Therefore, the verifiable and recoverable encryption of key “kb” will be generated by Pb, it will

be verified by Pa, and it will be recovered by STTP.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

6

3.4 Exchange Protocol

Figure 1: Exchange phase of the protocol

Pb will start the exchange protocol by sending the first message E-M1 to Pa. The contents of E-

M1 are as follows:

E-M1: Pb → Pa: enc.kb(Db) + C.bt + enc.pka(Xb + Zb) + Yb + Sb + enc.pka(ka)

The description of the contents of E-M1 is as follows:

• enc.kb(Db) is the encryption of Pb’s document Db using kb

• C.bt is RSA-based public-key certificate that is discussed in section 3.2

• enc.pka(Xb + Zb) is the encryption of Xb and Zb using Pa’s public key pka.

• Yb

• Sb

• enc.pka(ka) is the encryption of ka using the public key of Pa. ka will later be used by Pa

to encrypt its document Da. ka is chosen by Pb and will be sent to Pa to use it for

encrypting its document Da

On receiving the first message (E-M1), Pa will make the following verifications [12]:

1. Verifying the correctness of Sb. This is done by decrypting Sb using Pb’ public key pkb

to get the hash value included in the signature. Then, computing the hash value of

(C.bt+Yb+Ya+Pa). If the two hash values match then Sb is correct.

2. Verifying the correctness of C.bt = (Pb, pkbt, Wbt, Sig.t) by decrypting Sig.t using

STTP’s public key pkt to get the hash value included in the signature. Then,

computing the hash value of (Pb, pkbt, Wbt). If the two hash values match then C.bt is

correct.

3. Compute the hash value of enc.kb(Db) and then compare it with heDb. If the two hash

values match then Pa is sure that the encrypted Db is the one that Pa is looking for

4. Confirm that Xb < nb, and Zb mod nb= enc.pkb(kb). It is assumed that enc.pkb(kb) is

known to Pa (section 3.2)

5. Confirm that Xb
eb

 mod nb = (Yb * enc.pkb(kb)) mod nb

6. Confirm that Xb
eb mod nbt = (Yb * Zb) mod nbt

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

7

If all verifications above are correct then it is secure for Pa to send its document Da that is

encrypted with a key that Pb already has. Otherwise, Pa terminated the protocol. So, if all

verifications are correct then Pa will send the second message (E-M2) to Pb as follows:

E-M2: Pa → Pb: enc.ka(Da)

The description of the contents of E-M2 is as follows:

• enc.ka(Da) is the encryption of Pa’s document using ka. ka was sent to Pa in E-M1

On receiving E-M2, Pb will do the following:

• Compute the hash value of enc.ka(Da) then compare it with heDa (it is assumed that

heDa is known to Pb , section 3.2)

If the above verification is correct then Pb will decrypt Da using ka (note that, ka is already

known to Pb). Then, Pb will send E-M3 to Pa as follows:

E-M3: Pb → Pa: rb

On receiving E-M3, Pa will compute kb as follows:

kb = Xb/rb

Then, Pa will use the key kb to decrypt enc.kb(Db) to retrieve Db.

At this step, both Pa and Pb have each other’s documents i.e. they have fairly exchanged their

documents.

3.5 Dispute Resolution Protocol (Key recovery protocol)

Figure 2: Dispute Resolution Phase of the Protocol

In the case of dispute (where Pb misbehaves by either sending incorrect E-M3 or not sending

E-M3 at all), Pa will initiate the dispute resolution protocol by sending the message DR-M1 to

the STTP as follows.

DR-M1: Pa → STTP: C.bt + enc.ka(Da) + Yb + Sb

On receiving the message DR-M1 from Pa, STTP will do the following verifications:

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

8

1. Verifying the correctness of Sb. This is done by decrypting Sb using Pb’ public key pkb

to get the hash value included in the signature. Then, computing the hash value of

(C.bt+Yb+Ya+Pa). If the two hash values match then Sb is correct.

2. Verifying the correctness of C.bt = (Pb, pkbt, Wbt, Sig.t) by decrypting Sig.t using

STTP’s public key pkt to get the hash value included in the signature. Then,

computing the hash value of (Pb, pkbt, Wbt). If the two hash values match then C.bt is

correct

3. Compute the hash value of enc.ka(Da) and then compare it with Ya (Ya includes the

hash value of enc.ka(Da)).

If any of the verifications above is incorrect then STTP will send an error message to Pa.

Otherwise, if all verifications are correct then STTP will calculate rb from Yb. Therefore, STTP

needs to decrypt Yb using the shared private key i.e. skbt. So, STTP needs first to retrieve skbt

from C.bt as discussed in section 3.2. After decrypting Yb and getting rb from it, STTP will send

the following two messages.

DR-M2: STTP → Pb: enc.ka(Da)

On receiving DR-M2 from STTP, Pb will compute the hash value of enc.ka(Da) then compare it

with heDa. If the two hash values match then Pb will get Da by decrypting enc.ka(Da) using ka

that Pb already has.

DR-M3: STTP → Pa: rb

On receiving DR-M3 from STTP, Pa will compute kb as follows:

kb = Xb/rb

Then, Pa will use the key kb to decrypt enc.kb(Db) to retrieve Db.

At this step, both Pa and Pb have each other’s items and hence the fairness is ensured.

4. ANALYSIS

The analysis of the security of the verifiable and recoverable encryption of Pb’s key kb is the

same analysis conducted in [12]. Therefore, readers are referred to Zhang et al [12].

The following discusses all scenarios of the protocol’s messages E-M1, EM2, E-M3 and DR-

M1.

All possible scenarios of E-M1 will be studied as follows.

• Pb sends incorrect E-M1 to Pa. If so, Pa will find that E-M1 is incorrect when Pa makes

the verifications (these verifications discussed in sections 3.4). So, if E-M1 is incorrect

then Pa will not send E-M2 to Pb.

• Pb sends correct E-M1 to Pa. After Pa makes sure that E-M1 is correct by applying the

verifications (these verifications discussed in sections 3.4) it is Pa’s choice to complete

the exchange by sending E-M2 to Pb. However, if Pa decides to complete the exchange

then Pa is enforced to be honest i.e. Pa has to send correct E-M2 to be able to receive

E-M3 from Pb.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

9

All possible scenarios of E-M2 will be studied as follows.

• Pa sends to Pb in E-M2: enc.ka(Da) where ka used is the key sent to Pa by Pb in E-M1.

So, Pb will first decrypt the message to get Da and then send rb to Pa in E-M3

• Pa sends to Pb in E-M2: enc.k(Da)where k used is not the one sent to Pa in E-M1. So, Pb

will not send E-M3 to Pa i.e. Pb will not send rb

• Pa does not send E-M2 to Pb at all. So, Pb will not send E-M3 to Pa i.e. Pb will not send

rb

• Pa sends incorrect Da encrypted with ka. So, Pb will not send E-M3 to Pa i.e. Pb will not

send rb

• Pa sends incorrect Da encrypted with k i.e. incorrect key. So, Pb will not send E-M3 to

Pa i.e. Pb will not send rb

All scenarios of E-M3 will be studied as follows.

• Pb sends correct rb. So, Pa will use it to decrypt Pb’s document and the exchange

protocol will be completed fairly.

• Pb sends incorrect rb. So, Pa will contact the STTP to recover rb.

• Pb did not send rb at all i.e. Pb received correct E-M2 but did not send E-M3. So, Pa

will contact the STTP to recover rb.

Therefore, from the previous scenarios it is clear that the fairness is ensued for both Pa and Pb

either through the exchange phase of the protocol or through the dispute resolution phase.

All scenarios of DR-M1 will be studied as follows.

• Pa sends correct DR-M1 to STTP. So, STTP will make the necessary verifications (i.e.

verifications discussed in section 3.5) then STTP will send DR-M2 to Pb and DR-M3

to Pa

• Pa sends incorrect DR-M1 to STTP. So, STTP will make the necessary verifications

(i.e. verifications discussed in section 3.5) then STTP will send an abort message to Pa.

Therefore, if Pb misbehaves by not sending E-M3 or by sending incorrect E-M3 then the

fairness can be ensured by allowing Pa to send a correct DR-M1 to STTP. STTP will then

ensure fairness for both Pb and Pa by sending DR-M2 and DR-M3, respectively.

If Pa misbehaves by contacting STTP (i.e. by sending DR-M1) after receiving E-M1 i.e. before

sending E-M2 to Pb, then STTP will verify Pa’s request. If STTP finds that DR-M1 is not

correct then STTP will reject Pa’s request. If however STTP finds that DR-M1 is correct then

STTP will send DR-M2 to Pb and DR-M3 to Pa to ensure fairness for both parties. Therefore,

Pa will not gain any advantage over Pb.

STTP is not able to get the documents Da and Db because an encrypted Da will be sent to it in

DR-M1. STTP does not have the key to decrypt it. Rather, STTP will use it to verify if Pa sent

what Pb is looking for. Db is not sent to STTP at all. Therefore, STTP will not be able to get Da

and Db. Hence, it is Semi Trusted Third Party.

Non-repudiation can be assured in the proposed protocol by having the signatures of parties Pb

and Pa on their items to be included in messages E-M1 and E-M2.

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

10

5. COMPARISONS

In this section, the proposed protocol will be compared against the relevant protocols in the

literature. That is, the proposed protocol will be compared against protocols in the literature,

which are for the exchange of two documents (two documents or a document and payment)

and involve an off-line or on-line TTP or STTP. The proposed protocol will be compared

against Zhang et al protocol [12], Ray et al protocol [7], Alaraj and Munro protocol [1].

The protocols will be compared against the following criteria: number of messages in the

exchange phase, number of messages in dispute phase, number of encryptions and decryptions

in the exchange phase, number of symmetric encryptions in the exchange phase, and whether

both parties involved in dispute resolution phase i.e. does the STTP need to contact both

parties to verify the dispute request.

The number of messages in the exchange phase of ECH protocol and our protocol is 3 whereas

it is 4 messages in both Zhang and Ray protocols. The number of messages in the dispute

resolution phase is almost the same for all protocols. The number of RSA encryptions and

decryptions for our protocol is 13 whereas it is 16 for Zhang et al protocol [12]. This shows

how the idea of enforcing the honesty of one party introduced in ECH protocol helped in

reducing the number of messages and the number of RSA encryptions and decryptions of

Zhang et al protocol [12]. The application of enforcing the honesty of a party to Zhang et al

protocol [12] is the main focus of this paper.

It is worth mentioning that Zhang et al’s protocol [12] is better in that it does not require the

document of party Pa to be sent to the STTP in the dispute resolution phase whereas our

protocol requires the party Pa to send its encrypted document “enc.ka(Da)” to the STTP in the

dispute resolution phase. However, this does not mean that the STTP will be able to decrypt

the document because STTP does not have the key ka. Rather, it uses it for the verification

purposes.

Table 1 presents all the comparisons between our protocol and other relevant protocols in the

literature.

Table 1: Comparison between our protocol and other protocols

 Zhang

[12]

Ray

[7]

ECH

[1]

Our

Protocol

Number of messages in exchange

phase

4 4 3 3

Number of messages in dispute phase 3 3 to

5

3 3

Number of RSA encryptions and

decryptions in exchange phase

16 27 12 13

Number of symmetric encryptions and

decryptions in exchange phase

4 0 4 4

Both parties are involved

in dispute resolution

No Yes No No

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

11

6. CONCLUSION

We have proposed an improved protocol for fairly exchanging two valuable documents

between two parties. The proposed protocol uses offline Semi Trusted Third Party (STTP) that

will only be contacted if one party misbehaved. The protocol is based on applying the idea of

enforcing the honesty of one party to the method of verifiable and recoverable encryption of

keys. The outcome of this application is a more efficient fair document exchange protocol.

Only three messages are required to exchange the valuable documents between the two parties.

Additionally, the number of modular exponentiations is less in our protocol compared to the

protocols based on verifiable and recoverable encryption of keys.

A future work will include formally evaluating the protocol and implementing it.

REFERENCES

[1] A. Alaraj and M. Munro, “An e-Commerce Fair Exchange Protocol that Enforces the Customer

to be Honest”. International Journal of Product Lifecycle Management, IJPLM, Vol.3, Nos.

2/3, pp. 114-131, 2008

[2] A. Alaraj and M. Munro, “An efficient e-Commerce Fair Exchange Protocol that encourages

Customer and Merchant to be Honest”. In proceedings of the 27th International Conference on

Computer Safety, Reliability and Security, (SafeComp 2008), UK, Lecture Notes In Computer

Science, LNCS, Vol. 5219, pp. 193-206, 2008

[3] A. Alaraj and M. Munro: Enforcing Honesty in Fair Exchange Protocols. In the book:

Emergent Web Intelligence: Advanced Semantic Technologies. Springer Verlag, ISBN: 978-1-

84996-076-2, pp. 451-479, 2010

[4] A. Nenadic, N. Zhang, B. Cheetham and C. Goble. “RSA-based Certified Delivery of E-Goods

Using Verifiable and Recoverable Signature Encryption”, Journal of Universal Computer

Science, 11(1), pp. 175-192, Springer-Verlag, 2005

[5] G. Wang "An Abuse-Free Fair Contract-Signing Protocol Based on the RSA Signature", IEEE

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 1,

MARCH 2010, pp. 158-168, 2010

[6] H. Pagnia, H. Vogt and F. G¨artner, “Fair Exchange”, The Computer Journal, Vol. 46, No. 1,

2003

[7] I. Ray, I. Ray and N. Narasimhamurthy, “An Anonymous and Failure Resilient Fair-Exchange

E-Commerce Protocol”, Decision Support Systems 39 (2005), pp. 267– 292, 2005

[8] L. Harn and C. Lin "Contract signature in e-commerce" Computers and Electrical Engineering

37 (2011), pp. 169-173, 2011

[9] I. Ray and I. Ray “An Optimistic Fair Exchange E-Commerce Protocol with Automated

Dispute Resolution”, In Proceedings of EC-Web 2000, 1st Electronic Commerce and Web

Technologies Conference, Lecture Notes in Computer Science, Berlin, Germany, Springer-

Verlag, vol. 1875, pp. 84-93, 2000

[10] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest, “A Fair Protocol for Signing Contracts”,

IEEE Transactions on Information Theory, vol. 36, no. 1, pp. 40-46, Jan. 1990

[11] N. Asokan, M. Schunter, and M. Waidner, “Optimistic Protocols for Fair Exchange”, Proc.

Fourth ACM Conf. Computer and Communication Security, pp. 8-17, Zurich, Switzerland,

April 1997.

[12] N. Zhang, Q. Shi, M. Merabti, and R. Askwith “Practical and Efficient Fair Document

Exchange over Networks”, the Journal of Network and Computer Applications, the Elsevier

Science Publisher, Vol. 29, No. 1, pp.46-61, 2006

International Journal of Network Security & Its Applications (IJNSA), Vol.4, No.1, January 2012

12

[13] N. Ferguson and B. Schneier “Practical cryptography”. Indianpolis, Indiana: Wiley; 2003

[14] P. Ezhilchelvan and S. Shrivastava, “A Family of Trusted Third Party Based Fair-Exchange

Protocols”, IEEE Transactions on dependable and secure computing, VOL. 2, NO. 4, October-

December 2005

[15] Public-Key Infrastructure (X.509), The PKIX working group, available at

http://datatracker.ietf.org/wg/pkix/charter/ accessed on 03-01-11

[16] R. Rivest, A. Shamir, L. Adleman “A method for obtaining digital signatures and public-key

cryptosystems”, Commun ACM 1978;120–126, 1978

[17] S. Ketchpel. “Transaction Protection for Information Buyers and Sellers”, In Proceedings of the

Dartmouth Institute for Advanced Graduate Studies .95: Electronic Publishing and the

Information Superhighway, Boston, USA 1995

[18] M. Franklin and M. Reiter “Fair exchange with a semi-trusted third party”. In: Proceedings of

ACM conference on computer and communications security, Zurich, Switzerland, pp. 1–5,1997

[19] X. Liang, Z Cao, R. Lu, and L Qin "Efficient and secure protocol in fair document exchange",

Computer Standards & Interfaces, Vol. 30 (2008), pp. 167–176, 2008

[20] Z. Shao "Security analysis of two RSA-Based fair document exchange protocol". In

Proceedings of the Second International Workshop on Computer Science and Engineering,

Qingdao, China, pp. 55-59, 2009

