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ABSTRACT 

The recent innovations in wireless technology and digital electronics have opened many areas of 

research in Wireless Sensor Networks. In the last few years these networks have been successfully used 

in many applications such as localization, tracking, surveillance, battlefield monitoring, structural health 

monitoring, routing etc. Most of these applications need localization i.e. estimating location information 

either relative or absolute. In this paper we propose a computationally efficient algorithm namely, Light 

weight Multidimensional Scaling. This approach takes advantage of Nystrӧm approximation for 

estimating location of unknown sensor nodes, using the information of available distances between 

neighbours and anchors. Various node densities, noise factors and radio ranges are considered  for 

simulation. The performance of the algorithm is obtained with Monte Carlo Simulation.  

KEYWORDS 
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1. INTRODUCTION 

Wireless Sensor Networks (WSNs) is a fast growing field which incorporates sensing, 

computation, and communication into a single tiny device. With the development of MEMS 

technology, advancement in digital electronics, and wireless communications, it has been 

possible to design small size, low cost energy efficient sensor nodes. These could be deployed 

in different environments and serve many applications such as military [1], environmental [2], 

structure [3], safety and security [4] etc. WSNs are specifically important in the remote or 

hazardous environment. Mostly, nodes are spread across the field in hundreds or in its 

multiples. The localization issue becomes important in case of uncertainty about some location 

in critical applications. If the sensor network is used for monitoring an event in a building, the 

exact location of each node can be known. However, if the sensor network is used for 

monitoring an event in a remote area like forest, nodes could be deployed from an airplane. In 

such case, the precise location of most of the sensors is unknown. With the help of all the 

available information from the nodes, an effective localization algorithm can compute all the 

positions. From last few years location based services have gained considerable attention from 

the researchers, and a lot of contribution have been made. Currently reported services and 

applications consists of  coverage analysis [5], location-aware applications [6], environmental 

monitoring [7], target tracking [8], intrusion detection [9], location based routing [10] etc. A 

detailed survey of localization algorithms is provided in [11]. Localization algorithms enable 

nodes to automatically determine their relative positions after deployment. The localization 

algorithm should possess following characteristics: 
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•  Energy efficiency (less computation, and communication) 

• Self-organization (independent of global infrastructure) 

• Robust (being tolerant to range errors, and node failures), 

 

We propose an algorithm based on Nystrӧm approximation of the eigenvectors of the large 

matrix. It is a variant of Classical Multidimensional Scaling (CMDS) which not only preserves 

all of its attractive properties but also is computationally efficient. It is a two phase approach. In 

the first phase, initial estimates are obtained with Nystrӧm approximation. These are further 

refined using least square optimization in the second phase. Later, transformation is  performed 

to convert the local to global map. The paper is organized as follows. In Section II, we review 

the literature of localization in WSNs. In Section III, we give the details of our proposed 

algorithms. Section IV presents the simulation results and we conclude the paper in Section V. 

2. RELATED WORK 

The localization methods are broadly divided into range based methods that compute an 

estimation of the distances between two motes, or range-free methods, that depend on range 

measurements. Range-based algorithms are based on hardware support by applying methods 

such as time of arrival (TOA) [12], time difference of arrival (TDOA) [12], angle of arrival 

(AOA) [12], or radio signal strength indicator (RSSI) [13] technologies. On the contrary, range 

free algorithms are based on information of hop count or connectivity [14-15]. 

      To obtain the location information, the Global Positioning System (GPS) [16] could be 

used. However, there are limitations on use of GPS. It is not a cost effective solution for large-

scale ad-hoc networks in terms of price and energy. To assist in estimation of absolute 

positions, a limited number of nodes whose position is known a-priory called anchors can be 

used. Anchors are supported by GPS or with manual configuration their location is obtained. 

Most of the localization research has been carried out using anchor based approach [15-16, 22-

24]. 

     The localization algorithm initially collects the distance information, and the number of 

anchors, localization algorithm can be applied to estimate the location of the remaining nodes 

of the network. There are several approaches developed by researchers in the literature of 

localization. For example Doherty et al. [18] provides a centralized method of the convex 

optimization for position estimation and proposes a set of convex constraint models. Nodes 

which are in the range of each other lie in a proximity constraint. To estimate globally optimum 

solution, this convex constraint problem has been solved by semidefinite programming (SDP). 

The localization problem has been formulated as linear programming model for directional 

communication which is further solved by interior point method. This method needs to place 

anchors at outer boundary preferably at the corners. If all anchors are placed at interior of the 

network, the position estimation of outer nodes moves towards center showing large estimation 

error. This technique has been extended by Biswas [19] with the non-convex inequality 

constraints. Basically, this technique converts the non-convex quadratic distance constraints 

into linear constraints with introduction of relaxation to remove the quadratic term of the 

equation. The distance measurements among nodes have been modeled as convex constraints, 

and to estimate the location of nodes semidefinite programming methods were adopted. 

Biswas's method was further improved by Tzu-Chen Liang [20], using a gradient search 

technique. An approach with triangulation is presented in [21] called (APS) ‘Adhoc Positioning 

System’. Three methods have been proposed by authors namely, DV-Hop, DV-Distance and 

Euclidean distance. DV - Hop method uses only connectivity information, whereas DV-

Distance uses the distance measurements between neighbouring nodes, and Euclidean uses the 

local geometry of the nodes. Initially anchors flood their location to all the nodes in the network 
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and every unknown receiver node performs triangulation to three other anchor nodes to 

estimate the position. With anisotropic or irregular network topology, these methods do not 

perform well. A two phase multilateration based algorithm called Hop-TERRAIN is proposed 

in [22]. The first phase is similar to the DV-Hop [21], which does initial estimate of positions. 

In second phase, with the measured ranges and the location estimates of connected neighbours, 

each sensor refines its estimation iteratively by triangulation. However, it only works for well 

connected nodes. In [23], authors have presented a triangulation based approach, where a 

technique of iterative multiplication is used. It provides good results with more anchors.  Nodes 

connected to 3 or more anchors compute their position by triangulation and upgrade their 

location. This position information is used by other unknown nodes for their position estimation 

in the next iteration. The algorithm of APS is refined using trilateration by adjustment called as 

LATN in [24]. In this method with DV-Hop or DV-Distance the positions are estimated and 

trilateration is performed on unknown nodes for reducing the localization error. The least 

squares estimation with Kalman filter approach is used by Savvides [25] to locate the positions 

of sensor nodes to reduce error accumulation in the same algorithm. This method also needs 

more number of anchors to work well than other methods. Shang et al [14] presented a 

centralized algorithm based on MDS, namely, MDS-MAP(C). Initially, using the connectivity 

or distance information, a rough estimate of relative node distances is obtained. Then, MDS is 

used to obtain a relative map of the node positions and finally an absolute map is obtained with 

the help of anchor nodes. The initial location estimation is refined using least square technique 

in MDS-MAP (CR) [26]. Both techniques work well with few anchors and reasonably high 

connectivity.  

      Shang et al. [27] proposed an improved version of MDS-MAP(C,R), called MDS-MAP (P), 

which eliminated the requirement of global connectivity information and centralized 

computation. Here, an anisotropic sensor network is divided into a number of small regions, 

where each one is considered to be locally isotropic. Relative local maps are formed, and 

merged into a global map. With this step, the characteristics of anisotropic were retained in the 

global map, and accuracy is improved. However, due to the error propagation during the 

merging process, its performance is affected. 

      In this paper, we present an energy efficient algorithm for localization of nodes using 

Nystrӧm approximation namely Light Weight MDS (LwMDS).  

3. PROPOSED ALGORITHM 

Multidimensional scaling methods are said to be computationally intensive since these use 

singular value decomposition (SVD) of full distance matrix. With the proposed method, we 

have shown that all unknown node locations can be estimated even with partial distance matrix. 

This can be achieved with Nystrӧm approximation. The anchor-anchor node distances and 

anchor to non-anchor node distances are required to estimate locations approximately. The 

aforementioned approach also uses classical multidimensional scaling. However, there is a 

significant difference between Nystrӧm approach and CMDS based approach. In CMDS based 

methods, SVD is required to be applied on full distance matrix. This makes MDS 

computationally intensive for real time use with large number of nodes, especially when these 

are in thousands. With Nystrӧm approach, the SVD is applied on anchor to anchor distance 

matrix only, thus reducing its computational complexity. Due to this property, the algorithm is 

named as Light Weight MDS (LwMDS). In this section a brief review of CMDS and its 

relation with Nystrӧm approximation is presented. The proposed algorithm is described later. 
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3.1 Review of Classical MDS 

MDS has its origin in psychometrics and psychophysics [30]. In the literature of localization, 

a number of techniques have been reported which use Multidimensional scaling. It is a set of 

data analysis techniques which display distance like data as geometric structure. This method 

is used for visualizing dissimilarity data. It is often used as a part of data exploratory 

technique or information visualization technique. MDS based algorithms are energy efficient 

as communication among different nodes is required only initially for obtaining the inter-node 

distances of the network.  

      Multidimensional scaling algorithms map a distance matrix D between N items to a d 

dimensional coordinate vector for each item. Entries in dissimilarity matrix are Euclidean 

distances. 

Classical MDS consist of four steps: 

1. Obtain the distance matrix D of Euclidean distances. 

2. Apply double centering to this matrix.  Double centering the distance matrix, converts it to a 

new matrix B as shown in equation (1)- 
2 2 2 21/2( )

ij ij i i ij i j ij i ij ij
B D e cD e c D cc D= − − − +∑ ∑ ∑                     (1.1) 

Where ei   is the vector of ones.  

The term 
i

i

c∑ =1, and its parameters determine the origin of the coordinate vectors. The 

matrix B, also known as Gram or kernel matrix is a matrix of dot products between coordinate 

vectors in that space [30].  

3. Extract coordinate vectors from kernel matrix B using eigenvector decomposition. 
T

B Q Q= Λ                        (1.2) 

Where Q is a matrix whose columns are orthonormal eigenvectors and Λ is a diagonal matrix of 

eigenvalues. The d dimensional coordinate vectors that form kernel matrix B can be seen as 

scaled rows of Q.  From the matrix Λ, highest d values are retained in order to minimize the 

difference between original and embedded distances for d dimension. For d dimensional 

extraction of coordinate vectors, we get two equations.  

ij j i
x Qλ=               (i=1, 2…..N; j=1,2,…p)                             

(1.3)
  

Where λ1  and λ2 are first and second eigen values of the matrix Λ respectively. 

3.2 Sensor Position Estimation by Nystrӧm Approximation and MDS 

We use an approach from physics called Nystrӧm approximation [31]. This approximation 

assumes that Gram matrix is positive semidefinite. 

      Consider a network of N sensors with n beacons of known positions and (N-n) of unknown 

positions, present in a d dimension (2D or 3D). Let X and Y be the coordinate matrices of 

beacons and sensors of size n x d and (N-n) x d respectively, and [X
T
 Y

T
]

T
  be the overall 

coordinate matrix. The inner product between their coordinates is given by KM = [X Y] [XT 

Y
T
], which can be decomposed into four block sub-matrices [32], A = XX

T
, Z = YX

T
, C= YY

T 

as below. 
 

 

                                                                                                                                                                (1.4) 
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Where A and E have dimension n x n; Z and F have dimensions n x (N-n) and C and G have 

dimension (N-n) x (N-n). As mentioned before matrix KM is a product of dot matrix, thus can 

be expressed in terms of dot products of columns of matrices X and Y as in (1.5). 

As the matrix A=X
T
X is a standard form of CMDS, the solution for X can be obtained by eigen 

decomposing A: 
T

A UVU=                                                                                                                                  (1.6) 

Where U is a matrix whose columns are orthonormal eigenvectors and V is a diagonal matrix of 

eigenvalues. The coordinates can be obtained using (1.7) 
T

d dX V U=
                                                                                                                             

(1.7) 

Where the subscript d is corresponding to dimension, first d largest positive eigen values. The 

coordinates of Z can be derived by solving the linear system as shown in (1.8) 

ij j ij
x v U=                                            if i≤n                                                                     (1.8) 

      /
di dj j

d

Z U v=∑                      Otherwise 

Where Uij is the i
th
 component of j

th
 eigenvector of A and vj is j

th
 eigenvalue of A. Subscript J 

varies from 1 to d, according to d dimensions. 

 

                                                                                                                              (1              (1.9) 

 

To find relation between Nystrӧm approximation, and MDS   method, one has to consider sub- 

matrices E and F in place of A and Z. The centering coefficients in equation (1.1) can now be 

changed as in (1.5). 

            ci     =        1/n                       if i≤ n  

     =           0                      Otherwise                                                                       (2.0) 

 

Thus the centering formulas for A and Z in terms of E and F are : 

2 2 2 2

2
,

1 1 1 1
( )

2
ij ij i dj j iq ij

d q d q

A E e E e E E
n n n

= − − − +∑ ∑ ∑                                 (2.1) 

2 2 21 1 1
( )

2
ij ij i qj j id

d q

Z F e F e E
n n

= − − −∑ ∑                                                                                      (2.2) 

Constant centring term is dropped from (2.2) as it causes irrelevant shift of origin. The 

dimension, i varies from 1 to N, d varies from (N-n) to N. Thus, as can be seen from equation 

(1.8), advantage of Nystrӧm method is, coordinates of sensors can be computed using only the 

information in A and Z matrices. 

Since these coordinates are determined in the space by the eigenvectors, it is necessary to 

perform a final step of mapping them, with an affine transformation, into the initial space of 

anchors.  

3.3 Light Weight MDS Algorithm (LwMDS) 

Assume that nodes are randomly scattered in the region of consideration. Let pij refer to the 

proximity measure between objects i and j. The simplest form of proximity can be represented 

using Euclidean distance between two objects. This distance in m dimensional space is given by 

(2.3)  

A Z 

Z
T
 Z

T
 A

-1 
Z 

 

B= 
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2

1

( )
m

ij ak bk

k

d X X
=

= −∑                                                                                  (2.3) 

Where, Xa (xa1 ; x a2 ;…. x am ) and Xb (xb1 ; x b2 ;…. x bm )  are distance vectors. 

 

The steps of LwMDS are illustrated as below: 

 

Phase 1: 

 

Step 1:  

For a given region compute the shortest paths between every pair of nodes. These shortest 

path distances are used to construct the distance matrix to be used for LwMDS. In this step 

we assign distances to the edges of graph, if available. Remaining entries in distance 

matrix are marked as infinity. The matrix completion is accomplished with Floyd’s 

algorithm.  
2 2

12 1

2 2 2

21 23 2

2

2 2 2

1 2 3

0 .. ..

0 ..

.. .. 0 .. ..

.. .. .. 0 ..

.. 0

n

n

n n n

d d

d d d

D

d d d

 
 
 
 =
 
 
                                                                                             (2.4)

 

The time complexity of the aforementioned algorithm is O(N3),where N is number of 

nodes. 

Step 2: 

Apply MDS to the anchor-anchor distance matrix. Retain first two or three largest eigen-

values and eigenvectors according to the requirement of dimensions (2D or 3D).  Let A be 

such distance vector. Applying SVD to A yields, 
T

A UVU=                                          (2.5) 

Obtain the local coordinates with T

d d
X V U=  with first d largest positive eigen values . 

This step reduces complexity with large factor. As complexity of CMDS is dominated by 

eigenvalue problem, for a fully symmetric matrix [NxN] ,it costs O(N
3
) for N number of 

nodes,whereas for LwMDS it is O(n3)(n is number of anchors). 

Step 3: 

Using Nystrӧm approximation to anchor node’s distance matrix, obtain the embedding of 

(N-n) sensor nodes, and relative map of N nodes with equations expressed in (1.8). 

Phase 2: 

Step 4: 

Apply least square minimization to refine estimated positions. 

This step includes refinement of estimated positions to improve the absolute map. The least 

square minimization algorithm is used to minimize the error between estimated and true 

positions. The complexity of this method is O(n3). Least square minimization problem has 

lots of local minima and with random starting points a wrong solution may be obtained. 

However, positions provided by CMDS have proved to be good starting points for 

minimization problems [26].   

Step 5: 

With the information of absolute positions of anchor nodes transform relative map to 

absolute map. This step converts relative map to absolute map. This transformation 

includes scaling, rotation, reflection etc. This step is necessary to minimize the sum of 

squares of errors between actual positions of anchors and their relative positions in the 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 5, October 2011 

43 

 

 

 

 

MDS map. For n number of anchor nodes, this transformation computation takes O(n
3
) 

time. Applying this transformation to the whole relative map takes O(N) time. 

4. SIMULATION  RESULTS 

The density of nodes is varied from 50-200, and are considered to be placed randomly with a 

uniform distribution in a square area with some ranging errors. In a square area of l unit length 

n
2
 nodes are placed in nl by nl square. The radio range is R. The actual distance is blurred with 

Gaussian noise. Uniform radio propagation is considered. The noise is added to radio range 

from 5% to 20%.  Number of anchors is varied from 4 to 10. The Monte Carlo simulation have 

been performed, and the number of simulations for each experiment is set to 30. We have 

compared our results with MDS-MAP(C,R). Results of LwMDS for 200 nodes with isotropic 

topology are presented here. 

 
Figure 1: Isotropic network with average connectivity of 12 

 

Fig.(1) shows a similar scenario for 200 nodes spread randomly in a square area of 10 units X 

10 units. Stars (*) depict nodes and lines are the radio link between nodes forming the 

connectivity of 12. Diamonds are anchors selected randomly. With various radio ranges the 

connectivity level has been estimated with 200 nodes, and it is observed that the network 

becomes fully connected from the connectivity of greater than 12.  

 
Fig.2: Participation of nodes in the  network connectivity 

The fraction of nodes participating in the network connectivity with increasing radio range is 

shown in Fig (2). As can be seen, with the average connectivity of 10, for radio range of 1.3, 

about 195 nodes take active part in forming the network. As the radio range is increased to 1.5 

all the nodes come into the network. The full connectivity of network for all possible scenarios 

of simulation is obtained from connectivity of 20 onwards. We have estimated the embedding 
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of nodes and the error in estimation for these connectivities. The performance measure used for 

comparison of errors is Root Mean Square Error (RMSE).  

2 2[( ) ( ) ] /RMSE X X Y Y Ni j i j= − + −∑
 

  Where (Xi, Yi) are estimated locations, (Xj, Yj) are corresponding true locations, and N is 

number of nodes.  

     The LwMDS in its first phase computes initial locations with Nystrӧm approximations. 

Instead of working on full [N x N] distance matrix, as discussed earlier, only [nx(N-n)] part of 

the matrix is used  to find embedding, where N is number of nodes and n is number of anchors. 

As can be seen from Fig.(3), the RMSE is about 20% for connectivity of 21.6. This graph 

shows the RMSE of embeddings after converting it to absolute map with the help of available 

anchor nodes. The error goes on decreasing as the connectivity increases. After refinement with 

least square optimization the error reduces to 0.81R%.   The second and third graph shows the 

performance of LwMDS and MDS-MAP (C, R). The error difference between the last two 

graphs is very less, as can be seen from Fig.(3) and Fig.(4).  
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Figure 3(a): Average connectivity Vs RMSE with 5% Range error 
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Figure 3(b): Average connectivity Vs RMSE with 5% Range error 

From these  two graphs, it is apparent that whenever there is full connectivity, using only the 

partial distance matrix [n X (N-n)] also, almost same results are obtained as that of MDS-

MAP(C,R). The main bottleneck of computation in CMDS is of computation of eigen values. 

The complexity reduces at this step drastically.  
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Figure 4(a): Average connectivity Vs RMSE with 5% Range error, and 6 anchors 

 

The performance of LwMDS and MDS-MAP is observed with increasing number of anchors to 

6, keeping the range error to 5% as shown in Fig.(5). The difference in the RMSE of both the 

algorithms is very narrow as shown in Fig. (6). It proves here that even though the complete 

distance matrix is not used for computation of embedding, the performance of the algorithm is 

not hampered.     
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                              Figure 4(b): Average connectivity Vs RMSE with 5% Range error 

With increase in anchors the RMSE reduces. With LwMDS it is reduced to 0.81R% from 

0.91R% for the average connectivity of 21.6 as shown in Fig.(5). 
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Figure 5:  Range Error Vs RMSE with average connectivity of 26.9 
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The effect of varying range error on RMSE can be observed from Fig. (6). As the range error is 

increased the RMS error also goes on increasing. This figure shows for the average 

connectivity of 26.9, the effect of increasing range error with increasing anchors.  
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Figure 6: Average connectivity Vs RMSE with 5% Range error 

With four number of anchors, and 5% range error, the average estimated location error obtained 

for LwMDS is 0.8R% , and for  MDS-MAP it is 0.85R% . As the range error is increased to 20% 

this error increases to 3.8R%, and 3.9R% respectively. As the number of anchors is increased to 

six and ten, the RMS error with 5% range error reduces to 0.72%R and 0.68R% respectively. 

Observing all these figures, it can be noted that there is no much difference in the average 

estimation errors of the LwMDS and MDS-MAP with increasing range error, or number of 

anchors. Showing clearly, the Light Weight MDS can also be used for estimation with same 

effectiveness as that of MDS-MAP. This reduces the complexity as discussed before. 

 

 
Fig(7)                                               Fig(8)               

Figure (7,8): Scatter plot of localized nodes before  and after refinement 

 

   The scatter plot of original nodes and its estimated locations is shown in figure (7) before 

refinement. Original location of nodes is shown by diamond (◊), and star (*) shows estimated 

locations. Solid diamonds are anchors. The line joining these two is error in estimation. Longer 

the line larger is the error. The RMSE is 0.266 R% for this scenario. This estimation has been 

refined with least square optimization. The scatter plot of the final localized nodes after 

refinement is shown in the Fig. (8). The RMSE is 0.0138R % for this arrangement of nodes. 
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CONCLUSIONS 

Multidimensional scaling based localization methods are one of the robust methods in the 

literature. However, these methods are computationally intensive. In this paper, we have 

proposed a comparatively less complex approximation namely Light weight MDS using 

Nystrӧm approximation for finding location estimation of unknown sensor nodes. Through 

extensive simulations, we have shown that, even if the distance matrix of anchors is available, 

with the help of Nystrӧm approach, the full embedding can be obtained, which reduces the 

complexity drastically without much affecting the location estimation.   
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