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ABSTRACT

Mobile inventory, mobile commerce, banking and/or commercial applications are some distinctive
examples that increasingly use distributed transactions. It is inevitably harder to design efficient commit
protocols, due to some intrinsic mobile environment limitations. A handful of protocols for transaction
processing have been offered, but the majority considers only a limited number of communication models.
We introduce an improved Connection Fault-Tolerant model and evaluate its performance potential by
comparing results in several deferent scenarios, as well as its contribution to the overall mobile
transaction commit rate. Our performance analysis, conducted using general-purpose discrete-event
simulation programming language, evaluates the effect of (i) ad-hoc communication between mobile
hosts and (ii) the employment of an appropriate decision algorithm for mobile host agents. Conjointly,
they substantially improve commit rate. In respect of the stochastic nature of random network
disconnections, we determine connection timeout values that contribute the most to the highest perceived
ad-hoc communication impact.
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1. INTRODUCTION

The increasing emergence of mobile devices contributes to a rapid progress in wireless
technologies. Mobile devices interacting with fixed devices can support applications such as:
e-mail, mobile commerce (m-commerce), mobile inventory, etc. Yet, there are many issues that
are challenging and need to be resolved before enabling mobile devices to take part in
distributed computing. For distributed systems, a transaction is a set of operations that fulfill the
following condition: either all operations are permanently performed, or none of them are visible
to other operations (known as the atomicity property). Therefore, the key issue in the execution
of transactions is the protocol that ensures atomicity.

The mobile environment is comprised of mobile devices with limited resources, e.g. processing,
storage, energy capacity and continuously varying properties of the wireless channel. Wireless
communication induces much lower bandwidth, higher latency, error rates and much higher
costs. This, in turn, increases the time needed for Mobile hosts (MHs) to execute transactions and
can even lead to execution failure [1-4]. MHs are highly susceptible devices because they are easily
damaged or lost and, in addition, they naturally show frequent and random network
disconnections. These limitations and characteristics of the mobile environment make it harder
to design appropriate and efficient commit protocols [5]. A protocol that aborts the transaction
each time the MH disconnects from the network is not suitable for mobile environments, simply
because it is considered to be a part of the normal mode of operation. In other words,
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disconnections need to be tolerated by the protocol. A solution for the management of fault
tolerance in ad-hoc networks has been proposed in [6].

The Two-Phase Commit (2PC) protocol [7] that allows the involved parties to agree on a
common decision to commit or abort the transaction even in the presence of failures is the
most commonly used protocol for fixed networks but is unsuitable for mobile environments [8].
A handful of protocols for transaction execution in distributed mobile environment have been
offered [9-19], but the majority considers only a limited number of communication models.

The main contribution of this paper is a simulation-based performance analysis of an amended
Connection Fault-Tolerant (CFT) model for mobile distributed transaction processing, designed
to show resilience to connection failures of mobile devices and initially introduced as a
conceptual model in [20]. It differs from other infrastructure based protocols [9-11], [13], in the
fact that, besides the standard communication between MHs and the fixed network, it
(i) supports ad-hoc communication between MHs and (ii) introduces a decision algorithm that is
responsible for decision making on behalf of a mobile host in a special case, when neither
standard, nor ad-hoc communication is possible. We evaluate the performance potential of the
CFT model by comparing the results in several deferent scenarios, as well as its contribution to
the overall mobile transaction commit rate. In respect of the stochastic nature of random
network disconnections, we determine connection timeout values that contribute the most to the
highest perceived ad-hoc communication impact.

Section 2 provides a short survey of related work. In Sections 3 and 4 we formalize the model of
the mobile environment and the transaction model, respectively. A comprehensive description
of the Connection Fault-Tolerant commit processing framework is given in Section 5, whereas
in Section 6 we present simulation results and their analysis. Section 7 discusses conclusions.

2. RELATED WORK

In order to reach a final transaction termination decision in any message oriented system, the
Transaction Commit on Timeout (TCOT) protocol [9] can be universally used. Based on a
timeout approach for Mobile Database Systems, this protocol limits the amount of
communication between the participants in the execution. It decreases the number of wireless
messages during execution, and does not consider MHs as active participants in the execution of
transactions.

The basic idea of the Two-Phase Commit Protocol for Mobile Wireless Environment (M-2PC)
[10] is to adapt the 2PC protocol for mobile systems with distributed transactions. MHs are
active participants in the execution of a transaction and they send confirmation (that the work is
done) to the agent or to the fixed device, in order to save energy. This model requires
simultaneous connection of all mobile participants at the beginning of a transaction. The
protocol does not provide adequate management of mobility and failures caused by network
disconnection, nor does it provide a mechanism to control the competitiveness of distributed
transactions.

The Fault-Tolerant Pre-Phase Transaction Commit (FT-PPTC) protocol [11] provides
mechanisms for dealing with disturbances in the system in mobile environment, and supports
heterogeneous mobile databases. FT-PPTC implements distributed transaction in two phases,
i.e. pre-phase, one which is covering the MHs and the main phase which refers to the fixed part
of the network. MHs are active participants in the execution of a transaction, but no mechanisms
are developed for competition in mobile distributed transactions. FT-PPTC does not provide
adequate management of mobility, as well, because when MHs are disconnected from the fixed
network for a long time, they can block resources on the fixed participants. This, in turn, leads
to an increased number of mobile transaction aborts.
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In the concurrency control without locking approach [12], a concurrency control mechanism in
mobile environment is proposed, by introducing the concept of Absolute Validity Interval (AVI)
which is a time period in which the data item is said to be valid. The new mechanism provides
reading the same available data item by multiple MHs – if the data item is updated by any
mobile host, the MHs which have already read the same value must be invalidated. It reduces
the waiting time for execution of a transaction and resources are not unnecessary locked.

3. MODEL OF THE MOBILE ENVIRONMENT

In this paper we consider a system model for the mobile distributed environment consisting of a
set of MHs and a set of fixed hosts (FHs), presented in Figure 1. The model has two main parts
of the network: fixed and mobile. Communication between the two is conveyed via Mobile
Support Stations (MSS), which are connected to the fixed part of the network via wired links.
MHs can cross the border between two different geographical areas covered by different MSSs.

Figure 1. Communication model in the mobile environment

In the system model under consideration, MHs can communicate with the FHs through a MSS
via wireless channels only when they are located within the MSS coverage area. Our first
improvement is that MHs can ad-hoc communicate with neighboring MHs via wireless
channels. When MHs enter a geographical area that is out of coverage of any MSS, in order to
access database servers in the fixed network, they may connect through a neighboring MH
which is in the covering area of any MSS. Thus, the nodes in a wireless network are responsible
for both sending their traffic as well as relaying the traffic of other nodes in the network [21]. In
mobile environments, the problem of appropriately decentralizing replicated servers has been
investigated in [22], in order to enhance users’ access speed in a wireless network.

In brief, we consider a mobile distributed environment where (i) MHs can communicate with
each other (and/or with FHs) through MSS and, in addition, (ii) MHs can ad-hoc communicate
with neighboring MHs in order to reach the fixed part of the network. We assume that database
servers are installed on each FH, and each MH has a mobile database server installed.

4. THE TRANSACTION MODEL

A distributed transaction where at least one MH participates is called a mobile transaction. We
identify a MH where a transaction is issued as a Home-MH (H-MH). Participating MHs and
FHs in the execution of a mobile transaction are called participant MHs (Part-MH) and
participant FHs (Part-FH), respectively.
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We assume the existence of a Coordinator (CO), which is responsible for coordinating the
execution of the corresponding transaction. The CO is responsible for storing information
concerning the state of the transaction execution. Based on the information collected from the
participants of the transaction, the CO takes the decision to commit or abort the transaction and
informs all the participants about its decision. The CO should be executed on a fixed host or
hosts. This means that logs will be kept more safely.

5. CONNECTION FAULT-TOLERANT COMMIT PROCESSING FRAMEWORK

5.1. Overview

Some of the most frequent failures in mobile environments are communication failures. When
MHs are in motion, they may exit the geographical area that is covered by some MSS and the
resources of the fixed participants may potentially be blocked for an undefined period of time. If
MHs do not reestablish connection with any MSS the transaction is aborted.

To minimize the number of mobile transaction aborts by tolerating failures caused by network
disconnections and reduce the resource blocking times of fixed participants, we propose a CFT
model for distributed transaction processing in mobile computing environment. The CFT
framework ensures the atomicity property and its main objective is to help protocol designers
and/or application designers in commit processing in mixed (infrastructure-based and ad-hoc
supported) mobile distributed environment.

The CFT model involves two communication protocols and a decision algorithm, as well:

1. The first protocol is a Standard communication protocol, when MHs can directly connect to
the fixed part of the network through MSSs;
2. The second one is an Ad-hoc communication protocol, when MHs cannot directly connect to
the fixed part of the network through any MSS; with this, MHs are allowed to ad-hoc
communicate with neighboring MHs in order to reach the fixed part of the network.

In the Standard communication protocol, similar as in [23], to minimize the use of wireless
communication and to maximize conservation of MHs’ resources, to each MH we assign a
Mobile Host Agent (MH-Ag) that we add to the fixed network. We assume that in the execution
of a transaction MH-Ag is representing the MH in the fixed network and it acts as an
intermediator between the MH and the transaction CO, i.e. all the communication between MH
and CO goes through the MH-Ag. The MH-Ag is responsible for storing all the information
related to the state of all mobile transactions involving the MH. In the fixed network, a server
(or servers) can be designated, where MH-Ag is created for each participating MH.

The second (ad-hoc) communication protocol comes into play when MHs cannot directly
connect to the fixed network, or a MH cannot directly communicate with its MH-Ag through
any MSS. In that case, MHs try to connect via ad-hoc communication with any neighboring MH
which is in the covering area of any MSS. To allow this, we assign a MH-Relay Agent (MH-
RAg) to each MH, which is responsible for ensuring a relay-wireless-link between neighboring
MHs. In order to preserve generality, the CFT Model is built under the assumption that MH-
RAg can use just about any of the well-known ad-hoc communication protocols.

Furthermore, as our second improvement, we define an additional function of a MH-Ag that we
call a Decision Algorithm (DAlg). DAlg is used during the execution of a transaction when MH-
Ag cannot directly nor ad-hoc communicate with its MH for a predefined period of time.
DAlg’s task is to check if Transaction Processing Fragment (TPF) function is either WRITE
(insert/update/delete) or READ. If the former is the case, DAlg saves the TPF in a FIFO (First-
In First-Out) queue list and makes a decision for the MH to send “Yes” vote to the transaction
CO. When the connection between MH and the corresponding MH-Ag is reestablished, MH-
Ag’s first task is to send all saved TPFs to the corresponding MH. Otherwise, if the TPF
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function is READ, DAlg makes a decision for the MH to send “No” vote to the transaction
coordinator.

Yet again, the rationale behind the employment of DAlg is to help protocol and application
designers to deal with commit processing in distributed mobile environment when neither
standard nor ad-hoc communication is available. The number of methods (i.e. functions) that the
DAlg implements can be freely specified by application designers, in order to reach their
specific application needs.

5.2. Connection Fault-Tolerant Model Operation

In this section we illustrate the execution of a mobile transaction (Figure 2) in the proposed CFT
commit processing framework.

If H-MH (Table 1) is connected to the fixed network through some MSS, it initiates a mobile
transaction by sending TPF to the transaction CO (Table 2) through its corresponding MH-Ag
(Table 3), which acts as an intermediator between CO and MH.

Transaction CO computes the Execution timeout (Et), which is a time limit for all participants to
complete the execution of the TPFs and send a vote to CO. After that, CO sends Et and TPFs to
all Part-FHs and MH-Ags that represent the Part-MHs (Table 5) in the fixed network, asks them
to PREPARE to commit the transaction, and enters the wait state. Subsequently, every MH-Ag
initiates Connection timeout (Ct), which is a time limit for MH-Ag to establish connection with
its MH, and try to send Et and TPFs to its MH through either standard or ad-hoc communication
protocol. If MH-Ag cannot establish connection with its MH before Ct expires, it activates the
DAlg (Table 4).

Figure 2. Execution of a mobile transaction in mobile environment

DAlg checks whether the TPF function is WRITE or READ. In the case of the former, DAlg
saves the TPF in a FIFO queue list and makes a decision for the MH to send “Yes” VOTE to the
transaction CO. As already mentioned before, if the TPF function is READ, DAlg makes a
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decision for the MH to send “No” VOTE to the transaction CO. If MH-Ag establishes
connection with its MH before Ct expires, it sends TPF to its MH and resets Ct.

When the participants receive the PREPARE message, they check if they could commit the
transaction. If so, and if MH establishes connection with MH-Ag before Ct expires, MH sends
“Yes” VOTE to CO through its corresponding MH-Ag via standard or ad-hoc communication
protocol. If Ct expires, MH-Ag activates DAlg.

Table 1. Home-MH’s Algorithm Table 2. Coordinator’s Algorithm

Algorithm 1: H-MH's Algorithm
1 Initialize Transaction (Ti);

2 send TPF to its corresponding MH-Ag;

3 wait for execution timeout (Et) and TPF;

4 if H-MH decides to abort Ti then

5 write Abort record in the local log;

6
If H-MH is disconnected from the Fixed
Network then

7 send Abort message to MH-RAg;

8 else send Abort message to its MH-Ag;

9 return;

10 else //  H-MH decides to commit Ti

11 force write updates to the local log;

12
If H-MH is disconnected from the Fixed
Network then

13 send updates to MH-RAg;

14 else send updates to its MH-Ag;

15 wait for decision message from CO;

16 if decision message is Commit then

17 commit Ti;

18 write Commit record in the local log;

19
If H-MH is disconnected from the
Fixed Network then

20 send Ack message to MH-RAg;

21 else send Ack message to its MH-Ag;

22 return;

23 else //decision message  is Abort

24 abort Ti;

25 write Abort record in the local log;

26
If H-MH is disconnected from the
Fixed Network then

27 send Ack message to MH-RAg;

28 else send Ack message to its MH-Ag;

29 return;

30 End

31  end

Algorithm 2: Coordinator's Algorithm

1 wait for Ti from H-MH;

2 compute Execution timeout (Et);

3 extract TPFs of the Part-MHs/Part FHs and
sends them with Et to MH- Ags and Part-FHs;

4  while waiting for Et to expire do

5
if Abort message is received from  the Part-
MHs then

6
send Abort to all FHs and all MHs
through theirs  MH-Ags;

7 return;

8 End

9 end

10 if receive messages  from each Part-MHs
through MH-Ags  and from FHs before Et expires
then

11 write all received updates;

12 if all votes were Yes then

13
send Commit to MH-Ags and to Part-
FH;

14 return;

15 else //at least one of the votes is No

16 send Abort to MH-Ags and Part-FHs;

17 return;

18 End

19 else //  Et expires

20 send Abort to MH-Ags of all Part-MHs;

21 return;

22  end
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After the CO has received VOTE from every participant, it decides whether to COMMIT or
ABORT the transaction. If, for any reason, even one of the participants votes “No” or Et
expires, the CO decides to ABORT the transaction and sends “Abort” message to all
participants. Otherwise, if all the received votes are “Yes” and Et has not expired, the CO
decides to COMMIT the transaction and sends “Commit” message, with reset Et to all
participants. The participants need to ACKNOWLEDGE the CO’s decision before the reset Et
expires.

Table 3. MH-Ag’s Algorithm

Table 4. Decision Algorithm Table 5. Part-MH’s Algorithm

Algorithm 4: Decision Algorithm
1 if TPF is for Changing (Insert, Update,
Delete) then

2 save TPF in FIFO queue;

3
send Yes(Presumed Commit) /
ACKNOWLEDGE vote to CO;

4 else // That means that TPF is for Reading

5
send No (Presumed Abort) /
ACKNOWLEDGE vote to CO;

6 end

Algorithm 5: Part-MH's Algorithm

1 wait for receiving the corresponding TPF
and Et;

2 //Continue with step 4 to step 31
of Algorithm 1 substituting H-MH with

Part-MH

Algorithm 3: MH-Ag's Algorithm

1 while working do

2 if some MH reconnects to the fixed network and DAlg’s  FIFO queue is not empty then

3 send all stored TPF to its MH;

4 end

5  wait for receiving massages from CO or from its MH;

6 for any received message do

7 if message is sent by the CO then

8 compute Connection timeout (Ct);

9 if MH-Ag is connected with MH through Standard or Ad-hoc conn. and Ct>0 then

10 send the received message to the corresponding Part-MH;

11 reset Ct;

12 else Execute Decision Algorithm; (Algorithm 4)

13 else //message is send by corresponding  Part-MH

14 if MH is connected with MH-Ag through MSS or Ad-hoc conn. and Ct>0 then

15 send the received message to the CO;

16 else Execute Decision Algorithm; (Algorithm 4)

17 end

18  end
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6. DISCRETE-EVENT SIMULATION RESULTS AND ANALYSIS

In our simulation-based performance analysis of the Connection Fault-Tolerant Model, we
focus on the mobile transaction commit rate performance metric. The analysis is conducted
using SimPy [24] – an object-oriented, process-based, general-purpose discrete-event simulation
package based on standard Python programming language [25]. A simulation run is set to
simulate 10 hours. Transactions are generated with exponentially distributed interarrival times
with a mean of 30 seconds, under the assumption that all transactions are of similar length, but
experience different connection conditions. The number and the nature of Part-MHs and Part-
FHs are randomly selected in order to model arbitrary heterogeneity. Table 6 summarizes our
simulation parameters.

Table 6. Simulation settings

Parameter Value
Number of Part-MHs 3 – 5
Number of Part-FHs 1 – 5
Fragment execution time (Part-MH) [0.3 – 0.7]s
Fragment execution time (Part-FH) [0.1 – 0.3]s
Transmission delay (wireless link) [0.2 – 1.0]s
Transmission delay (wireless ad-hoc link) [0.4 – 2.0]s
Transmission delay (wired link) [0.01 – 0.03]s
Disconnection Rate [0 – 95]%
Ad-hoc support [10 – 90]%
Distributed transaction WRITE function [10 – 90]%

The disconnection rate is defined as the ratio of time when the participating MH is disconnected
from the fixed network, against the total simulation time. Similarly, the level of ad-hoc support
is the ratio of the time when ad-hoc communication is available between MHs, against the total
simulation time. It is hard to quantify the level of ad-hoc support between MHs in mobile
distributed environment, i.e. in some parts of the wireless network it can be significantly lower
compared to other. Consequently, we distinguish between three groups that represent different
parts of the wireless network with different levels of ad-hoc support (e.g. there is a known
fundamental relationship between node density and delay in wireless ad-hoc networks with
unreliable links). Every MH in the wireless network is a member of one of the predefined
groups.

Considering several different scenarios with- or without support of ad-hoc communication and
with- or without support of DAlg, our simulation-based performance analysis aims to evaluate
the performance potential of the Connection Fault-Tolerant commit processing framework, as
well as to assess its contribution to the overall mobile transaction commit rate.

6.1. Ad-Hoc Communication Impact on Transaction Commit Rate

Simulation experiments study the impact of ad-hoc communication on mobile transactions
commit rate. Figures 3-5 illustrate the mobile transaction commit rate against different
disconnection rates, and different values representing different levels of ad-hoc support.
Arbitrarily, transaction timeout is set to 5 seconds.

The results shown in Figure 3 resemble the case where all MHs are members of a single group,
i.e. the level of ad-hoc support is the same in any part of the wireless network. One can
conclude that the ad-hoc support in the CFT model considerably improves the transaction
commit rate, and the ad-hoc communication impact is higher for networks where, actually, the
disconnection rate is higher.
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Figure 4 shows simulation results where MHs are classified in two different groups that have
different levels of ad-hoc support. It is evident that ad-hoc support improves the transaction
commit rate, but the percentage of improvement is lower compared to the previous scenario,
where the level of ad-hoc support was the same in each part of the wireless network. In addition,
commit rate slightly decreases when the disconnection rate rises all the way up from 60 to 95%.

Figure 3: Impact of ad-hoc communication
on commit rate (single group)

Figure 4: Impact of ad-hoc communication
on commit rate (two groups)

At the end, in order to present the influence of ad-hoc support in a highly dynamic wireless
network, we classify all MHs in three groups that have different levels of ad-hoc support. From
the chart in Figure 5, one can conclude that commit rate increment is not evident as before, i.e.
the highest improvement of the commit rate is only about 11%.

Figure 5: Impact of ad-hoc communication on commit rate (three groups)

6.2. The Rationale behind the Employment of a Decision Algorithm

In respect of the stochastic nature of random network disconnections, we need to determine
Connection timeout values that contribute the most to the highest perceived ad-hoc
communication impact, before activating the DAlg. Figure 6 shows the mobile transaction
commit rate against different connection timeouts and different ad-hoc support values.
Execution timeout is set to UNLIMITED. We assume that the functions of all mobile
transactions are READ, meaning that if DALg activates, the transaction will be aborted. From
the chart in Figure 6, one can conclude that for any level of ad-hoc support, commit rate
increment is more evident for increments of connection timeout up to 2.4 seconds – afterwards,
the commit rate only slightly increases with the rise of the connection timeout time. This
induces that connection timeout value of 2.4 seconds is the optimum value for maximum ad-hoc
communication contribution to the mobile transaction commit rate in the CFT model.
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To determine the combined ad-hoc communication and DAlg contribution to the transaction
commit rate, we performed numerous simulations for sparse (Figures 7, 8) and dense
environments (Figures 9, 10).

Figure 6. Impact of Connection timeout on commit rate

Figures 7 and 9 show the mobile transaction commit rate against different disconnection rates
and different percentages of mobile transactions whose function is WRITE. Connection timeout
is set to the optimum value of 2.4 seconds. The level of wireless ad-hoc support for the Figure 7
is set to 10, 20 and 30% for the three groups of MHs, whereas in Figure 9 the level of ad-hoc
support varies between 70 and 90%. The first curve (“standard”) in Figures 7 and 9 presents
results when only standard communication is available between MHs and the fixed network. In
other words, we have an execution of the standard 2PC protocol. The second curve (“ad-hoc”)
presents results when, besides the standard communication, ad-hoc communication between
MHs is available, as well. Compared to the first scenario, these results show slight increment of
the transaction commit rate. The rest of the curves present results where, besides standard and
ad-hoc communication, DAlg is employed. It is evident that (i) the mobile transaction commit
rate is higher if the percentage of mobile transactions, whose function is WRITE, is higher and
(ii) a higher level of ad-hoc support leads to a higher commit rate. Moreover, it can be
concluded that both ad-hoc communication and the employment of DAlg increase the
transaction commit rate (compared to 2PC).

Figure 7. CFT contribution to commit rate Figure 8. DAlg contribution to commit rate
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Figure 9. CFT contribution to commit rate Figure 10. DAlg contribution to commit rate

Figures 8 and 10 show mobile transaction presumed-commit rate against different disconnection
rates and different percentages of mobile transactions whose function is WRITE. Presumed-
commit rate is the percentage of committed mobile transactions where DAlg was actively
involved. It is evident that DAlg contribution on transaction commit rate is higher when
disconnection rate rises.

From the charts, one can conclude that if the level of ad-hoc support is low, the impact of DAlg
on the mobile transaction commit rate is rather strong (Figure 8). The other way around, when
the level of ad-hoc support is high, the impact of DAlg on the mobile transaction commit rate is
diminishing (Figure 10).

7. CONCLUSION

In this paper we made a detailed review of the operation of a Connection Fault-Tolerant Model
for distributed mobile transaction processing. In order to preserve generality, the commit
processing framework is built under the assumption that mobile hosts can use just about any of
the well-known ad-hoc communication protocols, and the rationale behind the employment of a
decision algorithm is to help protocol and application designers to deal with commit processing
in distributed mobile environment when neither standard nor ad-hoc communication is
available.

As a general conclusion from our simulation-based performance analysis, the partial
contribution of (i) ad-hoc communication between mobile hosts and (ii) the employment of an
appropriate decision algorithm for mobile host agents is counter proportional: when the level of
ad-hoc support is lower, the impact of the employment of a decision algorithm on the mobile
transaction commit rate is stronger and vice versa. Nevertheless, conjointly, they substantially
improve transaction commit rate when compared to the standard Two-Phase Commit (2PC)
protocol. Moreover, there is a threshold effect on the connection timeout values: below the
threshold the ad-hoc communication contribution increases with the timeout value, whereas
above the threshold the contribution is close to a limit – additional increase in the overall
mobile transaction commit rate can be seen only with the employment of a decision algorithm.

In our future work we plan to expand the parameters that the decision algorithm uses for
decision making on behalf of a MH, as well as to employ the class of Deterministic and
Stochastic Petri Nets (DSPNs) for modeling and analysis of the Connection Fault-Tolerant
commit processing framework (e.g. deterministic transitions – to capture the timeout
mechanisms, and exponential transitions – to capture the interarrival times of transactions, as
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well as the stochastic nature of random network disconnections), in order to evaluate a range of
availability, reliability, performance and performability measures.
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