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ABSTRACT 

This paper presents an efficient fair document exchange protocol. The exchange of the documents will 

be between two parties. The protocol is based on the verifiable and recoverable encryption of a 

document’s key. This verifiable and recoverable encryption of the document’s key will allow one party 

to verify the encrypted key. It will also ensure this party that the Semi Trusted Third Party will be able to 

recover the key if the other party misbehaves. The protocol also incorporates the concept of enforcing 

the honesty of one party. The proposed protocol consists of only three messages and is more efficient 

than related protocols. 
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1. INTRODUCTION 

Individuals and businesses are relying on the Internet for conducting different types of 

transactions. One of these transactions is the exchange of valuable documents (such as 

electronic payment and products) between the parties. That is, party A will exchange its 

valuable document for party B’s valuable document. As an example of such an exchange, party 

A would like to buy an electronic product (e-product such as computer game) from party B. As 

parties using communication networks, they cannot send their documents at the same time. 

Rather, one party sends its document at a time. After receiving the document of the first party, 

the second party sends its document. 

There are risks associated with such exchange. One of the most important risks is the case 

where party A sends its document to party B but the later either disappears before sending its 

document to party A or sends an incorrect document. Therefore, party A will be the loser in 

this scenario because the party who sends its document first will be at risk. This problem is 

known as the fairness problem. The fairness problem is solved using fair exchange protocols 

that ensure the fair exchange of documents between the parties involved. That is, fair exchange 

protocols will ensure that either both parties get each other's item or none do. 

The contribution of this paper is that it applies the concept of enforcing the honesty of one 

party to the verifiable and recoverable encryption of a document’s key proposed by Zhang et al 

[12]. The result of this application is a new optimized fair document exchange protocol as will 

be shown in the comparison in section 5.  

The paper is organized as follows. Section 2 will be discussing the literature survey. Section 3 

will present the new protocol. The analysis of the proposed protocol and comparison will be 

discussed in sections 4 and 5, respectively. 
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2. LITERATURE SURVEY 

A number of fair exchange protocols have been proposed in the literature 

[1,2,3,4,7,9,10,11,12,14, 19]. These protocols are either based on a Trusted Third Party (TTP) 

or gradual exchange protocols. The gradual exchange protocols [10] allow the parties to 

exchange their items without involvement of any other party. The TTP-based protocols require 

a TTP to be involved. The involvement of the TTP can be either online such as in [7, 9, 17] or 

offline such as in [1, 2, 3, 4, 11, 12, 19]. The online TTP must be available during the 

exchange of items between parties because one of the parties (or all of the parties involved) 

will use it either for verification purposes or downloading items. The offline TTP will not be 

involved during the exchange of items between parties. Rather, it will be contacted in case one 

party misbehaves.  

The fair exchange protocols can be used to exchange any two items between two (or more) 

parties. The items can be valuable documents, a document and payment, two digital signatures 

on a contract, and an email with a receipt. The focus in this paper is on fair exchange protocols 

that are for the exchange of two valuable documents between two parties.  

Zhang et al [12] proposed a fair document exchange protocol between two parties A and B. 

The protocol is based on the verifiable and recoverable encryption of keys. Parties A and B 

will first exchange their encrypted documents in the first two messages. Then, the parties will 

exchange the decryption keys to decrypt the encrypted documents. If one party misbehaves, 

the offline STTP (Semi Trusted Third Party that will not collude with any party but may 

misbehave by itself) can be contacted to recover the key. To start the protocol, party A will 

send its encrypted document to party B. Party B will then verify the correctness of the 

encrypted document. If it is correct, then party B will send the following to party A: (a) its 

encrypted document, (b) verifiable and recoverable encryption of the key that encrypts the 

document, and (c) the authorization token. Party A will then verify the correctness of the 

encrypted document, authorization token and the encrypted key. If these verifications are 

correct, then it is safe for party A to send its decryption key to party B. Finally, once party B 

decrypted the document, it sends its decryption key to party A. If party B misbehaves by either 

sending an incorrect decryption key or not sending the decryption key to party A, then party A 

can contact the STTP to recover the decryption key.  

Ray et al [7] proposed a fair exchange protocol for the exchange of documents (e.g. digital 

products and payments between customers and merchants). The protocol is based on cross 

validation theorem that states [7] “if a message is encrypted with the product key of two 

compatible keys and another message is encrypted with either of the two compatible keys and 

the two encrypted messages compare, then the two original unencrypted messages must also 

compare”.  

In the protocol, a merchant M exchanges a digital product for a payment from a customer C. 

Before the protocol starts, the merchant (M) needs to register with a trusted third party (TTP). 

The TTP generates the key pair KM1 and KM1
-1. The TTP then provides M with KM1 and 

keeps KM1
-1

 with itself. C needs to have an account in a bank. The bank generates the key 

pairs KC1 and KC1
-1. The bank then provides C with KC1 and keeps KC1

-1 with itself. M needs 

to send the digital product, its description and its price to the TTP. The TTP encrypts the 

digital product using the key KM1 and then advertises it on its website. C needs to download 

the encrypted digital product from the TTP.  

The exchange part of Ray et al protocol [7] consists of four messages. C sends to M the first 

message that includes the purchase order and the payment that is encrypted with the product 

key of (KC1 x KC2). Then, M sends the second message to C. The second message includes the 

digital product that is encrypted with the product key of (KM1 x KM2). On receiving the 

second message, C compares the hash value of the encrypted digital product that was 
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downloaded from the TTP with the hash value of the encrypted digital product that is included 

in the second message. If the two hash values are matched then C can be sure that the 

unencrypted digital products will be matched as well. After verifying that the two hashes are 

compared, C sends the third message to M. The third message includes the decryption key for 

the encrypted payment. Finally, M sends the fourth message to C which includes the 

decryption key of the encrypted digital product. If M misbehaves, C contacts the TTP for the 

recovery of the decryption key of the digital product. 

Alaraj and Munro [1] proposed a fair exchange protocol for the exchange of two documents 

(the two documents can be a digital product and payment) between a customer and a merchant. 

Alaraj and Munro proposed a new design approach for the exchange. They call it enforcing the 

customer to be honest. The protocol works as follows. The merchant starts the protocol by 

sending the first message to the customer. The first message includes the merchant’s document 

encrypted with a key. This key is also encrypted using a shared public key between the 

merchant and the TTP. On receiving the first message, the customer will verify the encrypted 

document and the encrypted key. If they are correctly verified then the customer will send the 

second message to the merchant. The second message includes the customer’s document 

encrypted with a key that was sent to the customer by the merchant in the first message. On 

receiving the second message, the merchant will use the key that it already has to decrypt the 

customer’s document. When the document is decrypted correctly, the merchant will send the 

decryption key to the customer. If the merchant refuses to send the decryption key, the 

customer can contact the TTP to send the decryption key to the customer. This approach is 

called enforcing the customer to be honest because the customer can not cheat by sending an 

incorrect document because they are going to encrypt their document using a key that the 

merchant already has. Using this approach, Alaraj and Munro [1] were able to propose a fair 

exchange protocol using only three messages. 

Alaraj and Munro [3] proposed a protocol that is similar to the protocol in [1]. The difference 

is that the merchant is the one who is enforced to be honest in [3]. 

The design approach of most of the protocols proposed in the literature, apart from Alaraj and 

Munro [1, 3], is to include at least four messages in the exchange protocol. The first two 

messages are for the exchange of the encrypted items between the participating parties. The 

last two messages are for the exchange of decryption keys to decrypt the items received in the 

first two messages. The design approach of Alaraj and Munro [1, 3] is to have only three 

messages in the protocol. The first message includes the encrypted item of the first party. The 

other party will be able to verify it and if it is correctly verified then they will send the second 

message to the first party. The second message includes the encrypted item of the second party 

but the first party will be able to decrypt it as it is encrypted with a key that the first party 

already has. Therefore, the second party has to send a correct item in order to receive the 

decryption key of the first party’s item in the third message. Therefore, the design approach of 

Alaraj and Munro protocols [1, 3] is based on the exchange of an item (i.e. that is included in 

the second message) for a decryption key (i.e. that is included in the third message). The result 

is to have more efficient protocol that includes only three messages. 

The proposed protocol in this paper uses the concept of having one party to be enforced to be 

honest to reduce the number of messages. Moreover, the concept of verifiable and recoverable 

encryption of keys is also used. Therefore, more efficient protocol is proposed. 

3. THE DOCUMENT EXCHANGE PROTOCOL 

3.1 Notations 

The following represents the notations used in the proposed protocol: 
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• Pa: party a 

• Pb: party b 

• STTP: Semi Trusted Third Party is a party neither Pa nor Pb. STTP will not collude with 

any other party but may misbehave by itself 

• h(X): a strong-collision-resistant one-way hash function, such as SHA-1 [13] 

• pkx = (ex, nx): RSA Public Key [16] of the party x, where nx is a public RSA modulus and 

ex is a public exponent 

• skx = (dx, nx): RSA Private Key [16] of the party x, where nx is a public RSA modulus and 

dx is a private exponent 

• Dx: the document of party x 

• kx: a symmetric key that will be used for encryption and decryption of a document 

• C.bt: the certificate for the shared public key between Pb and the STTP. C.bt is issued by 

the STTP. A standard X.509 certificate [15] can be used to implement C.bt  

• enc.pkx(Y): an RSA [16] encryption of Y using the public key pkx (ex, nx). The encryption 

of Y is computed as follows. enc.pkx(Y) = Y
ex

 mod nx 

• enc.skx(Z): an RSA [16] decryption of Z using the private key skx (dx, nx). The decryption 

of Z is computed as follows. enc.skx(Z) = Z
dx 

mod nx 

• enc.kx(Y) : encryption of Y using a symmetric key kx (kx can be used for decrypting 

enc.kx(Y)) 

• Sig.a (X): the RSA digital signature [16] of the party a on X. The digital signature of party 

a on X is computed by encrypting the hash value of X using the private key ska (da, na). 

This is computed as follows. Sig.a (X) = (h(x))da mod na  

• A → B: X: A sends message X to B 

• X + Y: concatenation of X and Y 

• heDx: hash value of encrypted Dx using kx 

3.2 Assumptions 

The following represents the assumptions made for the proposed protocol: 

 

• Each party (Pb, Pa and STTP) has its own public and private keys.  

o The STTP’s public key is denoted as pkt = (et, nt) and its corresponding private 

key is denoted as skt = (dt, nt).  

o Pb’s public key is denoted as pkb = (eb, nb) and its corresponding private key is 

denoted as skb = (db, nb).  

o Pa’s public key is denoted as pka = (ea, na) and its corresponding private key is 

denoted as ska = (da, na). 

• Pb has a RSA-based public-key certificate C.bt = (Pb, pkbt, Wbt, Sig.t) issued by STTP 

[12]. The content of C.bt is described as follows. 

o Pb in C.bt is Pb’s identity to make C.bt valid only for Pb.  

o The public key pkbt and its associated private key skbt are denoted as pkbt = 

(ebt, nbt) and skbt = (dbt, nbt), respectively, where nbt is a product of two distinct 

large primes chosen randomly by STTP. This pair of keys needs to be 

produced in relation to Pb’s public key pkb = (eb, nb) so that ebt = eb and nbt > nb 

[12]. STTP does not allow any other party, including Pb, to know skbt, and it 

sends only C.bt to Pb. One C.bt certificate will be issued for Pb, and Pb can use 

C.bt for as many document exchanges as Pb wishes [12] 

o Wbt in C.bt is defined as Wbt = (h(skt + pkbt) 
-1

 * dbt) mod nbt, where skt is 

STTP’s private key, and h(skt + pkbt) 
-1 is the multiplicative inverse of h(skt + 

pkbt) modulo nbt,  

i.e. h(skt + pkbt) 
-1  

h(skt + pkbt) mod nbt = 1.  
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Wbt is included in C.bt in order to eliminate the need for STTP to store and 

safe-keep private key skbt [12]. Therefore, STTP will compute it from Wbt, i.e. 

dbt = (h(skt + pkbt) Wbt) mod nbt  

o Sig.t in C.bt is STTP’s RSA signature on h(Pb, pkbt, Wbt), i.e. Sig.t=enc.skt(h(Pb 

+ pkbt + Wbt))  

• The following is known to Pb before the exchange protocol is executed: 

o heDa = h(enc.ka(Da)) which is the hash value of encrypted Da with ka 

• The following is known to Pa before the exchange protocol is executed: 

o ekb = enc.pkb(kb) which is the encryption of kb with the public key of Pb 

 

 

3.3 Protocol description 

Semi Trusted Third Party (STTP) will be used in the proposed protocol. The STTP may 

misbehave but it will not collude with any other party involved in the exchange [18]. 

The idea of the proposed protocol is to have one party (Pb) sends its first message to the other 

party (Pa). The first message includes the encrypted document, verifiable and recoverable 

encryption of Pb’s key (this key is used to encrypt Pb’s document) and the authorization token. 

The verifiable and recoverable encryption of Pb’s key allows Pa to verify it and if it is correct 

then Pa can be sure that STTP will be able to recover the key in case Pb does not sends it i.e. if 

Pb misbehaves. So, when Pa verifies this verifiable and recoverable encryption correctly then Pa 

will send its message that contains its encrypted document using a key that was sent to Pa by 

Pb. Then, Pa will wait for the third message from Pb that includes the decryption key for the 

encrypted document received in the first message. If Pb did not send the third message then Pa 

will contact STTP to recover the key. The STTP will verify the authorization token generated 

by Pb to make sure that Pa provided what Pb wants.  

Therefore, for Pb to produce this verifiable and recoverable encryption of Pb’s key kb, Pb 

chooses a large prime rb relatively prime to nb in Pb’s public key pkb=(eb, nb) and then 

computes the following [12]: 

    Xb= rb*kb, where chosen rb needs to ensure that xb <nb 

    Yb= rb
eb mod (nb * nbt), with key pkbt =(ebt, nbt) and nb<nbt 

    Zb= kb
eb

 mod (nb * nbt) 

 

 Xb, Yb and Zb form the verifiable and recoverable encryption of Pb’s key kb. Note that Yb can 

be decrypted using either skb or skbt [7]. Therefore, either Pb or STTP can recover rb. 

The Pb’s authorization token will be defined by Pb. Pb’s authorization token represents Pb’s 

RSA signature on h(C.bt+Yb+Ya+Pa) [12]. That is, Sb= skb(h(C.bt + Yb + Ya + Pa)),where: 

  

    Ya = h(enc.ka(Da)), this Ya is specified by Pb.  

 

The authorization Sb represents Pb’s conditional authorization stating that STTP can recover rb 

from Yb (which will enable Pa to derive kb from Xb) if and only if Pa provides an item “i.e. 

enc.ka(Da)” for STTP such that h(enc.ka(Da))=Ya. STTP will verify this Sb and if it is correct 

then STTP can be sure that this “enc.ka(Da)” is the one that Pb is looking for. 

Therefore, the verifiable and recoverable encryption of key “kb” will be generated by Pb, it will 

be verified by Pa, and it will be recovered by STTP. 
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3.4 Exchange Protocol 

       

 

 
Figure 1: Exchange phase of the protocol 

Pb will start the exchange protocol by sending the first message E-M1 to Pa. The contents of E-

M1 are as follows: 

 

 

E-M1: Pb → Pa: enc.kb(Db) + C.bt + enc.pka(Xb + Zb) + Yb + Sb + enc.pka(ka) 

 

The description of the contents of E-M1 is as follows: 

 

• enc.kb(Db) is the encryption of Pb’s document Db using kb 

• C.bt is RSA-based public-key certificate that is discussed in section 3.2  

• enc.pka(Xb + Zb) is the encryption of Xb and Zb using Pa’s public key pka.  

• Yb 

• Sb 

• enc.pka(ka) is the encryption of ka using the public key of Pa. ka will later be used by Pa 

to encrypt its document Da. ka is chosen by Pb and will be sent to Pa to use it for 

encrypting its document Da 

 

On receiving the first message (E-M1), Pa will make the following verifications [12]: 

  

1. Verifying the correctness of Sb. This is done by decrypting Sb using Pb’ public key pkb 

to get the hash value included in the signature. Then, computing the hash value of 

(C.bt+Yb+Ya+Pa). If the two hash values match then Sb is correct. 

2. Verifying the correctness of C.bt = (Pb, pkbt, Wbt, Sig.t) by decrypting Sig.t using 

STTP’s public key pkt to get the hash value included in the signature. Then, 

computing the hash value of (Pb, pkbt, Wbt). If the two hash values match then C.bt is 

correct. 

3. Compute the hash value of enc.kb(Db) and then compare it with heDb. If the two hash 

values match then Pa is sure that the encrypted Db is the one that Pa is looking for 

4. Confirm that Xb < nb, and Zb mod nb= enc.pkb(kb). It is assumed that enc.pkb(kb) is 

known to Pa (section 3.2) 

5. Confirm that Xb
eb

 mod nb = (Yb * enc.pkb(kb)) mod nb 

6. Confirm that Xb
eb mod nbt = (Yb * Zb) mod nbt 
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If all verifications above are correct then it is secure for Pa to send its document Da that is 

encrypted with a key that Pb already has. Otherwise, Pa terminated the protocol. So, if all 

verifications are correct then Pa will send the second message (E-M2) to Pb as follows: 

 

E-M2: Pa → Pb: enc.ka(Da) 

 

The description of the contents of E-M2 is as follows: 

 

• enc.ka(Da) is the encryption of Pa’s document using ka. ka was sent to Pa in E-M1 

 

On receiving E-M2, Pb will do the following: 

 

• Compute the hash value of enc.ka(Da) then compare it with heDa (it is assumed that 

heDa is known to Pb , section 3.2) 

 

If the above verification is correct then Pb will decrypt Da using ka (note that, ka is already 

known to Pb). Then, Pb will send E-M3 to Pa as follows: 

 

E-M3: Pb → Pa: rb 

 

On receiving E-M3, Pa will compute kb as follows: 

kb = Xb/rb 

 

Then, Pa will use the key kb to decrypt enc.kb(Db) to retrieve Db. 

At this step, both Pa and Pb have each other’s documents i.e. they have fairly exchanged their 

documents. 

 

3.5 Dispute Resolution Protocol (Key recovery protocol) 

 

 
Figure 2: Dispute Resolution Phase of the Protocol 

 

In the case of dispute (where Pb misbehaves by either sending incorrect E-M3 or not sending 

E-M3 at all), Pa will initiate the dispute resolution protocol by sending the message DR-M1 to 

the STTP as follows. 

 

DR-M1: Pa → STTP: C.bt + enc.ka(Da) + Yb + Sb  

On receiving the message DR-M1 from Pa, STTP will do the following verifications: 
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1. Verifying the correctness of Sb. This is done by decrypting Sb using Pb’ public key pkb 

to get the hash value included in the signature. Then, computing the hash value of 

(C.bt+Yb+Ya+Pa). If the two hash values match then Sb is correct. 

2. Verifying the correctness of C.bt = (Pb, pkbt, Wbt, Sig.t) by decrypting Sig.t using 

STTP’s public key pkt to get the hash value included in the signature. Then, 

computing the hash value of (Pb, pkbt, Wbt). If the two hash values match then C.bt is 

correct 

3. Compute the hash value of enc.ka(Da) and then compare it with Ya (Ya includes the 

hash value of enc.ka(Da)). 

 

If any of the verifications above is incorrect then STTP will send an error message to Pa. 

Otherwise, if all verifications are correct then STTP will calculate rb from Yb. Therefore, STTP 

needs to decrypt Yb using the shared private key i.e. skbt. So, STTP needs first to retrieve skbt 

from C.bt as discussed in section 3.2. After decrypting Yb and getting rb from it, STTP will send 

the following two messages. 

 

DR-M2: STTP → Pb: enc.ka(Da) 

 

On receiving DR-M2 from STTP, Pb will compute the hash value of enc.ka(Da) then compare it 

with heDa. If the two hash values match then Pb will get Da by decrypting enc.ka(Da) using ka 

that Pb already has.  

 

 

DR-M3: STTP → Pa: rb 

 

On receiving DR-M3 from STTP, Pa will compute kb as follows: 

kb = Xb/rb 

 

Then, Pa will use the key kb to decrypt enc.kb(Db) to retrieve Db. 

  

At this step, both Pa and Pb have each other’s items and hence the fairness is ensured. 

 

 

4. ANALYSIS 

The analysis of the security of the verifiable and recoverable encryption of Pb’s key kb is the 

same analysis conducted in [12]. Therefore, readers are referred to Zhang et al [12]. 

  

The following discusses all scenarios of the protocol’s messages E-M1, EM2, E-M3 and DR-

M1. 
 
All possible scenarios of E-M1 will be studied as follows. 

 

• Pb sends incorrect E-M1 to Pa. If so, Pa will find that E-M1 is incorrect when Pa makes 

the verifications (these verifications discussed in sections 3.4). So, if E-M1 is incorrect 

then Pa will not send E-M2 to Pb.  

• Pb sends correct E-M1 to Pa. After Pa makes sure that E-M1 is correct by applying the 

verifications (these verifications discussed in sections 3.4) it is Pa’s choice to complete 

the exchange by sending E-M2 to Pb. However, if Pa decides to complete the exchange 

then Pa is enforced to be honest i.e. Pa has to send correct E-M2 to be able to receive 

E-M3 from Pb. 
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All possible scenarios of E-M2 will be studied as follows. 

  

• Pa sends to Pb in E-M2: enc.ka(Da) where ka used is the key sent to Pa by Pb in E-M1. 

So, Pb will first decrypt the message to get Da and then send rb to Pa in E-M3 

• Pa sends to Pb in E-M2: enc.k(Da)where k used is not the one sent to Pa in E-M1. So, Pb 

will not send E-M3 to Pa i.e. Pb will not send rb 

• Pa does not send E-M2 to Pb at all. So, Pb will not send E-M3 to Pa i.e. Pb will not send 

rb 

• Pa sends incorrect Da encrypted with ka. So, Pb will not send E-M3 to Pa i.e. Pb will not 

send rb 

• Pa sends incorrect Da encrypted with k i.e. incorrect key. So, Pb will not send E-M3 to 

Pa i.e. Pb will not send rb 

 

All scenarios of E-M3 will be studied as follows. 

 

• Pb sends correct rb. So, Pa will use it to decrypt Pb’s document and the exchange 

protocol will be completed fairly. 

• Pb sends incorrect rb. So, Pa will contact the STTP to recover rb. 

• Pb did not send rb at all i.e. Pb received correct E-M2 but did not send E-M3. So, Pa 

will contact the STTP to recover rb. 

 

Therefore, from the previous scenarios it is clear that the fairness is ensued for both Pa and Pb 

either through the exchange phase of the protocol or through the dispute resolution phase. 

 

All scenarios of DR-M1 will be studied as follows. 

 

• Pa sends correct DR-M1 to STTP. So, STTP will make the necessary verifications (i.e. 

verifications discussed in section 3.5) then STTP will send DR-M2 to Pb and DR-M3 

to Pa 

• Pa sends incorrect DR-M1 to STTP. So, STTP will make the necessary verifications 

(i.e. verifications discussed in section 3.5) then STTP will send an abort message to Pa. 

 

Therefore, if Pb misbehaves by not sending E-M3 or by sending incorrect E-M3 then the 

fairness can be ensured by allowing Pa to send a correct DR-M1 to STTP. STTP will then 

ensure fairness for both Pb and Pa by sending DR-M2 and DR-M3, respectively.  

 

If Pa misbehaves by contacting STTP (i.e. by sending DR-M1) after receiving E-M1 i.e. before 

sending E-M2 to Pb, then STTP will verify Pa’s request. If STTP finds that DR-M1 is not 

correct then STTP will reject Pa’s request. If however STTP finds that DR-M1 is correct then 

STTP will send DR-M2 to Pb and DR-M3 to Pa to ensure fairness for both parties. Therefore, 

Pa will not gain any advantage over Pb. 

 

STTP is not able to get the documents Da and Db because an encrypted Da will be sent to it in 

DR-M1. STTP does not have the key to decrypt it. Rather, STTP will use it to verify if Pa sent 

what Pb is looking for. Db is not sent to STTP at all. Therefore, STTP will not be able to get Da 

and Db. Hence, it is Semi Trusted Third Party. 

 

Non-repudiation can be assured in the proposed protocol by having the signatures of parties Pb 

and Pa on their items to be included in messages E-M1 and E-M2. 
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5. COMPARISONS 

In this section, the proposed protocol will be compared against the relevant protocols in the 

literature. That is, the proposed protocol will be compared against protocols in the literature, 

which are for the exchange of two documents (two documents or a document and payment) 

and involve an off-line or on-line TTP or STTP. The proposed protocol will be compared 

against Zhang et al protocol [12], Ray et al protocol [7], Alaraj and Munro protocol [1]. 

 

The protocols will be compared against the following criteria: number of messages in the 

exchange phase, number of messages in dispute phase, number of encryptions and decryptions 

in the exchange phase, number of symmetric encryptions in the exchange phase, and whether 

both parties involved in dispute resolution phase i.e. does the STTP need to contact both 

parties to verify the dispute request. 

  

The number of messages in the exchange phase of ECH protocol and our protocol is 3 whereas 

it is 4 messages in both Zhang and Ray protocols. The number of messages in the dispute 

resolution phase is almost the same for all protocols. The number of RSA encryptions and 

decryptions for our protocol is 13 whereas it is 16 for Zhang et al protocol [12]. This shows 

how the idea of enforcing the honesty of one party introduced in ECH protocol helped in 

reducing the number of messages and the number of RSA encryptions and decryptions of 

Zhang et al protocol [12]. The application of enforcing the honesty of a party to Zhang et al 

protocol [12] is the main focus of this paper. 

 

It is worth mentioning that Zhang et al’s protocol [12] is better in that it does not require the 

document of party Pa to be sent to the STTP in the dispute resolution phase whereas our 

protocol requires the party Pa to send its encrypted document “enc.ka(Da)” to the STTP in the 

dispute resolution phase. However, this does not mean that the STTP will be able to decrypt 

the document because STTP does not have the key ka. Rather, it uses it for the verification 

purposes. 

 

Table 1 presents all the comparisons between our protocol and other relevant protocols in the 

literature. 

 

 
Table 1: Comparison between our protocol and other protocols 

 Zhang 

[12] 

Ray 

[7] 

ECH 

[1] 

Our 

Protocol 

Number of messages in exchange 

phase 

4 4 3 3 

Number of messages in dispute phase 3 3 to 

5 

3 3 

Number of RSA encryptions and 

decryptions in exchange phase 

16 27 12 13 

Number of symmetric encryptions and 

decryptions in exchange phase 

4 0 4 4 

Both parties are involved 

in dispute resolution 

No Yes No  No  
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6. CONCLUSION 

We have proposed an improved protocol for fairly exchanging two valuable documents 

between two parties. The proposed protocol uses offline Semi Trusted Third Party (STTP) that 

will only be contacted if one party misbehaved. The protocol is based on applying the idea of 

enforcing the honesty of one party to the method of verifiable and recoverable encryption of 

keys. The outcome of this application is a more efficient fair document exchange protocol. 

Only three messages are required to exchange the valuable documents between the two parties. 

Additionally, the number of modular exponentiations is less in our protocol compared to the 

protocols based on verifiable and recoverable encryption of keys. 

A future work will include formally evaluating the protocol and implementing it. 
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