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ABSTRACT 

 
In this paper, we present the first stochastic analysis of the link performance of an ad hoc network modelled 

by a single homogeneous Poisson point process (HPPP). According to the maximum entropy principle, the 

single HPPP model is mathematically the best model for random deployments with a given node density. 

However, previous works in the literature only consider a modified model which shows a discrepancy in the 

interference distribution with the more suitable single HPPP model. The main contributions of this paper 

are as follows. 1) It presents a new mathematical framework leading to closed form expressions of the 

probability of success of both one-way transmissions and handshakes for a deployment modelled by a 

single HPPP. Our approach, based on stochastic geometry, can be extended to complex protocols. 2) From 

the obtained results, all confirmed by comparison to simulated data, optimal PHY and MAC layer 

parameters are determined and the relations between them is described in details. 3) The influence of the 

routing protocol on handshake performance is taken into account in a realistic manner, leading to the 

confirmation of the intuitive result that the effect of imperfect feedback on the probability of success of a 

handshake is only negligible for transmissions to the first neighbour node. 
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1. INTRODUCTION 

 
An ad hoc wireless network consists of self-organizing transceivers communicating with one 

another in a decentralized way. Such network is referred to as random when the location of nodes 

in the -dimensional Euclidean space  is statistically random [6,21,1]. Using tools from 

stochastic geometry, the mathematical analysis of carefully chosen models can shed light on the 

behaviour of a Randomly distributed Ad Hoc Network (RAHN) and can provide insights into the 

design of Medium Access Control (MAC) and routing protocols [22,23]. The most popular spatial 

distribution used up to now to model large RAHNs has been the homogeneous Poisson Point 

Process (HPPP). In a HPPP of intensity λ, the number of nodes  in a given area  is 

Poisson distributed with mean , where |.| denotes the -dimensional volume. More point 

processes and their applications are described in [2], however in this work we focus our analysis 

on HPPP-based deployments. The popularity of the HPPP is mainly due to its tractability. A less 

often mentioned fact is that it has maximum entropy among all point processes of a given average 

rate parameter (i.e, density λ) [8]. Indeed, from the principle of maximum entropy, and with no 
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prior knowledge about the distribution of nodes in the network, it is best to choose a model with a 

minimum of prior information built in [15,16]. Consequently,  

in an ad hoc network using the ”single HPPP” model, hence the motivation for the present work.  

 

The main contributions of this paper are as follows. 1) It presents a new mathematical framework 

leading to closed form expressions of the probability of success of both one-way transmissions 

and handshakes for a deployment modelled by a single HPPP. Our approach, based on stochastic 

geometry, can be extended to complex protocols. 2) From the obtained results, all confirmed by 

comparison to simulated data, optimal PHY and MAC layer parameters are determined and the 

relations between them is described in details. 3) The influence of the routing protocol on 

handshake performance is taken into account in a realistic manner, leading to the confirmation of 

the intuitive result that the effect of imperfect feedback on the probability of success of a 

handshake is only negligible for transmissions to the first neighbor node. 

 

Parts of this work were presented in [7]. However, the present paper provides complete, revisited 

proofs, more detailed explanations as well as additional simulation results. Throughout the paper, 

we aim to obtain the probability of success of a transmission (one-way and handshake) to the -th 

nearest neighbour in an ad hoc network modelled by a single HPPP in which nodes employ 

Slotted-ALOHA (without and with Acknowledgement, respectively). The remainder of this paper 

is organized as follows. In Section 2, we present our general system model and some preliminary 

results regarding interference modelling in a network modelled by a single HPPP. In section 3, 

exploiting results from section 2, we calculate the transmission success probability between two 

arbitrarily chosen nodes in the network. Reasonable approximations are used to render the 

analysis tractable. In section 4, we apply the results of the sections 2 and 3 to the cases of the 

MAC protocols S-ALOHA and S-ALOHA with ACK packet. In section 5, we validate the 

approximate theoretical expressions obtained in the previous section by comparing them to 

computer simulation results and analyse the conditions for their validity. Finally, in section 6, a 

conclusion summarizes the paper. 

 

2. SYSTEM MODEL AND PRELIMINARY RESULTS 

 
2.1. Deployment and channel models 

 
In the remainder, independently of the protocols considered and before specific roles (i.e, 

transmitter or receiver) are attributed, node deployment is always assumed to be modelled by a d-

dimensional HPPP with intensity λ. The channel model incorporates path-loss and fast fading. 

The path-loss will follow the unbounded power law  where  is called the path-loss 

coefficient. The fading is assumed to be Rayleigh distributed, the square thereof then following an 

exponential distribution with rate parameter equal to one. Transmissions in the network will be 

slotted and the fading is assumed to be constant over the duration of a slot and independent from 

one slot to another. Moreover, we always assume fading coefficients of all links to be 

independent from one another, independent of node position and identically distributed. Since our 

goal is to analyse the influence of a large number of simultaneous transmissions on the network 

performances, we will also assume the network to be interference-limited. Hence, as in [12,4], a 

transmission will be considered successful if the received signal power S from the intended 

transmission is greater than the interference I generated by all other transmissions by a factor 

larger than a given threshold θ. That is, the inequality  must be true for a transmission to be 

successful.  
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2.2. Interference model 

  
Let us consider a given network node denoted as . For any realization of the HPPP, we can 

sort other nodes by order of distance to . Let us define for a given slot the random squared 

fading coefficient  of the channel between the -th closest node and ,  

the random distance from the -th closest node to . Furthermore, for all realizations of the 

HPPP, let us assume that the -th closest node has a packet for  and that all nodes except  

transmit during the slot. For a receiver threshold θ, the probability for this intended transmission 

to be successful is given by  

 

  (1) 

where  denotes the transmission success probability in a ”receiver-centric” approach, with 

the -th neighbour being the transmitter and  is the expectation operator over the random 

vectors  and . Then, given that 

the Complementary Cumulative Distribution Function of an exponential variable with rate 

parameter one is , we obtain from (1), 

 

  (2) 

 

where  is the interference term and  is its Laplace 

Transform. In the following subsections, we determine the Laplace Transform of the interference 

originating from two important node sets. 

 

2.3. Interference from the n − 1 closest interferers 
 

Keeping the scenario from the last subsection, consider the  closest nodes to . These 

nodes are uniformly distributed over a d-dimensional ball with random radius  deprived from 

its center. However, given that the volume occupied by the center point (where  is located) is 

null, we may as well consider the n − 1 nodes to be uniform over the whole ball. Thus, the n – 1 

nodes form a BPP with random intensity  where  indicates the volume of a -

dimensional ball with unit radius. In these conditions, we have the following property.  

 

Proposition 1: Consider the annular region  with center , inner radius  and 

outer radius . Given that there are exactly  interferers in the annular region 

, the Laplace Transform of the interference they generate at  is given by: 

 

  (3) 

with 

  (4) 
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where  is the Gaussian hypergeometric function and  denotes the Beta 

function. To ease numerical computation, a simple approximation of  is proposed in 

section IV. 

 

Proof: See appendix A. 

 

The Laplace Transform of the interference at  originating from all nodes in the ball, save the 

center, can be obtained by setting ,  and making  converge toward zero. 

Then, to obtain a closed form expression, one may use (3) and the following proposition. 

 

Proposition 2: The limit of  for  converging toward zero is given by 

 

  (5) 

Proof: See appendix B. 

 

We note also that setting ,  and  where  in (4) renders the Laplace 

Transforms in (3) independent of , for any . This property will prove useful when 

considering (2). Hence, for notational convenience, we will define the following function. For any 

positive real numbers  and  such that ,  for all . Note 

that, for the sake of brevity,  will be denoted as  in the following when the 

threshold considered is clear from the context. 

 

2.4. Interference from nodes beyond the -th neighbour 

 
Keeping the scenario presented in subsection 2.2, we now consider all nodes further away from 

 than the -th closest node. In these conditions, we have the following property. 

 

Proposition 3: The Laplace Transform of the interference generated by all nodes away from  

by a distance greater than  is given by 

 

  (6) 

Proof: See appendix C. 

 

In the following sections, we present general expressions of transmission success probabilities for 

various scenarios in the single HPPP model. 

 

3. Transmission Success Probability in an ad hoc network modelled as a 

single HPPP 

 
3.1. Neighbour index definition 

 
In this subsection, we introduce the notion of neighbour index. As mentioned briefly in 

introduction, although employing the PGFL leads to a simple expression of the transmission 

success probability, it is only valid for a given transmitter-receiver distance. However, in the case 

of a single HPPP, this distance is random with an unknown distribution (since both nodes are part 

of the original generating HPPP). Conditioning transmitter and receiver on their mutual neighbour 

indexes allows defining the distance distribution and thus enables averaged results to be inferred.  

The neighbour index is defined as follows.  
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Definition 1: For two distinct network nodes  and ,  has neighbour index  with 

respect to , which we denote , if there exists exactly  nodes closer from 

 than . If the identity of nodes is clear from the context, one may simply write . 

From this definition, two different approaches can be considered. 

 

In the receiver-centric approach, transmitters with a packet intended for a given receiver (namely, 

"intended transmitters", as opposed to "interferers") are conditioned on their neighbour index with 

respect to the considered receiver node. In the transmitter-centric approach, it is the receiver 

which is conditioned on its neighbour index with respect to the intended transmitter.  

 

The following conditional probability mass function (p.m.f)  will prove useful in order to 

relate both approaches. For  and  being two distinct network nodes, we define 

 

  (7) 

When the identity of nodes is clear from the context, we will use simply  instead of  

and its symmetric  instead of  to denote neighbour indexes.  

 

Proposition 4: For points taken from a -dimensional HPPP , the p.m.f in (7) 

 

is given by 

  (8) 

where  

  (9) 

And . Also, for  and two -dimensional balls  and 

,  defined as  with  denoting 

the incomplete Beta function. 

 

Proof: The proof for (8), if slightly incorrect, was given in [18]. Indeed, 

 

in this reference, the author did not consider that the number of points in  is 

at most . Nevertheless, this is a minor error which does not invalidate the thought 

process of the proof provided, hence the omission of its presentation in this paper. However, we 

provide in Appendix D the proof that the p.m.f as defined above does satisfy the normalization 

condition. End of proof. 

 

Also, for notational convenience, we will define for the remainder , which will 

prove useful when dealing with the expected value  where  and  is binomially 

distributed according to . 

 

In the following subsections, we show how the preliminary results developed above may be used 

to obtain the transmission success probability in various contexts. 
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3.2. Receiver-centric approach for a single intended transmission 

 
In this subsection, we consider the scenario described in subsection 2.2. 

 

Theorem 1: Given that , the probability of success for a transmission from  to 

 is given by 

 

  (10) 

Proof: The proof relies on the observation that, according to the independence of the number of 

nodes in disjoint areas in a HPPP, the transmission success probability can be written as follows. 

 

  (11) 

where  is the distance from to  and  is a complete partition of the -

dimensional space into disjoint areas functions of  and  is the interference contribution 

from the nodes located in the area . The final result is obtained by finding a suitable 

decomposition of the space.  

 

The  "close" interferers located in  form an homogeneous BPP, while the "far" 

interferers (i.e, away from  by a distance greater than ) form an inhomogeneous PPP . Let 

us define the following regions: . These two regions 

being disjoint, their node distributions are independent, thus the interference  at  due 

to the "close" interferers and the interference  at  due to the "far" interferers are 

independent. As a consequence, from (6) and from (3) for ,  with  nodes in 

, we obtain that the success probability of a transmission from  to  can be 

expressed as 

 

  (12) 

From [18], the distance in a d-dimensional PPP from a node to its -th nearest neighbour is 

governed by the probability density function (p.d.f ) 

 

  (13) 

Taking the expectation of (11) with respect to  thus leads to an integral of the form 

 where , which can be solved easily by applying the variable 

substitution  and then recognizing in the ensuing integral the Gamma function . The 

final result follows then easily, which completes the proof. End of proof. 

 

3.3. Transmitter-centric approach for a single intended transmission 

 
We now consider the transmitter-centric approach. 
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Theorem 2: The probability of a successful transmission from  to , conditioned on 

, can be approximated by1 

 

  (14) 

where  where 

 denotes the transmission in a "transmitter-centric" approach, with the -th neighbour being 

the receiver. 

 

Proof: Provided that ,  is a random variable with distribution given by (7) 

and  is distributed according to (12) in which  is replaced by . Under these 

conditions, we consider the following partition of . 

 

  

The geometry of these zones is illustrated in figure  1. In the following, we simply denote  

as  for the sake of brevity.  

 

We observe that is a binomially distributed random variable , where 

. Partitioning the space using the above-defined regions, the transmission 

success probability can be expressed as 

 

  (15) 

We note that  is dependent on , through the relation  

while the remaining functions are only dependent on  and . From the properties of 

HPPPs , the number of nodes in  is Poisson distributed and independent of the number of nodes 

in other regions. 

 

The distance from  to any node uniformly distributed in  (or in , respectively) follows a 

distribution with a non-trivial expression, rendering difficult any attempt to compute a closed 

form expression for the Laplace Transform of the interference contribution from nodes located in 

these regions. So as to keep the calculations tractable, the distribution of the distance from  to 

a node in the above-mentioned regions is approximated by the distribution of the distance from 

 to a node uniformly deployed over the annular region . 

 

A reasonable justification for this approximation is as follows. In order to obtain a simple 

approximation regarding a distribution, one may successively "forget" part of the constraints on 

the actual distribution and select the maximum-entropy distribution fitting the remaining 

                                                
1
 The expectation in the expression of transmission success probability for the transmitter-centric approach 

is on the discrete random variable , which leads to an infinite sum. In practice, computing the first few 

terms produces values very close to the actual result. 
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constraints, if it exists. In our case, removing information regarding the shapes of  and , the 

only remaining knowledge we have is that both zones are inside . However, the 

uniform distribution is the maximum entropy distribution among all continuous distributions 

supported in a bounded set, given that no other statistical characteristics are known about the 

actual distribution. Consequently, it is also the optimal distribution estimate for the actual 

distribution of nodes, according to the maximum entropy principle. 

 

 

Figure  1 Illustration of the interference situation at a receiver  given an intended transmitter  located 

at distance . The different zones in the figure  are defined in (14). 

 

As a result, the interference generated by a given number of nodes in  (or ) may be 

approximated by the interference due to the same number of nodes uniformly distributed in 

. 

Using this approximation for  we obtain 

 

  (16) 

where the last line follows from the binomial theorem.  

 

Regarding , given that , we have from the definition of the Poisson 

distribution that 

 

 

 (17) 
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Further taking the expectation over  and then taking the expectation over  in (15) leads 

to an integral that can be solved in the exact same way as the one leading to (9), which completes 

the proof. End of proof. 
In the next section, we show how results calculated up to now may be applied to the analysis of 

performances of some simple Medium Access Control protocols for ad hoc networks. 

 

4. APPLICATION TO THE ANALYSIS OF SLOTTED-ALOHA  

 
In this section, we analyse the success probability of transmissions in an ad hoc network 

employing the MAC protocols Slotted-ALOHA with and without ACK packet. The system model 

used in the following is as described in subsection 2.1. 

 

4.1. Case of S-ALOHA with constant Medium Access Probability 

 
In previous sections, we considered that all nodes in the network were active transmitters, except 

for a single receiver . However, node activity in real networks is controlled by the MAC 

protocol.  

 

In a Slotted-ALOHA (S-ALOHA) protocol with fixed Medium Access Probability (MAP) , 

each node in the network with a packet to transmit does so during the next slot if it passes a 

random test with success probability , and stays silent otherwise [14]. We assume in the 

following that all silent nodes can act as receiver. Let us further assume that nodes always have at 

least one packet ready for transmission and that consequently all nodes passing the random test do 

transmit. Then, let us consider an ad hoc network modelled as an HPPP  with constant intensity 

. In this case, employing an S-ALOHA protocol with constant MAP  results, from the thinning 

properties of PPPs [12], in the separation of the original HPPP into two distinct HPPPs. Namely, 

 with intensity  and  with intensity , which correspond to active transmitters and 

silent nodes, respectively. 

 

The expressions of transmission success probability obtained in the previous section can be 

adapted easily to the case of Slotted-ALOHA with constant MAP by taking into account the 

following two observations. 1) The independent thinning of the original process  has for 

consequence that, for any given bounded set , the number of active transmitters in 

is binomially distributed (i.e ). 2) For unbounded regions of , active 

transmitters located in them form an inhomogeneous PPP with intensity . It is easily verified 

that the Laplace Transform of their interference contribution may be obtained from the case 

treated in the previous section merely by changing  into  in the equations. 

In the next subsection, we analyse the case of Slotted-ALOHA with Acknowledgement. 

 

4.2. Case of constant MAP S-ALOHA with ACK slots 

 
We now consider the same system as in the previous subsection, except that now each data 

transmission time slot is followed by a slot reserved for the transmission of ACK packets. Thus, 

nodes which receive successfully a packet intended for them during a data slot send an ACK 

packet during the following ACK slot.  

 

Although interference in a HPPP is spatially correlated, we assume in the following that 

transmission successes on different links are independent so as to keep the derivations of 

handshake performances tractable. So as to show this assumption is reasonable, simulated data 

used for comparison will take into account the spatial correlation of interference. 
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An acknowledgement packet is considered successful if its SIR ratio is greater than the threshold 

. If an intended data packet and the following ACK packet are both correctly received, then the 

handshake is considered successful. We assume that fading coefficients in data slots and ACK 

slots are independent.  

 

Also, we define  the spatially averaged probability for any node in the network not 

transmitting during a given data slot to send a packet during the following ACK slot. That is,  

can be seen as the spatially averaged probability that a node receives successfully a packet 

intended for itself during a given data slot, conditioned on its belonging to the receiver set. As a 

consequence,  not only depends on the MAP , but also on the routing protocol employed 

(i.e, the way nodes in the network choose their packet destinations). For a given receiver , 

the general expression for  is given by 

 

  (18) 

in which  denotes the -th nearest node to ,  means "  selects  as 

destination" and where  is the transmission success probability from  to . 

 

Consequently, provided that the routing protocol employed allows  to be known for 

all , it is possible to determine  using the above equation. The particular case in which 

transmitters choose their destination uniformly among their  nearest neighbours will be covered 

in the next section.  

 

For a given probability , which we denote simply as , we have the following theorem. 

 

Theorem 3: Conditioned on , the probability for a data packet from a transmitter 

 to a receiver  and the following ACK packet from  to  to be both successfully 

received can be approximated by 

 

  (19) 

Where 

  (20) 

and where  
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Figure  2 : Illustration of the space partition used for the analysis of transmission success 

probability using Slotted-ALOHA protocol with Acknowledgement packet. The partition is 

composed of the disjoint regions resulting from the intersections of two infinite sets of concentric 

circles, centred on  and , respectively. The figure  only shows the regions closest to  and 

. Regions further away are defined in the same way. 

 

Proof: Given that , let us consider the partition  of 

 which is illustrated in figure  2. In this case the joint probability of success of a data 

transmission and its following ACK transmission is given by 

 

  (21) 

where the expectation is over , ,  and 

. The first infinite product is actually the conditional probability of 

success of the data transmission, while the second product is that of the ACK transmission.  

In [20], the authors employ product inequalities to separate the two transmit directions and derive 

lower and upper bounds. However, in our model, it is possible to treat directly the dependency 

between them. We can rewrite the handshake success probability using a single product as 

 

  (22) 

In order to keep the analysis tractable, we will use for each of the regions in the partition the same 

approximation on the distance distribution as we used to obtain (14). Note that according to the 

definition of , the number of ACK packet transmitters in a given region  is binomially 

distribution according to . 

Consequently, we have 
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  (23) 

Also,  is binomially distributed according to . Thus, replacing the above 

terms into (22) and taking the expectation over , we obtain 

  (24) 

Regarding the terms , we observe that  is binomially distributed according to 

. Also,  and 

. Denoting , we then have 

  (25) 

The other terms  are independent of , independent of one another 

and Poisson distributed with parameter . 

Consequently, for  and any , 

  (26) 

Also, the area of the regions  are given by 

  (27) 

Consequently, using the above and then taking the expectation with respect to , we obtain an 

integral of the same type as the one leading to (14). Solving this integral leads directly to the final 

result, which completes the proof. 

 

Given that most of the important results calculated until now are actually approximations, it is 

reasonable to compare the obtained formulae with the results of computer simulations. 
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5. Simulation Results 

 
5.1. Simulation Method 

 
The method we use in our computer program to simulate an infinite HPPP is that proposed in 

[12]. In each simulation drop, we generate a random deployment then record the success/failure 

of a given link. Results are finally averaged over all the deployment realizations. 

 

The performance metric used is the Mean Maximum Achievable Spectral Efficiency (MMASE) 

 conditioned on , given by 

 

  (28) 

where the dependence on  disappears in the case no acknowledgement packet is used. In order 

to ease the computation of theoretical expressions, we use the following approximation for the 

function .  

  (29) 

The above approximation is obtained easily from the limit property of the Hypergeometric 

function used in Appendix C. 

 

5.2. Simulation results 

 
In the following, we compare the theoretical results obtained in the previous sections with results 

from computer simulations. All theoretical results on figures are represented by solid lines, while 

dots are the simulated data. The path-loss exponent is ,  and  nodes per 

square-meter. On some figures (i.e when there was a noticeable difference), we plotted both 

theoretical results using the above approximation (solid lines) and using the expression with 

Hypergeometric function given in (4) (dashed lines). 

 

Case of S-ALOHA without ACK: In figure 3 and figure 4, we consider the case of S-ALOHA in 

a uniform RAHN modelled as a 2-dimensional HPPP. We observe a good agreement between the 

behaviours of simulated and approximate theoretical results. The latter appear as upper bounds of 

the simulated ones, which is to be expected since the approximation used in the derivation of (20) 

overestimates the distance between some interferers and the receiver.  

 

Figure 3 illustrates the trade-off between decodability and bit rate. Note that the optimal MCS for 

transmissions to a given neighbour depends on the operating MAP p. Conversely, for a given 

receiver threshold, intuition suggests the existence of an optimal MAP. This is confirmed in 

figure 4. Note that for p > 0.5, the number of receiver nodes is on average smaller than the 

number of transmitters, which implies that the optimal p lies between 0 and 0.5. We note that both 

theoretical and simulated results reach their respective maximum almost at the same abscissa, in 

both figures. Regarding the influence of θ on optimal MAP , further investigations have showed 

that increasing the data packet receiver threshold  decreases the optimal , which follows 

directly from the trade-off between the density of transmissions and the individual transmission 

rate. 

 

Case of S-ALOHA with ACK: Regarding S-ALOHA with acknowledgement, we assume a 

routing protocol which makes transmitters select their packet destination uniformly among their 

 closest neighbours. In this particular case,  is given as follows.  
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  (30) 

where  denotes the success probability for a transmission to the -th nearest neighbour and 

is given by (19) where . We assume  in the following. The performances of S-

ALOHA with ACK packet are described in figure 5. The theoretical results are computed using 

(19) and (29). The denominator in (19) is approximated by computing the first thirty terms of the 

infinite sum (more terms did not provide any additional noticeable accuracy gain).  

 

We observe again a good agreement between the behaviors of simulated and approximate 

theoretical results. The latter do not explicitly upper or lower bound simulated results, which can 

be explained by the diversity of shape of the regions on which the approximation for the distance 

from interferers to the receiver is used. The existence of optimal operating points can be noted, in 

a similar fashion to S-ALOHA. Again, both theoretical and simulated results reach their 

respective maximum at abscissa very close from each other.  

 

Regarding the influence of  on optimal MAP  and , although it is not shown here due to the 

lack of space, increasing  also increases the optimal MAP . This can be justified in the same 

way as the influence of  on  in the case of S-ALOHA without acknowledgement, by 

considering that the number of interferers during the ACK packet slot is proportional to . 

Also, by comparing figure 5 and figure 6, we observe that increasing  actually increases the 

value of the optimal , although the achieved maximum MMASE is lower than with a smaller . 

One possible justification for this result is that a higher  leads to less interference during the 

ACK slot, thus allowing a higher  to be used. 

 

Finally, comparing Fig 3, Fig 5 and Fig 6, we observe that the transmission of the ACK packet 

has negligible influence for the case , even for high values of . Note however, that for 

, the influence of imperfect feedback becomes stronger (e.g for , the 

MMASE in the case of S-ALOHA with ACK is  of the case without ACK). Our observations 

confirm the intuitive fact that imperfect feedback is only negligible for transmissions between 

close neighbors. 

 

6. Conclusion 

 
In this paper, we analyzed the probability of success of a transmission (one-way and handshake) 

to the -th nearest neighbor in an ad hoc network modelled by a single homogeneous Poisson 

Point Process in which nodes employ the Slotted-ALOHA MAC protocol (without and with 

acknowledgement, respectively). From the principle of maximum entropy, the single HPPP is the 

best deployment model for ad hoc networks with a constant node density. Previous works so far 

have been limited to a simplified deployment model, for tractability reasons. However, in this 

work, we presented a tractable mathematical analysis enabling the analysis of spatially averaged 

network performances at the routing level while tackling directly the dependency between both 

transmit directions in handshakes. We compared the developed close-form formula with computer 

simulation results and concluded that this work can find applications in the joint quantitative 

study of some MAC and routing protocols. Notably, exploiting the notion of neighbor index, we 

confirmed through our results the intuitive fact that imperfect feedback in handshakes is only 

negligible for transmissions to/from the closest neighbor. 
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Appendix A 

 
In this appendix, we provide the proof of (3). From [13] (eq.(4)), we have 

 

  (31) 

The Laplace transform of the squared fading is given by 

 

  (32) 

Replacing the above in (31), leads to the integral given by 

 

  (33) 

Note that through the variable substitution , each of the integrals in the last 

expression of (34) can also be expressed as 

 

  (34) 

where  takes the value  or . One can recognize in (34) Euler’s integral 

 

transform for the Gauss hypergeometric function[17], given by (35). 

 

  (35) 

where  is the Beta function and  denotes the Gauss hypergeometric function. 

It then follows that 

  (36) 

Then, one can use the following identity for  to relate the above result to the function 

 as defined earlier in the paper 

 

 (37) 

Using (37) and (36) in (31) leads to the final result, which completes the proof. 

 

Appendix B 

 
In this appendix we provide the proof of (5). We first notice from the properties of the Gauss 

Hypergeometric function that for , we have [17] 
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  (38) 

Then, using (4), let us rephrase  as 

  (39) 

Where . We observe that by setting 

 and , we obtain easily the limit of  for  converging 

toward zero from (38). From there, the final result easily follows, which completes the proof. 

 

Appendix C 

 
In this appendix we provide the proof of (6). From [12] (section 3.7.1), we have 

 

  (40) 

where  denotes the lower incomplete gamma function. Let us rephrase part of the above 

expression as follows. 

 

  (41) 

The above integral can be solved by replacing initially the incomplete lower gamma function by 

its equivalent involving the Kummer’s confluent hypergeometric function.[17] That is, 

 

  (42) 

Then, replacing (42) into (41) reveals an integral form of the Gauss Hypergeometric function 

given by 

  (43) 

which is valid only for . Therefore, it follows that 

  (44) 

Where . Note that using the same notation, we have 

  (45) 

Using the recurrence relations of the Hypergeometric function, one can obtain the following 

identity 

  (46) 
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which, by setting ,  and  lead us to 

  (47) 

Replacing (47) and (45) into (40) we obtain 

  (48) 

which can be expressed as a function of  as defined in (4) and thus completes the proof. 

 

Appendix D 

 
In this appendix, we prove that the p.m.f in (8) satisfies the normalization condition. That is, we 

aim to prove that 

  (49) 

To do so, we start by reordering the double sum above into 

 

  (50) 

which is obtained simply by interverting sum indexes after making the term  disappear. 

Then, sorting terms and using the change of index , we obtain 

 

 

 (51) 

Using the binomial theorem and recognizing the series expansion of the function  in the 

second sum, we can transform the above into 

 

  (52) 

which completes the proof, for all . 
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Figure  3 : MMASE of transmissions to the -th neighbour in a -dimensional uniform RAHN employing 

S-ALOHA with fixed MAP , against the receiver threshold (in dB). 

 

Figure  4 : MMASE of transmissions to the -th neighbour in a -dimensional uniform RAHN employing 

S-ALOHA, against the MAP , for a given a receiver threshold  

 

Figure  5 : MMASE of transmissions to the -th neighbour in a -dimensional uniform RAHN employing 

S-ALOHA with ACK and fixed MAP , against the receiver threshold  (in dB). The curves are 

obtained from (19), for . 
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Figure  6 : MMASE of transmissions to the -th neighbour in a -dimensional uniform RAHN employing 

S-ALOHA with ACK and fixed MAP , against the receiver threshold  (in dB). The curves are 

obtained from (19), for . 

 
Figure  7 : MMASE of transmissions to the -th neighbour in a -dimensional uniform RAHN employing 

S-ALOHA with ACK packet, against the MAP . The data packet threshold is  and the ACK 

packet threshold is . The curves are obtained from (19). 
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