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ABSTRACT 

 
Wireless Sensor Networks need to be organized for efficient data collection and lifetime maximization. In 

this paper, we propose a novel routing structure, namely k-DAG, to balance the load of the base station's 

neighbours while providing the worst-case latency guarantee for data collection, and a distributed 

algorithm for construction a k-DAG based on a SPD (Shortest Path DAG).  In a k-DAG, the lengths of the 

longest path and the shortest path of each sensor node to the base station differ by at most k. By adding 

sibling edges to a SPD, our distributed algorithm allows critical nodes to have more routing choices. The 

simulation results show that our approach significantly outperforms the SPD-based data collection 

approach in both network lifetime and load balance. 
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1. INTRODUCTION 
 

A WSN (Wireless Sensor Network) consists of a set of sensor nodes. A sensor node is composed 

of sensors, a processor, wireless communication components and a power module. All the senor 

nodes in a WSN are connected wirelessly, and work cooperatively to send the sensed data to a 

base station. The size of a WSN varies with applications. In a smart home, a WSN may have just 

dozens of sensor nodes. In a bushfire detection application, the area covered by a WSN may span 

several square kilometres with thousands of sensor nodes deployed. In some applications such as 

border surveillance, data need to be collected in real-time. Therefore, it is desirable to minimize 

the maximum latency of data collection, i.e., the maximum time taken by any message to arrive at 

the base station from the source sensor node. 

 

In WSNs, sensor nodes are typically battery-powered, and usually deployed over a large area or 

in a hostile environment, which makes frequent battery replacement impractical. As a result, 

optimizing the energy consumption of sensor nodes is critical for extending the network lifetime. 

Typically, wireless communication consumes most energy of a sensor node, compared to 

computation and sensing [1-3]. Therefore, lowering the energy consumption of wireless 

communication can significantly save sensor nodes' energy, increasing the lifetime of a WSN. 

The communication range of a sensor node is constrained by the transmit power. To save energy, 

the transmit power is kept low, leading to a short transmission range.  As a result, the 

communication between data source nodes and the base station is commonly achieved in multi-

hop way. Therefore, the routing topology has a significant impact on the network lifetime. 
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To prolong the network lifetime, various topologies and routing algorithms have been proposed. 

Trees are easy to construct without much protocol overhead, and they are widely used in WSNs. 

In a tree, all the data converge to the base station. For each sensor node, there is only one path 

reaching the base station so that routing algorithms are easy to implement. However, trees are not 

robust enough. A link failure caused by any sensor node may isolate all its descendants from the 

network. Furthermore, the nodes closer to the root are more likely to die sooner as they need to 

relay more messages from their descendants to the root.  

 

DAG has been proposed to improve the robustness of communication. It is more robust than a 

tree as each node in the network may have more than one path to the root. In addition, a DAG 

achieves better load balance than a tree as there are multiple paths from each source node to the 

base station, resulting in a longer network lifetime. Mesh network is the most robust topology.  

However, it induces more intricate routing algorithms than a simple tree. 

 

In this paper, we study the problem of lifetime and latency aware data collection in a static WSN 

where the locations of all the sensor nodes are fixed and there is only one base station. Our 

objective is to maximize the network lifetime while providing the worst-case latency guarantee. 

The lifetime of a WSN is defined as the time when the first sensor node dies. We propose a 

distributed algorithm to construct a k-DAG. Our distributed algorithm constructs a k-DAG from a 

SPD (Shortest Path DAG) [4] by adding sibling edges. We make the following major 

contributions: 

 

� We propose a novel routing structure, namely k-DAG, which can improve the lifetime and 

the robustness of a WSN while providing the maximum latency guarantee. 

� We propose a distributed algorithm for constructing a distributed k-DAG. 

� We propose a novel scheme for naming sensor nodes to support efficient point-to-point 

routing. 

� We have simulated our approach and the approach proposed in [4]. The simulation results 

show that our approach outperforms theirs by up to 82% in terms of network lifetime. 

� As far as we know, our approach is the first one that aims at maximizing the lifetime of a 

WSN while providing the maximum latency guarantee. 

 

The rest of the paper is organized as follows. Section 2 overviews the existing approaches to 

lifetime aware routing. Section 3 describes our distributed algorithm for constructing a k-DAG. 

Section 4 presents our simulation results and analyses. Section 5 concludes the paper. 

 

2. RELATED WORK 

 
Lifetime aware data collection is a critical issue in WSNs. Different energy consumption models 

of sensor nodes have been presented and analysed, and a large number of approaches to lifetime 

aware data collection have been proposed.  

 

[1] proposes a fundamental energy consumption model for sensor nodes. It considers the impacts 

of both the hardware and external radio environment of sensor nodes. [3] presents a realistic 

energy consumption model which identifies the energy consumption of each part of the sensor 

node and the impact of the external radio environment. The power consumption for receiving data 

is modelled as a constant value. For transmitting, only the power consumed by the power 

amplifier varies with the transmission range d while the power consumed by the other parts is a 
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constant. Based on the analyses and the simulation results, it shows that the single hop routing is 

always more energy efficient than multi-hop routing when a target is single hop reachable. This 

conclusion encourages the use of greedy approaches to resolve energy efficient routing issues in 

WSNs. 

 

SPT (Shortest Path Tree) is a commonly used topology in WSNs as each sensor node in a SPT 

reaches the root with the smallest number of hops. However, a randomly constructed SPT may 

not increase network lifetime. [5] proposes a new weighted path cost function improving the SPT 

approach. In this approach, each link is assigned a weight according to its path length to the root, 

and a link closer to the root has a larger weight. By balancing load according to the links' weights, 

this approach increases network lifetime compared with those randomly constructed SPT. [6] 

studies the problem of finding a maximum lifetime tree from all the shortest path trees in a WSN. 

They first build a fat tree which contains all the shortest path trees. Then, they propose a method 

based on each node's number of children and its initial energy to find a minimum load shortest 

path tree to convert the problem into a semi-matching problem, and solve it by the min-cost max-

flow approach in polynomial time. [7] proposes an approximation algorithm for maximizing 

network lifetime by constructing a min-max-weight spanning tree, which guarantees the 

bottleneck nodes having the least number of descendants. The approximation algorithm 

iteratively transfers some of the descendants of the nodes with the largest weight to the nodes 

with smaller weights. 

 

[8] studies the load balancing problem in grid topology. It focuses on the energy consumption of 

the nodes which can communicate with the base station directly. As mentioned above, increasing 

the lifetimes of these nodes will prolong the network lifetime in most circumstances. The 

algorithm first builds a tree by absorbing the nodes which have the greatest load to the lightest 

branches to achieve the initial load balance. Then, it rebalances the tree by moving nodes from 

the branches with the heaviest load to the neighbouring branches with lighter load. The simulation 

results show that the routing trees constructed by their algorithm are more balanced than the SPT 

constructed by Dijkstra’s algorithm. 

 

Trees are not robust enough since each node has only one path to the base station. The topology 

needs to be periodically reconstructed to avoid network disconnection. SPD has been proposed to 

solve the robustness problem. In a SPD, each sensor node may have more than one parent. 

Multiple paths from each sensor to the base station increase not only robustness, but also network 

lifetime. [4] considers the issues of balancing the load to achieve longer network lifetime by 

routing on a SPD. It proposes a modified asynchronous distributed breadth-first search method 

that is similar to Frederickson's algorithm [9], but without the centralized synchronization 

between level expansions, to build a SPD. It also proposes MPE (Max-min Path Energy) and 

WPE (Weighted Path Energy) routing algorithms based on SPD. 

 

[10] proposes a routing mechanism which takes advantage of siblings based on the DAG 

specified by Routing Protocol for Low-power and Lossy Networks (RPL) from IETF ROLL 

Working Group [11]. The authors present a detailed rank computation function to avoid loops in a 

DAG, which satisfies the policy of RPL draft. Then, they propose a routing method which allows 

no more than one sibling-hop per rank in the DAG to preserve the connection of the whole 

network while preventing loops in routing. 

 

3. K-DAG CONSTRUCTION 

 
We aim at maximizing a WSN's lifetime by balancing the load among the base station's children 

as these nodes are the critical ones for network lifetime. Meanwhile, we provide the worst-case 

latency guarantee for message delivery. Specifically, we ensure that each message from a source 
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sensor node vi does not travel more than k+Dvi hops to reach the base station, where Dvi is the 

minimum number of hops from vi to the base station, and k is a fixed natural number. In this 

paper, the lifetime of a WSN is defined as the time when the first node depletes its energy. 

 

3.1. Network Model 

 
We assume that there is only one base station in the WSN. All the sensor nodes in the network are 

static. The wireless communication is reliable, and there is no packet loss or retransmission. All 

the sensor nodes in the network have the same transmission range and the same initial energy 

level. The base station has unlimited energy. Each sensor node generates one unit data per time 

unit. 

 

We define a WSN as an undirected graph G=(V, E), where V and E represent the set of sensor 

nodes and the set of edges denoting communication links,  respectively. There are n sensor nodes 

in the WSN. Each sensor node is denoted by vi (i=1, 2, …, n). Especially, v0 denotes the base 

station. An edge eij=(vi, vj) exists in E only if vi and vj can communicate with each other directly. 

The graph G  is called connectivity graph. We assume that G is connected.  Each sensor node has 

no knowledge of other sensor nodes in the network at the network initiation stage.  

A spanning DAG of G is a DAG for data collection satisfying the following constraints: 

� The base station is the only source node. 

� Each sensor node sends its data only to its parents.  

� For each sensor node vi, there is a directed path from the base station to vi. 

 

A SPD is a spanning DAG of G such that for each sensor node vi, each path from the base station 

to vi is a shortest path. 

 

A k-DAG is a spanning DAG of G such that for each sensor node vi, the lengths of any two paths 

from the base station to vi differ by at most k.  

 

Given a spanning DAG and a sensor node vi, the DAG rooted at vi is a subgraph of the spanning 

DAG where the set of nodes includes vi and all the nodes reachable from vi , and the set of edges 

contains all the edges reachable from vi. 

 

3.2. SPD and SPT Constructions 

 
Our approach needs to construct a SPD and a SPT at the beginning. The SPD is used to construct 

a k-DAG, and the SPT is used for efficient point-point communication. 

 

A SPD can be constructed by using the algorithm proposed in [4] which employs the relaxation 

technique proposed in [12]. A SPT can be constructed from a SPD by selecting only one parent 

for each sensor node. 

 

3.3. Naming 

 
We propose a distributed naming algorithm to assign a unique ID to each sensor node. With these 

IDs, the base station is able to send a message to any node without flooding. The naming is based 

on a SPT of the network. The ID of each sensor node is a natural number between 1 and n, where 

n is the total number of sensor nodes in the network. The ID of the base station is 0.  
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Given a subtree T and a set of consecutive natural numbers between m and m+size(T)-1, where m 

is a natural number and size(T) is the number of nodes in the tree T, the ID of each node in T is 

recursively defined as follows. 

 

� The ID of the root of T is m. 

� F or each child vi (i=1, 2, …, k) of the root of T,  the ID of each sensor node in the subtree 

rooted at vi is a natural number between mi and mi+size(Ti)-1, where size(Ti) is the number of 

nodes in the subtree Ti rooted at vi, and mi is defined as follows. 

 

1. m1 is equal to m. 

2. For each i (i >1), mi is equal to ∑
−

=

+

1

1

)(
i

j

jTsizem . 

Intuitively, the ID of each sensor node is its rank in the depth-first search order of the SPT. 

However, distributed depth-first search is slow. The above definition underpins a faster 

distributed algorithm for implementing our naming scheme.  

 

Our distributed naming algorithm consists of three phases. In the first phase, the base station 

initiates a message informing each sensor node vi to compute the size of the subtree rooted at vi. 

This message is sent to each sensor node in the network. In the second phase, starting from the 

leaf nodes, each sensor node vi calculates the size of the subtree rooted at vi after receiving the 

sizes of the subtrees rooted at its children.  In the third phase, starting from the children of the 

base station, each sensor node assigns a unique ID to itself. Our algorithm uses the following 

messages. 

 

� CALCULATE-SUBTREE-SIZE(vi). This message is used to inform each sensor node vi to 

calculate the size of the subtree rooted at vi. 

� SUBTREE-SIZE(vi, sizei). After each sensor node vi calculates the size sizei of the subtree 

rooted at vi, it sends this message to its parent in the SPT. 

� ASSIGN-ID(vi, min-id, max-id). This message is initiated by the base station and sent to each 

sensor node vi. min-id and max-id are the smallest ID and the largest ID, respectively, of all 

the sensor nodes in the subtree rooted at vi.  

 

The details of our algorithm are shown in pseudo code in Algorithm1.  

 

Algorithm 1: Naming 

For the base station v0: 

for each child vi 

     send CALCULATE-SUBTREE-SIZE(vi) to vi 

end for 

size0 =0 

for each child vi 

     receive SUBTREE-SIZE(vi, sizei) from vi 

end for 
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min-id =1   

for each child vi 

     max-id= min-id + sizei -1 

     send ASSIGN-ID(vi, min-id, max-id)  to vi 

      min-id =max-id +1 

end for 

 

For each sensor node vi: 

receive CALCULATE-SUBTREE-SIZE(vi) from the parent  

sizei =1 

if vi is a leaf node then 

    send SUBTREE-SIZE(vi, sizei) to the parent 

    receive  ASSIGN-ID(vi, min-id, max-id)  from the parent 

     IDi =min-id    /* The ID of vi is min-id*/ 

else 

     for each child vj 

          send  CALCULATE-SUBTREE-SIZE(vj) to vj 

     end for 

     for each child vj 

          receive  SUBTREE-SIZE(vj, sizej) from vj  

          sizei =sizei +sizej  

    end for 

    send SUBTREE-SIZE(vi, sizei) to the parent 

    receive  ASSIGN-ID(vi, min-id, max-id)  from the parent 

    IDi =min-id     

    min-id = min-id+1   

    for each child vj 

        max-id= min-id + sizej -1 

         send ASSIGN-ID(vj, min-id, max-id)  to vj 

          min-id =max-id + 1 

    end for 

end if 
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Figure 1 shows an example of our naming scheme, where the natural number beside each sensor 

node is its ID. 

 
 

Figure 1. An example of our naming scheme  

 

3.3. Load Calculation 

 
After constructing a SPD and a SPT, our approach calculates the load for each sensor node. We 

use the definition of load in [13] to measure the data flow in the network. The load calculation is 

based on the DAG constructed so far. Each sensor node calculates its load as a sum of the load it 

produces and the load coming from its children, and distributes its load to all its parents evenly. 

Load calculation starts from the leaf sensor nodes in a bottom-up way and ends at the base station. 

After the base station collects the load from all its children, the load calculation finishes.  

 

Algorithm 2: Load calculation 

For each node vi: 

     if  vi is a leaf node  then 

          Ldvi = 1 

          broadcast LC(vi, Ldvi) to all the parents 

    else if vi is not the base station then 

          Ldvi = 1 

          for each child node vj do 

                receive LC(vj, loadvj)  from vj 

                Ldvi = Ldvi + loadvj  

          end for 

          let pi be the number of parents of vi 

          broadcast LC(vi, Ldvi /pi) to all the parents 

    else   /* vi is the base station  */ 

          Ldvi = 0 

          for each child vj do 

                receive LC(vj, loadvj)  from vj 

                record the load of vj 
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          end for 

    end if 

 

We use an LC message to collect the load information: 

 

� LC(vi, Ldvi), where vi is sender’s ID, and Ldvi is the load flowing from the sender to the 

receiver.  

 

Algorithm 2 describes in detail how the load of each sensor node is calculated in a distributed 

way. Figure 2 shows an example illustrating the process of load calculation. Leaf nodes D1, D2, 

D3, D4, D5, and B4 produce one unit data per time unit to their parents by LC message. When C2 

receive all LC messages from its children D2 and D3, it calculates its load which is 5/2 and sends 

it evenly to its parents B1 and B2. In this way, all the nodes send their load information to their 

parents, and the load converges to the base station at last. In Figure 2, the value on each edge is 

the load flowing through the edge.   

 

 
Figure 2. Load calculation based on a DAG 

 

3.4. Adding Sibling Edges 

 
The initial k-DAG is a SPD. After calculating the load of each child of the base station, our 

algorithm keeps searching for sibling edges and adding them into the k-DAG until the load 

balance among all the base station children is achieved. At a time, the base station finds a child vi 

with the heaviest load, and a child vj with the lightest load such that there is a sibling edge (vt, vs) 

satisfying the following constraints: 

 

1. vt is reachable from vj, but not reachable from vi. 

2. vs is reachable from vi, but not reachable from vj. 

 

A sibling edge (vt, vs) can be added to the current k-DAG only iff the following constraints are 

satisfied: 

3. After (vt, vs) is added the current k-DAG, the lengths of the longest path and the shortest 

path from vs differ by at most k. 

4. After  (vt, vs) is added the current k-DAG,  the new load of  vj is less than the old load of vi. 
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A sibling edge (vt, vs) will be added if the above constraints are satisfied. Then, our algorithm tries 

to add adjacent sibling edges which are reachable from vi, but not reachable from vj before adding 

sibling edge (vt, vs). Once such an adjacent sibling edge is not available, our algorithm will go 

down to the next level to try to add other sibling edges. This process will be repeated until no 

sibling edge can be added to the current k-DAG or the current node is a leaf node. 

 

 

Figure 3. Adding sibling edges 

 
We introduce the following messages:  

 

� SF(vi, vj, LdBlvi): The base station floods this message to the DAG rooted at vi to find a 

sibling edge (vt, vs) as discussed above. LdBlvi is the ideal load that needs to be diverted from 

vi to vj. LdBlvi is set to  (Ldvi - Ldvj)/2. 

� SF-c(vs, vi, vj, LdCvs): After receiving an SF message from parents, vs will check if it is an end 

node of a sibling edge candidate (vt, vs). If it is, it will calculate the load LdCvs diverted from 

vi to vj via the sibling edge (vt, vs). Let pi be the number of parents of vs. LdCvs is equal to Ldvs 

/ps. 

� SF-s(vs, vi, vj, LdRevs, SLvs): After receiving SF-c from sibling edge candidates, the base 

station chooses the node vs with the largest LdC value. The energy level of the node is used 

to break the tie. Then, the base station sends an SF-s message to vs. vs also uses SF-s to 

search for sibling edges. LdRevs is the remaining load that needs to be diverted from vi to vj , 

and SLvs is the number of sibling edges added to the current k-DAG. 

� ADD-SIBLING(vp, LdRevs, SLvs): This message is used to inform vp to search for a new 

sibling edge. 

� SF-ACK(vsm, vi, vj, LdRevsm, SLvsm): vsm sends SF-ACK message to the base station to indicate 

the end of the sibling edges search, and LdRevsm is the load not yet diverted from vi to vj.   

 

 

 

 

 

 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 5, No. 5, October 2013  

 

26 

Algorithm 3: Adding sibling edges 

For the base station v0: 

exit=false 

k-value=0 /*  if k-value is equal to k, no more sibling edges can be added to the k-DAG */ 

while exit=false do 

       find the child vi with the heaviest load such that at least one sibling edge is added for vi in the last  

       round  

       if such a vi does not exists then 

           exit=true 

           exit while 

       end if  

       find the child vj which is a neighbor of vi with the lightest load  

       LdBlvi = (Ldvi - Ldvj)/2 

       broadcast SF(vi, vj, LdBlvi) to vi and all its descendants 

       set timer T1 

       LdDomax=0 

       repeat 

            if  SF-c(vq, vi, vj, LdCvq) is received from vi's descendant vq then 

                 if LdCvq > LdDomax then 

                      LdDomax = LdCvq  

                      vs = vq  

                 end if 

           end if 

       until T1 expires 

       LdRevs = LdBlvi  

       send SF-s(vs, vi, vj, LdRevs, k - k-value) to vs 

       loop 

            if SF-ACK(vsm, vi, vj, LdRevsm, SLvsm) is received from vi's descendant vsm then 

                 k-value = k-value - SLvsm 

                 broadcast a message to each sensor node in the network to recalculate its load and the 

                reachable base station  

           end if 

      end loop 

end while 

 

For each sensor node vs: 

loop 
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     if SF(vi, vj, LdBlvi) is received then 

          if  this SF message is not received before then 

               broadcast SF(vi, vj, LdBlvi) to all its children 

          else 

               drop this SF message 

          end if 

          if vs is reachable from vj  only via a sibling vt then 

               calculate the load LdCvs diverted from vi to vj  

                if LdCvs < LdBlvi 

                     send SF-c (vs, vi, vj, LdCvs) to the base station 

               end if 

           end if 

     else if  SF-s(vs, vi, vj, LdRevsi, SLvsi) is received  then 

            add vt as the parent  

            LdRevs = LdRevsi - LdCvs    

           SLvsi = SLvsi+1 

            if  vs has a sibling vp  and SLvs < k then 

                 if LdCvp ≤  LdRevs then 

                     send ADD-SIBLING(vp, LdRevs, SLvs) to vp 

                           end if  

           else if vs is not a leaf node and SLvs < k then 

                   send ADD-SIBLING(vp, LdRevs, SLvs) to vp 

           else    

                  send SF-ACK(vs, vi, vj, LdRevs, SLvs) to the base station 

           end if 

       else if  ADD-SIBLING(vp, LdRevs, SLvs) is received then 

                  if  ADD-SIBLING(vp, LdRevs, SLvs) is received from a sibling then 

                           add vp as the parent  

                 LdRevs = LdRevsl - LdCvs    

                SLvs = SLvsl+1 

          end if  

           if  vs has a sibling vp  and SLvs < k then 

                if LdCvp ≤  LdRevs then 

                    send ADD-SIBLING(vs, LdRevs, SLvs) to vp 

                         end if  

           else if vs is not a leaf node and SLvs < k then 
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                 send ADD-SIBLING(vp, LdRevs, SLvs) to vp 

           else    

                 send SF-ACK(vs, vi, vj, LdRevs, SLvs) to the base station 

           end if 

     end if 

end loop 

 

Consider an example shown in Figure 3, where Sx denotes a DAG rooted at a base station’s child 

vx. For simplicity, we assume that k is equal to 2. First, the base station finds the child vi with the 

largest load, and the child vj with the smallest load among all its children that are also the 

neighbours of vi. Next, the base station sends an SF message to all the sensor nodes in Si.  The 

only sibling edge is (vs, vt). Now, vs sends an SF-c message to the base station. After receiving the 

SF-c message from the only candidate vs, the base station sends an SF-s message to vs. Then, vs 

will add vt as its parent, i.e., adding the sibling edge (vs, vt) to the k-DAG. Next, vs  sends an 

ADD-SIBLING(vsi, LdRevs, SLvs) message to its sibling vsi to add the sibling edge (vs,vsi) to the 

k-DAG. After that, vsi sends ADD-SIBLING(vsj, LdRevsi, SLvsi) to its child vsj.  After receiving this 

message, vsj will not send this message to its child as no more sibling edge can be added to the k-DAG 

without violating the definition of the k-DAG. Therefore, vsj sends SF-ACK to the base station to 

indicate the completion of the current round of adding sibling edges. Lastly, the base station 

broadcast a message to each sensor node in the network to recalculate its load and the reachable 

base station children. 

 

4. SIMULATION RESULTS AND ANALYSES 
 

We evaluate our k-DAG based approach by comparing it with the SPD based approach proposed 

in [4]. We use lifetime and load balance as two metrics to evaluate the performance. We 

implement two routing algorithms, PE and MPE proposed in [4], on these two topologies, and 

compare the results of these two metrics. 

 

A sensor node's lifetime depends on its energy consumption. As mentioned in [3], the major 

difference for energy consumption is from transmitting and receiving. So we ignore the energy 

consumption for listening, computing and sensing. The initial energy of each sensor node is 0.05 

J energy. Each sensor node consumes 50 nanoJ for receiving 1 bit and 250 nanoJ for sending 1 bit 

[14], and all the sensor nodes generate data at the rate of 40 bits/hour. The hardware platform for 

our simulations is Intel Core i7 processor 2.3 GHz and 8 GB RAM. 

 

As in [8],  we use Chebyshev Sum Inequality as the criteria of load balance. Let {v1, v2... vm } be 

the set of the base station children, and ldvi the load of a child vi of the base station. We use the 

following equation to calculate the balance factor θ : 

 

1

m

2

2

1

( )

m

i

i

v

i

v

i

m

ld

ld

θ
=

=

=

∑

∑
 

We use Cooja simulator to generate network instances, ignoring those instances with 

disconnected sensor nodes in the network. The transmission range for each sensor node is fixed to 

50 unit in radius. All the sensor nodes are randomly deployed in a square area, from 100×100 to 

350×350 unit
2
 by increasing 50×50 unit

2
 each time. The network size increases from 50 to 100 
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nodes by an increment of 10. There are a total of 6 scenarios with different network sizes, and 10 

instances for each scenario, resulting in a total of 60 different network instances. 

 

We calculate the balance factor by the data flow collected from the simulation results. The 

simulation results for average, maximum and minimum balance factors are shown in Figure 4, 

Figure 5 and Figure 6, respectively. In each figure, the horizontal axis indicates the number of 

sensor nodes, and the vertical axis represents the balance factor. For all the instances, k-DAG 

outperforms SPD by achieving higher load balance. The load balance improvements range from 

0.1% to 83%. The largest increase of 83% occurs in a scenario with 50 sensor nodes. 

 

 

Figure 4. Average balance factors 

 

 

Figure 5. Maximum balance factors 
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Figure 6. Minimum balance factors 

 

Figure 7, Figure 8 and Figure 9 show the lifetimes for different scenarios. It can be seen that the 

lifetime of a WSN is not always inversely proportional to the number of sensor nodes of the WSN. 

Figure 8 shows the maximum lifetimes for each scenario. In a 50 nodes scenario, our approach 

achieves a maximum improvement of 82% for the network lifetime. It shows in Figure 9 that 

there is an instance for 50 nodes scenario with no improvement in network lifetime. However, k-

DAG outperforms SPD for all the other instances. 

 

 

Figure 7. Average lifetimes 

 

We choose one instance for each scenario to demonstrate the relationship between k and the 

network lifetime. In Figure 10, Max(p) is the longest path length in a k-DAG. The horizontal axis 

indicates the number of sensor nodes. The vertical axis denotes the ratio in percentage of the 

lifetime achieved by a particular k and the lifetime achieved by the maximum value of k. For 70 

nodes scenario, adding the first 10% sibling edges, compared with Max(p), achieves  93.7% of 

the maximum lifetime.  However, for a 50 nodes scenario, adding the first 10% sibling edges just 

achieves 15.3% of the maximum lifetime, and it improves to 70.6% when 30% sibling edges are 

added. It can be seen from the figure that the network lifetime is not linearly proportional to k. 

The network topology is a key factor affecting the impact of k on the network lifetime.  
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Figure 8. Maximum lifetimes 

 

Figure 9. Minimum lifetimes 

 
Figure 10. Lifetime versus k  

 

From the simulation results, an instance with a longer network lifetime has a larger balance factor. 

However, a large balance factor does not guarantee a long lifetime. The number of children of the 

base station also has a significant impact on the network. For most instances of the same size, the 

more children the base station has, the longer network lifetime is achieved by our approach. 

 

We also observe that in the instances with a small balance factor, the k-DAG significantly 

improves the network lifetime after only a few sibling edges are added into the k-DAG. The key 

reason is that the sibling edges connecting disjoint subgraphs greatly divert the load from the 

sensor nodes with heavy load to the sensor nodes with lighter load. Furthermore, the sibling edges 

at a higher level divert significantly more load than those at a lower level. In some instances, the 

algorithm does not optimize the network lifetime but just improves the balance factor. It occurs 

when the sensor node with the heaviest load among all the base station children cannot find a 

sibling edge to divert the load to other base station children with light load, but there are still 

sibling edges that can be added to the k-DAG for those base station children with light load. In 

these cases, the balance factor can be improved without lifetime increase. 
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5. CONCLUSION 

 
In this paper, we study the problem of lifetime aware data collection in WSNs using DAG 

topology. We propose a k-DAG based approach which not only increases the lifetime of a WSN 

but also provides the maximum latency guarantee for data collection. We build a k-DAG in a 

distributed way. The k-DAG based approach achieves better load balance among the children of 

the base station to prolong the network lifetime. Meanwhile, it guarantees that the length of any 

path from each sensor node to the base station and the shortest path length differ by at most k. We 

have simulated our approach and compared it with the SPD based one by using a set of network 

instances and two routing algorithms. The simulation results show that our approach significantly 

outperforms the SPD based one in both network lifetime and load balance. 
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