

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

DOI: 10.5121/ijwmn.2010.2415 184

A self-managing fault management mechanism
for wireless sensor networks

Muhammad Asim
1
 and Hala Mokhtar

2
 and Madjid Merabti

3

1
 School of Computing and Mathematical Sciences, Liverpool John Moores University

M.Asim@2006.ljmu.ac.uk
2
 School of Computing and Mathematical Sciences, Liverpool John Moores University

H.M.Mokhtar@ljmu.ac.uk
 3School of Computing and Mathematical Sciences, Liverpool John Moores University

M.Merabti@ljmu.ac.uk

ABSTRACT

A sensor network can be described as a collection of sensor nodes which co-ordinate with each other to

perform some specific function. These sensor nodes are mainly in large numbers and are densely

deployed either inside the phenomenon or very close to it. They can be used for various application areas

(e.g. health, military, home). Failures are inevitable in wireless sensor networks due to inhospitable

environment and unattended deployment. Therefore, it is necessary that network failures are detected in

advance and appropriate measures are taken to sustain network operation. We previously proposed a

cellular approach for fault detection and recovery. In this paper we extend the cellular approach and

propose a new fault management mechanism to deal with fault detection and recovery. We propose a

hierarchical structure to properly distribute fault management tasks among sensor nodes by introducing

more ‘self-managing’ functions. The proposed failure detection and recovery algorithm has been

compared with some existing related work and proven to be more energy efficient.

KEYWORDS

Sensor Networks, Fault Management, Fault Detection & Fault Recovery

1. INTRODUCTION

Fault management has been widely considered as a key part of today’s network management.

Recent rapid growth of interests in Wireless Sensor Networks (WSNs) has further strengthened

the importance of fault management, or in particular, played a crucial role. Faults in WSNs are

not exception and tend to occur more frequently. In addition to typical network faults, wireless

sensor networks have to deal with faults arising out of unreliable hardware, limited energy,

connectivity interruption, environmental variation and so on. Thus, in order to guarantee the

network quality of service and performance, it is essential for WSNs to be able to detect failures

and to perform something akin to heal and recover the network from events that might cause

faults or misbehaviour. A set of functions and applications designed specifically for this purpose

is called a fault management platform [1-3].

One way of dealing with faults is to design a system that is fault-tolerant to begin with. Fault

tolerance is the ability to maintain sensor networks functionalities without any interruption due

to sensor nodes failure. However, this requires network designer to be fully aware, at design

time, of the different types of faults and the extent to which they may occur once the network is

deployed. The power supply is the most critical restriction as it is usually difficult to be

rechargeable. For this reason faults occurs frequently and will not be isolated events. Attacks by

adversaries could happen because these networks will be often embedded in critical

applications. Worse, attacks could be facilitated because these networks will be deployed in

open spaces or enemy territories, where adversaries cannot only manipulate the environment but

gain physical access to the node. Also, communication in sensor networks takes place by radio

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

185

frequencies means that adversaries can easily inject themselves in the network and disrupt

infrastructure functions. Moreover, sensor nodes are commonly used to monitor external

environment, due to which sensor nodes are susceptible to natural phenomenons like rain, fire

and fall of trees [4].

Sensor network faults cannot be approached similarly as in traditional wired or wireless

networks due to the following reasons [2]:

1. Traditional wired network protocol are not concerned with the energy consumptions as

they are constantly powered and wireless ad hoc networks are also rechargeable

regularly.

2. Traditional network protocols aim to achieve point-to-point reliability, where as

wireless sensor networks are more concerned with reliable event detection.

3. Faults occur more frequently in wireless sensor networks than in traditional networks,

where client machine, servers and routers are assumed to operate normally.

In this paper, we extend our existing cellular architecture for fault detection and recovery [5]

and describe a new fault management mechanism to detect failing nodes and recover the

connectivity in WSNs. We propose a new fault knowledge model to support sensor nodes

responding to network faults. Also, this paper attempts to examine the efficiency of our existing

cellular architecture for fault detection and recovery. In our proposed cellular architecture, the

whole network into a virtual grid of cells. A cell manager is chosen in each cell to perform

management tasks. These cells combine to form various groups and each group chooses one of

their cell managers to be a group manager. We propose using a hierarchical management

structure to ensure that self-management ability is respectively distributed. The hierarchical

management framework and node management role is also expected to be self-adjustable

dynamically to the changes occurred in the network. For examples, replacing the failed cell

manager; shifting over some workload from the sensor nodes whose residual resource status is

in a critical level. The faulty sensor nodes are detected and recovered in their respective cells

without affecting overall structure of the network. We also presented some simulation results to

prove the efficiency of our cellular architecture.

2. RELATED WORK

Existing fault management approaches for WSNs vary in forms of architectures, protocols,

detection algorithm or detection decision fusion algorithm etc [3]. A survey on fault tolerance in

wireless sensor networks can be found in [2]. This section starts by reviewing the fault detection

approaches, then we present fault diagnosis and failure recovery mechanisms.

2.1 Fault detection
Since sensor network conditions undergo constant changes, network monitoring alone may not

be sufficient to identify network faults. Therefore, fault detection techniques need to be in place

to detect potential faults [2]. Generally, fault detection in WSNs has two types: explicit

detection and implicit detection [3]. The first one is performed directly by the sensing devices

and their sensing applications. The implicit detection refers that anomalistic phenomena might

disable a sensor node from communication or behave properly, and has to be identified by the

network itself. Implicit detection is normally achieved in two ways: active and passive model.

The active detection model is carried out by the central controller of sensor network. Sensor

nodes continuously send keep-alive messages to the central controller to confirm their existence.

If the central controller does not receive the update message from a sensor node after a pre-

specified period of time, it may believe that the sensor is dead. Passive detection model (event-

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

186

driven model) triggers the alarm only when failure has been detected. However this model will

not work properly if a sensor is disabled from communication due to intrusion, tampering or

being out of range. Fault detection mainly depends on the type of application and the type of

failures. Some exiting fault detection schemes are discussed below. We classify the existing

failure detection approaches into two primary types: centralized and distributed approach.

A. Centralized approaches

In centralized fault management systems, usually a geographical or logical centralized sensor

node identifies failed or misbehaving nodes in the whole network. This centralized node can be

a base station, a central controller or a manager. This central node usually has unlimited

resources and performs wide range of fault management tasks [3]. Some common centralized

fault management approaches are as follows:

Sympathy [6] is a debugging system and is used to identify and localize the cause of the failures

in sensor network application. Sympathy algorithm does not provide automatic bug detection. It

depends on historical data and metrics analysis in order to isolate the cause of the failure.

Sympathy may require nodes to exchange neighbourhood list, which is expensive in terms of

energy. Also, Sympathy flooding approach means imprecise knowledge of global network states

and may cause incorrect analysis.

Jessica Staddon et al [7] enabled the base station to construct an overview of network by

integrating each piece of network topology information (i.e. node neighbour list) embedded in

node usual routing message. This approach uses a simple divide-and-conquer rule to identify

faulty nodes. It assumes that base station is able to directly transmit messages to any node in the

network and rely on other nodes to route measurements to the base station. Also, this approach

assumes that each node has a unique identification number. This first step enabled the base

station to know the network topology and for this purpose it executes route-discovery protocols.

Once the base station knows the node topology it then detects the faulty node by using a simple

divide-and-conquer strategy based on adaptive route update messages.

Centralized approach is suitable for certain application. However, it is composed of various

limitations. It is not scalable and cannot be used for large networks. Also, due to centralized

mechanism all the traffic is directed to and from the central point. This creates communication

overhead and quick energy depletions. Moreover, central point is a single point of data traffic

concentration and potential failure. Lastly, if a network is portioned, then nodes that are unable

to reach the central server are left without any management functionality.

B. Distributed Approaches

This is an efficient way of deploying fault management. Each manager controls a sub network

and may communicate directly with other managers to perform management functions.

Distributed management provides better reliability and energy efficiency and has lower

communication cost than centralized management systems [8].

The algorithm proposed for faulty sensor identification in [9] is purely localized. Nodes in the

network coordinate with their neighbouring nodes to detect faulty nodes before contacting the

central point. In the scheme, the reading of a sensor is compared with its neighbouring’ median

reading, if the resulting difference is large or large but negative then the sensor is very likely to

be faulty. This algorithm can easily be scaled for large network. However, the probability of

sensor faults need to be small as this approach works for large networks. Also, if half of the

sensor neighbours are faulty and the number of neighbours is even, algorithm cannot detect the

fault as expected. But the algorithm developed in [10] tried to overcome the limitations of this

approach by identifying good sensor nodes in the network and uses their results to diagnose the

faulty nodes. These results are then propagated in the network to diagnose all other sensor

nodes. This approach performs well with even number of sensors nodes and do not require

sensors physical locations. This approach is not fully dynamic and is required to be pre-

configured. Also, each node should have a unique ID and the centre node should know the

existence and ID of each node. Another scheme proposed in [11], where sensor nodes police

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

187

each other in order to detect faults and misbehaviour. Nodes listen-in on the neighbour it is

currently routing to and can determine whether the message it sent was forwarded. If the

message it sent was not forwarded then it conclude its neighbour as a faulty node and chooses a

new neighbour to route to.

The algorithm proposed in [12] is a straightforward and simple mechanism where fault

detection is based on the binary output of the sensors. In this approach, each node observes the

binary output of its sensor and then compares it with the pre-defined fault model. Fault models

can use probability or statistics to detect faulty sensors.

Venkataraman algorithm [10], proposed a failure detection and recovery mechanism due to

energy exhaustion. It focused on node notifying its neighbouring nodes before it completely

shut down due to energy exhaustion. The paper describes four types of failure recovery

mechanisms depending on the type of node in the cluster. The nodes in the cluster are classified

into four types, boundary node, pre-boundary node, internal node and the cluster head.

Boundary nodes do not require any recovery but pre-boundary node, internal node and the

cluster head have to take appropriate actions to connect the cluster. Usually, if node energy

becomes below a threshold value, it will send a fail_report_msg to its parent and children. This

will initiate the failure recovery procedure so that failing node parent and children remain

connected to the cluster.

As we have seen, the distributed approach will be the design trends for fault management in

WSNs. Sensor nodes gradually take more management responsibility and decision-making in

order to achieve the vision of self-managed WSNs. Node self-detection scheme [13] and

neighbour coordination [14] have provided us a good example of management distribution, but

their focuses are on a small region (a group of nodes) or individual node. Research work as

MANNA [4], WinMS [15] etc proposed management architecture to look after the overall

network from a central manager scheme. MANNA [4] is a policy-based approach using external

managers to detect faults in the network. MANNA assigns different management roles to

various sensor nodes depending on the network characteristics (Homogenous vs.

heterogeneous). These distinguish nodes exchange request and response messages with each

other for management purpose. To detect node failures, agents execute the failure management

service by sensing GET operations for retrieving node states. Without hearing from a node,

manager declares it as a faulty node. MANNA has a drawback of providing false debugging

diagnosis. There are several reasons a node can be disconnected from the network. It can be

disconnected from its cluster and not able to receive any GET message. GET message can be

lost during environmental noise. Random distribution and limited transmission range can also

cause disconnection. Also, this scheme performs centralized diagnosis and requires an external

manager.

WinMS [15] provides a centralized fault management approach. It uses the central manager

with global view of the network to continually analyses network states and executes corrective

and preventive management actions according to management policies predefined by human

managers. The central manager detects and localized fault by analyzing anomalies in sensor

network models. The central manager analyses the collected topology map and the energy map

information to detect faults and link qualities. It has the ability to self configure in case of

failure, without prior knowledge of network topology. Also, it analyzes the network state to

detect and predict potential failures and perform action accordingly.

2.2 Fault diagnosis
In this stage, detected faults are properly identified by the network system and distinguished

from the other irrelevant or spurious alarms. Fault diagnosis include fault isolation (where is the

fault located), fault identification (what is the type of detected fault), and root cause analysis

(what has caused the fault). However, there is still no comprehensive descriptive model to

identify or distinguish various faults in WSNs, which supports the network system on accurate

fault diagnosis or action-taken in the fault recovery stage [3]. Existing approaches are based on

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

188

hardware faults and consider hardware components malfunctioning only. Some assume that

system software’s are already fault tolerant as in [16, 17]. Farinaz [12], described two fault

models. The first one corresponds to sensors that produce binary outputs. The second fault

model is based on sensors with continuous (analog) or multilevel digital outputs. In [18], the

proposed work only consider faulty nodes are due to harsh environment. Thus, there is a need to

address a generic fault model that is not based on individual node level, but also consider the

network and management aspects.

2.3 Failure recovery
In this stage, the sensor network is reconfigured in such a way that failures or faulty nodes do

not bring any further impact on the network performance. Most existing approaches isolate

faulty (or misbehaving) nodes directly from the network communication layer. For examples, in

[11], after the failure of a neighbouring node, a new neighbouring node is selected for routing.

WinMS [15], used a proactive fault management maintenance approach i.e. the central manager

detect areas with weak network health by comparing the current node or network state with

historical network information model (e.g. energy map and topology map). It takes a proactive

action by instructing nodes in that area to send data less frequently for node energy

consumption. In [19], when a gateway node die, the cluster is dissolved and all its nodes are

reallocated to other healthy gateways. This consume more time as all the cluster members are

involved in the recovery process. Farinaz [12], suggested a heterogeneous backup scheme for

healing the hardware malfunctioning of a sensor node. They believe a single type of hardware

resource can backup different types of resources. Although this solution is not directly relevant

to fault recovery in respect of the network system level management [3]. In consideration of

complexity of fault management design and constrains of a sensor node, we are seeking a

localized hierarchical solution to update and reconfigure the management functionality of a

sensor node.

In this section, we highlighted different issues and problems existed in already proposed fault

management approaches for WSNs. It is clear from the literature survey that different

approaches for fault management in WSNs suffer from the following problems:

• Most existing fault management solutions mainly focus on failure detection, and there is

still no comprehensive solution available for fault management in WSNs from the

management architecture perspective.

• Different mechanisms proposed for fault recovery [12] are not directly relevant to fault

recovery in respect of the network system level management i.e. network connectivity

and network coverage area etc.

• Failure recovery approaches are mainly application specific, and mainly focus on small

region or individual sensor nodes thereby are not fully scalable.

• Some management frameworks require the external human manager to monitor the

network management functionalities.

• Another important factor that needs to be considered is vulnerability to message loss.

For example, in MANNA [4], if a cluster head does not hear from its cluster member

than it announced it as a faulty node. However, a message can be lost due to various

reasons. It can be lost during transmission and cause a correct node to be declared as

faulty.

We therefore content that there is still a need of a new fault management scheme to address all

the problems in existing fault management approaches for wireless sensor networks. We must

take into account a wide variety of sensor applications with diverse needs, different sources of

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

189

faults, and with various network configurations. In addition, it is also important to consider

other factors i.e. mobility, scalability and timeliness.

3. FAULT MODEL

To facilitate the self managing capability of our proposed fault management scheme, we

proposed a new fault knowledge model to support sensor nodes responding to network faults.

This knowledge model describes different types of faults for our proposed fault management

scheme.

We classified the node fault into two types: permanent, and potential. The permanent fault

completely disconnects the sensor node from other nodes, and brings eternal impact on the

network performance. For example, hardware faults within a component of a sensor node. A

permanent fault once activated remains effective until it is detected and handled. The impact of

this failure is usually measured when assessing the network performance. On the other hand, a

potential fault usually results from the depletion of node hardware resource, i.e. battery energy.

Such fault might cause the node sudden death, and eventually threaten the network life time.

When the battery depleted, a node is useless and cannot share in sensing or data dissemination.

Potential failure can be detected and treated before it causes the sudden death of a node e.g.

sensor node with low residual energy can be send to sleep mode before it completely shuts

down and disrupt network operation. Faults can be further classified into: node level fault and

network level fault. We proposed a fault model in a tree structure to describe faults monitored in

sensor network. As shown in figure 1, “node level” represents the potential and permanent

failure of a node while “network level” describes the network faults caused by either potential

or permanent failure of one or a set of sensor nodes.

Figure 1. Fault model

Network level

Faults

Node level

Softwar Hardware

Operatin

g system Sensor

Process

Radio

Memor

y

Battery

Coverage

Connectivit

Environmen

Weathe

External

damage

Potential and

permanent

Potential and

permanent

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

190

Individual node level fault usually results from: application software misbehaviour, hardware

failure and external impact of harsh environmental conditions (direct contact with water causing

short circuit, node crash by a falling tree etc). In this work, we assume that software components

are fault-free or maintained by the sensor application. Fault-tolerance of sensor data have been

discussed by various existing research approaches [20]. In this work, we particularly focus on

hardware resource depletion as the major cause of sudden death, and its effects at both node and

network level. The network level faults are as a result of either the potential or permanent

failure, and are usually related to the network connectivity, and sensor coverage rate. In our

scheme, the network faults are assessed and analyzed by the management component i.e. group

manager, cell manager. It holds the knowledge of its entire region in the network. Based on such

information, the fault management system is capable of responding to various network failures

with little human administration intervene. For example, when a group manager detect a cell

with weak network health, it takes a proactive action by instructing nodes in that cell to send

data less frequent for node energy consumption or alternatively, initiate the cell merging

procedure.

4. A SELF-MANAGING FAULT MANAGEMENT MECHANISM

FOR WIRELESS SENSOR NETWORKS

The proposed fault management mechanism can be divided into two phases:

• Fault detection and diagnosis

• Fault recovery

4.1 Fault detection and diagnosis

Detection of faulty sensor nodes can be achieved by two mechanisms i.e. self-detection (or

passive-detection) and active-detection as shown in figure 2. In self-detection, sensor nodes are

required to periodically monitor their residual energy, and identify the potential failure. In our

scheme, we consider the battery depletion as a main cause of node sudden death. A node is

termed as failing when its energy drops below the threshold value. When a common node is

failing due to energy depletion, it sends a message to its cell manager that it is going to sleep

mode due to energy below the threshold value. This requires no recovery steps. Self-detection is

considered as a local computational process of sensor nodes, and requires less in-network

communication to conserve the node energy. In addition, it also reduces the response delay of

the management system towards the potential failure of sensor nodes.

To efficiently detect the node sudden death, our fault management system employed an active

detection mode. In this approach, the message of updating the node residual battery is applied to

track the existence of sensor nodes. In active detection, cell manager asks its cell members on

regular basis to send their updates. Such as; the cell manager sends “get” messages to the

associated common nodes on regular basis and in return nodes send their updates. This is called

in-cell update cycle. The update_msg consists of node ID, energy and location information. As

shown in figure 2, exchange of update messages takes place between cell manager and its cell

members. If the cell manager does not receive an update from any node then it sends an instant

message to the node acquiring about its status. If cell manager does not receive the

acknowledgement in a given time, it then declares the node faulty and passes this information to

the remaining nodes in the cell. Cell managers only concentrate on its cell members and only

inform the group manager for further assistant if the network performance of its small region

has been in a critical level.

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

191

Figure 2. Fault detection and diagnosis process

A cell manager also employs the self-detection approach and regularly monitors its residual

energy status. All sensor nodes start with the same residual energy. After going through various

transmissions, the node energy decreases. If the node energy becomes less than or equal to 20%

of battery life, the node is ranked as low energy node and becomes liable to put to sleep. If the

node energy is greater or equal to 50% of the battery life, it is ranked as high and becomes the

promising candidate for the cell manager. Thus, if a cell manager residual energy becomes less

than or equal to 20% of battery life, it then triggers the alarm and notifies its cell members and

the group manager of its low energy status and appoints a new cell manager to replace it.

Every cell manager sends health status information to its group manager. This is called out-cell

update cycle and are less frequent than in-cell update cycle. If a group manager does not hear

from a particular cell manager during out-cell update cycle, it then sends a quick reminder to the

cell manager and enquires about its status. If the group manager does not hear from the same

cell manager again during second update cycle, it then declares the cell manager faulty and

informs its cell members. This approach is used to detect the sudden death of a cell manager.

Group manager also monitor its health status regularly and respond when its residual energy

drops below the threshold value. It notifies its cell members and neighboring group managers of

its low energy status and an indication to appoint a new group manager. Sudden death of a

group manager can be detected by the base station. If the bases station does not receive any

traffic from a particular group manager, it then consults the group manager and asks for its

current status. If the base station does not receive any acknowledgement, it then considers the

group manager faulty (sudden death) and propagates this information to its cell managers. The

base station primarily focuses on the existence of the group managers from their sudden death.

Meanwhile, the group managers and cell managers take most parts in passive and active

detection in the network.

4.2 Fault recovery

After nodes failure detection (as a result of self-detection or active detection), sleeping nodes

can be awaked to cover the required cell density or mobile nodes can be moved to fill the

Fault

detection

Self-detection

Active-

detection

Check residual

level

Trigger alarm

Diagnose

residual level

Manager

Updates

messages

Diagnosis

replies

Cell manager

Group manager

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

192

coverage hole. A cell manager also appoints a secondary cell manager within its cell to acts as a

backup cell manager. Cell manager and secondary cell manager are known to their cell

members. If the cell manager energy drops below the threshold value (i.e. less than or equal to

20% of battery life), it then sends a message to its cell members including secondary cell

manager. It also informs its group manager of its residual energy status and about the candidate

secondary cell manager. This is an indication for secondary cell manager to standup as a new

cell manager and the existing cell manager becomes common node and goes to a low

computational mode. Common nodes will automatically start treating the secondary cell

manager as their new cell manager and the new cell manager upon receiving updates from its

cell members; choose a new secondary cell manager. The failure recovery mechanisms are

performed locally by each cell. In figure 3, let us assume that cell 1 cell manager is failing due

to energy depletion and node 3 is chosen as secondary cell manager. Cell manager will send a

message to node 1, 2, 3 and 4 and this will initiate the recovery mechanism by invoking node 3

to stand up as a new cell manager.

Figure 3. Virtual grid of nodes

In a scenario, where the residual battery energy of a particular cell manager is not sufficient

enough to support its management role, and the secondary cell manager also does not have

sufficient energy to replace its cell manager. Thus, common nodes exchange energy messages

within the cell to appoint a new cell manager with residual energy greater or equal to 50% of

battery life. In addition, if there is no candidate node within the cell that has sufficient energy to

replace the cell manager. The event cell manager sends a request to its group manager to merge

the remaining nodes with the neighbouring cells.

When a group manager detects the sudden death of a cell manager, it then informs the cell

members of that faulty cell manager (including the secondary cell manager). This is an

indication for the secondary cell manager to start acting as a new cell manager. A group

manager also maintains a backup node within the group to replace it when required. If the group

manager residual energy drops below the threshold value (i.e. greater or equal to 50% of battery

life), it may downgrade itself to a common node or enter into a sleep mode, and notify its

backup node to replace it. The information of this change is propagated to neighbouring group

managers and cell managers within the group. As a result of group manager sudden death, the

backup node will receive a message from the base station to start acting as the new group

manager. If the backup node does not have enough energy to replace the group manager, cell

managers within a group co-ordinate to appoint a new group manager for themselves based on

residual energy.

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

193

Each cell maintains its health status in terms of energy. It can be High, Medium or Low. These

health statuses are then sent out to their associate group managers periodically during out-cell

update cycle. Upon receiving these health statuses, group manager predict and avoid future

faults. For example; if a cell has health status high then group manager always recommends that

cell for any operation or routing but if the health status is medium then group manager will

occasionally recommend it for any operation. Health status Low means that the cell has

insufficient energy and should be avoided for any operation. Therefore, a group manager can

easily avoid using cells with low health status or alternatively, instruct the low health status cell

to join the neighbouring cell. Consider Figure 3, let cell 4 manager is a group manager and it

receives health status updates from cell 1, 2 and 3. Cell 2 sends a health status low to its group

manager, which alert group manager about the energy status of cell 2.

5. MESSAGE BROADCAST ISSUE

The proposed fault management scheme relies on the message exchange among sensor nodes in

the network. This might subsequently cause the communication flooding by broadcasting or re-

broadcasting messages from different sensor nodes. To address this issue, we employed a

message filtering mechanism to further reduce the redundancy of message exchange. The

message format contains fields as shown in table 1.

Group_id The group id

Cell_id The cell manager id

Timestamp The message sending out time

Curr_energy The current node battery enery

Table 1. Message attributes

The Group_id field is used to determine whether the received message belongs to the same

group of current node. If not, the message will be dropped to avoid unnecessary message re-

broadcast. Cell_id field helps a node to decide whether the message belong to its cell. If not, the

message will be ignored and not forwarded. A sensor node might receive multiple copies of the

same message forwarded by different intermediate nodes. To avoid redundant rebroadcast, we

apply the value of ‘timestamp’ field in the second stage to determine whether the receiving

message has been handled previously. If the receiving message is a new one, it will be

processed and forwarded to the neighbouring nodes. On the contrary, that message will be

dropped to lessen the network traffic and conserve the node energy.

6. PERFORMANCE EVALUATION

In this section we evaluate the performance of our proposed algorithm and analyze its cost by

measuring node energy expenditure. We used GTSNETS [21] as simulator platform and we

used the same radio model as discussed in [22]. In this experiment, we apply fault detection and

recovery as main tasks of our fault management approach. Number of sensor is varied from 40

to 80, which are randomly deployed over 120 X 120 square meter area. Each sensor is assumed

to have an initial energy of 2000 mJ. Every result shown is an average of 30 experiments. We

first compared our work with that of Venkataraman algorithm [23], which is based on failure

detection and recovery due to energy exhaustion.

6.1 Failure detection

In Venkataraman algorithm, neighboring information is already available to the cluster members

through exchange of hello messages. The failure detection procedure starts after the cluster

formation. When a node fails, the failing node parents and children take appropriate action to

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

194

connect the cluster and bridge the gap formed by the failing node. The failing node itself reports

its likeliness to fail so that appropriate measures can be taken to rectify the failures. The

fail_report-msg is only passed to immediate hop members and then later on passed to the cluster

head.

In our proposed algorithm, if node energy drops below a threshold value, it then sends a failure

report message directly to its one hop cell manager and goes to a low computational mode. In

our proposed algorithm, there are two types of nodes: common node and a cell manager. Only

one failure report message is sent out to the cell manager. Thus, avoiding sending any extra

message. This reduces the energy consumption and will not disrupt network operation.

6.2 Failure recovery

In Venkataraman algorithm, nodes in the cluster are classified into four types: boundary node,

pre-boundary node, internal node and the cluster head. Boundary nodes does not require any

recovery but pre-boundary node, internal node and the cluster head have to take appropriate

actions to connect the cluster. Usually, if node energy becomes below a threshold value, it will

send a fail_report_msg to its parent and children. This will initiate the failure recovery

procedure so that failing node parent and children remain connected to the cluster. A

join_request_mesg is sent by the healthy child of the failing node to its neighbors. All the

neighbors within the transmission range respond with a join_reply_mesg/join_reject_mesg

messages. The healthy child of the failing node then selects a suitable parent by checking

whether the neighbor is not one among the children of the failing node and wether the neighbor

is also not a failing node. In our proposed mechanism, common nodes does not require any

recovery but goes to low computational mode after informing their cell managers.

In Venkataraman algorithm, cluster head failure causes its children to exchange energy

messages. The children who are failing are not considered for the new cluster-head election.

The healthy child with the maximum residual energy is selected as the new cluster head and

sends a final_CH_mesg to its members. After the new cluster head is selected, the other children

of the failing cluster head are attached to the new cluster head and the new cluster head becomes

the parent for these children. This cluster head failure recovery procedure consumes more

energy as it exchange energy messages to elect the new cluster head. Also, if the child of the

failing cluster head node is failing as well, then it also requires appropriate steps to get

connected to the cluster. These can disrupt network operation and is time consuming.

In our proposed algorithm, we employ a back up secondary manager which will replace the cell

manager in case of failure. Every time a cell manager is failing it sends a message to all its

members including the backup secondary cell manager. Upon receiving this message from its

cell manager, secondary manager automatically starts acting as a new cell manager and no

further messages are required to send to other cell members to inform them about the new cell

manager as they are already aware of secondary cell manager.

Average energy loss for cluster-head recovery

0

5

10

15

20

25

cluster size

A
v
g

 e
n

e
rg

y
 (

m
J
)

Venkataraman alg

Cellular alg

10 15 20

Figure 4. Average energy loss for cluster head recovery

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

195

It can be observed from figure 4 that our proposed algorithm consumes less energy for cluster

head failure recovery when compared to Venkataraman algorithm. In Venkataraman algorithm,

message exchange for the election of new cluster manager is both time and energy consuming.

In our proposed algorithm, cell manager sends one message only to its member to recover from

a failure.

Average time for cluster-head fault detection

0

0.002

0.004

0.006

0.008

0.01

0.012

cluster size

A
v
g

 t
im

e
 (

s
e
c
s
)

Venkataraman alg

Cellular alg

10 15 20

Figure 5. Average time for cluster head recovery

Figure 5 depicts the average time required for the cluster head recovery. It can be observed that

our proposed algorithm perform a quicker recovery as compared to Venkataraman algorithm.

We also compared our scheme with two other algorithms: autonomic self-organizing

architecture [24] and load- balanced clustering [22], in terms of energy consumption for cluster

head recovery. It can be observed from figure (6) that our proposed algorithm consumes less

energy in re-clustering when compared to the other two.

In autonomic self-organizing algorithm, when a high level node (header) failed to operate or

need to step down due to low residual energy. All sensor nodes from the failed header need to

join other available header nodes using the same mechanism. This again is not an energy

efficient way to re-organize the cluster and also time consuming as compared to our cellular

approach. In load-balanced clustering, when a gateway fails, the cluster dissolved and all its

nodes are re-allocated to other healthy gateways. This consumes more time and energy as all

cluster members are involved in the re-clustering process. In our proposed algorithm, only few

nodes are involved in re-clustering.

Average energy loss in re-clustering

0

10

20

30

40

50

60

70

Clus ter s ize

A
v
g

e
n

e
rg

y
 l
o

s
s

Autonomic alg

proposed alg

Load-balanced alg

10 15 20

Figure 6. Average energy loss in re-clustering

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

196

7. SUMMARY

Wireless sensor network are composed of many wireless sensing devices called sensor nodes.

These nodes are small in size, limited in resources and randomly deployed in harsh

environment. Therefore, it is not uncommon for sensor networks to have malfunction behaviour,

node, link or network failure. In this paper, we proposed a fault management mechanism for

wireless sensor network to diagnose faults and perform appropriate measures to recover sensor

network from failures. The proposed fault management mechanism is energy-efficient and

responsive to network topology. We proposed a fault model that describes different types of

faults at different levels of the hierarchy. Depending on the role assignment, sensor nodes

execute the appropriate functions to complete their fault management tasks. Most of existing

solution used some type of central entity to perform fault management tasks but in our proposed

solution, the aim is to perform fault detection locally and in distributed fashion. The result

obtained from the simulation clearly shows that our proposed algorithm performs failure

detection and recovery much faster than other existing schemes, and consumed significantly

lower energy.

8. REFERENCES

[1] M. Z. Khan, M. Merabti, and B. Askwith, "Design Considerations for Fault Management in

Wireless Sensor Networks," in PGNet 2009 Liverpool, 2009.

[2] L. Paradis and Q. Han, "A Survey of Fault Management in Wireless Sensor Networks," Journal

of Network and Systems Management, vol. 15, pp. 171-190, 2007.

[3] M. Yu, H. Mokhtar, and M. Merabti, "A survey on Fault Management in wireless sensor

network," in Proceedings of the 8th Annual PostGraduate Symposium on The Convergence of

Telecommunications, Networking and Broadcasting Liverpool, UK, 2007.

[4] L. B. Ruiz, I. G.Siqueira, L. B. Oliveira, H. C. Wong, J. M. S. Nogueira, and A. A. F. Loureiro,

"Fault management in event-driven wireless sensor networks," in MSWiM’04 Italy, 2004.

[5] M. Asim, H. Mokhtar, and M. Merabti, "A cellular approach to fault detection and recovery in

wireless sensor networks," in The Third International Conference on Sensor Technologies and

Applications, SENSORCOMM 2009 Greece, 2009.

[6] N. Ramanathan, K. Chang, E. Kohler, and D. Estrin, "Sympathy for the Sensor Network

Debugger," in Proceedings of 3rd ACM Conference on Embedded Networked Sensor Systems

(SenSys ’05), San Diego, California, 2005, pp. 255-267.

[7] J. Staddon, D. Balfanz, and G. Durfee, "Efficient Tracing of Failed Nodes in Sensor Networks,"

in First ACM International Workshop on Wireless Sensor Networks and Applications USA,

2002.

[8] W. L. Lee, A. Datta, and R. Cardell-Oliver, "Network Management in Wireless Sensor

Networks," in Handbook of Mobile Ad Hoc and Pervasive Communications: American Scientific

Publishers, 2006.

[9] M. Ding, D. Chen, K. Xing, and X. Cheng, "Localized fault-tolerant event boundary detection in

sensor networks," in Proceedings of the 24th Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM '05). vol. 2 USA, 2005, pp. 902-913.

[10] J. Chen, S. Kher, and A. K. Somani, "Distributed Fault Detection of Wireless Sensor Networks,"

in Proceedings of DIWANS 06, 2006.

[11] S. Marti, T. J. Giuli, K.Lai, and M. Baker, "Mitigating routing misbehaviour in mobile ad hoc

networks," in ACM Mobicom, 2000, pp. 255-265.

[12] F. Koushanfar, M. Potkonjak, and A. SangiovanniVincentelli, "Fault tolerance techniques in

wireless ad-hoc sensor networks," UC Berkeley technical reports 2002.

[13] A. R. S Harte, K M Razeeb, "Fault Tolerance In Sensor Networks using Self-Diagnosing Sensor

Nodes."

[14] M. L. Chihfan Hsin, "Self-monitoring of Wireless Sensor Networks," Computer

Communications, vol. 29, pp. 462-478, 2005.

[15] W. L. Lee, A. Datta, and R. Cardell-Oliver, "WinMS: Wireless Sensor Network-Management

System, An Adaptive Policy-Based Management for Wireless Sensor Networks," School of

International Journal of Wireless & Mobile Networks (IJWMN) Vol.2, No.4, November 2010

197

Computer Science and Software Engineering, The University of Western Australia, Technical

Report UWA-CSSE-06-01, 2006.

[16] J. Chen, S. Kher, and A. Somani, "Distributed Fault Detection of Wireless Sensor Networks," in

DIWANS'06 USA, 2006.

[17] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, "Fault Tolerance in Wireless Ad-

hoc Sensor Networks," in Proceedings of IEEE Sensors, 2002.

[18] T. Clouqueur, K.Saluja, and P. Ramanathan, "Fault Tolerance in Collaborative Sensor Networks

for Target Detection," in IEEE Transactions on Computers, 2004, pp. 320-333.

[19] G. Gupta and M. Younis, "Fault-Tolerant Clustering of Wireless Sensor Networks," in

Proceedings of the IEEE WCNC 2003 New Orleans, Louisiana, 2003.

[20] K. F. Ssu, C. H. Chou, H. C. Jiau, and W. T. Hu, "Detection and Diagnosis of data inconsistency

failures in wireless sensor networks," in Computer Networks, 2006, pp. 1247-1260.

[21] G. Riley, "The Georgia Tech Network Simulator," in ACM SIGCOMM Workshop on Models,

Methods and Tools for Reproducible Network Research Karlsruhe, Germany, 2003.

[22] G. Gupta and M. Younis, "Load-Balanced Clustering in Wireless Sensor Networks," in

Proceedings of International Conference on Communication (ICC 2003) Anchorage, AK, 2003.

[23] G. Venkataraman, S. Emmanuel, and S.Thambipillai, "Energy-efficient cluster-based scheme for

failure management in sensor networks," in IET Communications. vol. 2, 2008, pp. 528-537.

[24] J. L. Chen, H. F. Lu, and C. A. Lee, "Autonomic self-organization architecture for wireless

sensor communications," International Journal of Network Management, vol. 17, pp. 197-208,

2007.

Authors

1. Muhammad Asim

P.h.D Student, Liverpool John Moores

University, UK

2. Dr. Hala Mokhtar

Senior lecturer, Department of Networked

Systems and Security, Liverpool John

Moores University, UK

3. Professor Madjid Merabti

Professor Madjid Merabti is Director at the

School of Computing & Mathematical

Sciences, Liverpool John Moores University,

UK.

