
International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 4, August 2011 

DOI : 10.5121/ijwmn.2011.3402                                                                                                                16 

 

 

 

ANALYTIC STUDY OF SYNCHRONIZATION ERRORS 

IN OFDM SYSTEMS APPLIED ON WLAN 

TRANSCEIVER 

Mourad MELLITI
1
, Salem HASNAOUI

1
 and Ridha BOUALLEGUE

2 

1
Department of Computer and Communication Technologies 

National School of Engineering of Tunis (ENIT) 
mourad.melliti@enit.rnu.tn, salem.hasnaoui@enit.rnu.tn 

2
6'Tel Research Unit, Higher School of Communications of Tunis, Sup'Com, Tunisia 

ridha.bouallegue@supcom.rnu.tn 

Abstract 

In this paper, a new energetic approach was developed to study the impact of synchronization errors on 

OFDM transmission systems. Indeed, this approach can be applied in wireless communication systems 

such as HiperLAN and WLAN Transceivers. Firstly, the studies were conducted on the impact of timing 

errors on system performance and we have shown that stress recovery sampling frequency were 

particularly hard because of the use of a minimum number of pilot symbols and a maximum number of 

states of the constellations. The mathematical approach we followed in this paper which is an original 

contribution in the RF field can jointly estimate the channel response and the frequency offset. We 

realized, along with mathematical analysis, simulations to evaluate the performance of our approach. 

The results can evaluate the performance of the system against synchronization effects. 
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1. INTRODUCTION 

Several previous studies have investigated and presented general specifications of OFDM 

systems and identify RF synchronization objectives associated with them. For this reason, it 

appears that a detailed mathematical analysis of synchronization errors on transmission systems 

is unavoidable. Indeed, this paper outlines specific problems related to time and frequency 

offsets at the reception of the OFDM signal which is superimposed with phase noise from a 

local oscillator located in the receiver. Two phase error effects must be distinguished: 

interference between carriers and the common phase error. A mathematical analysis will be 

introduced in this paper to show the quantitative importance of these effects. Among the goals 

of this work is to demonstrate that the phase noise was not an obstacle in the implementation of 

a complete digital transmission system and it is essential to carefully evaluate the effects of 

synchronization errors caused by noise due to channel estimation errors, phase noise, frequency 

offset, the frame errors and the time lag in the design of receivers. 

2. ENERGETIC ANALYSIS OF ERRORS ON THE PERFORMANCE 

DEGRADATION OF OFDM SYSTEMS 

In the following paragraph we will analyze and quantify the various errors that may occur 

during a transmission OFDM applied to our architecture and caused by a non-ideal 

synchronization in the placement of the FFT window, the problems of synchronization clock, 

and the problems of channel estimation. For these studies we illustrate below some concepts to 
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be introduced and some formulas that are necessary to be mentioned and that will be useful 

throughout the remainder of this paper. Consider the following report introduces the ideal 

relationship between the ideal SNR and the real SNR and recall that the actual signal to noise 

ratio means the quality of a transmission of information compared to parasites [1] [2] [3]: 

real

ideal

γ

γ
γ =∆      (1) 

The signal to noise ratio in the case of a perfect synchronization can lead to the following 

relation while considering that the only disturbances are caused by a Gaussian channel: 

2
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idéal
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γ =       (2) 

While the signal to noise ratio with a non-ideal synchronization is given by the following 

relation: 
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While: 

γ∆  SNR Loss due to non-ideal synchronization 

sE  Averaged received symbol energy 

2

AWGNσ  Noise power (AWGN) 

2

εσ  Is the sum of the different sources of disturbance other than the AWGN as: 

222222

fdtphh σσσσσσ ε ++++= Ω     (4) 

Where: 

 
2

hσ   Due to channel estimation error 

2

phσ
 

Due to phase noise 

2

Ωσ
 

Due to frequency offsets 

2

tσ
 

Due to frame and timing errors 

2

fdσ
 

Due to fast fading 

The report given by equation (3.1) can be reproduced by introducing the concepts of powers of 

the noise data distributed by equation (3.4) as follows: 
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Naturally if we raise the ratio of SNR loss in case of bad timing by the maximum loss in SNR as 

follows: 

max)( γγ ∆≤∆      (6) 
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Then equation (3.5) leads us to increase the following report: 

{ }1)(.);( max

222 −∆≤ γσσσ ε AVGNAVGNsE     (7) 

2. QUANTIFICATION OF SYNCHRONIZATION ERRORS ON THE SHIFT FRAMES 

Before addressing the various cases of lag on the arrival of frames at the receiver we will recall 

the waveform received with cyclic prefix, which can be written as a vector of symbols that is 

reflecting the simplified expression of the signal at the receiver input and resulting in the 

following simplified form [4] [6] [7]: 
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After FFT processing the form of this vector of received symbols becomes: 
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The time lag of one symbol is expressed by introducing a time error
STδ  in the entire duration 

of the symbol which becomes 
St T)( δε + where tε  is an integer and δ  belongs to [ ]1,0 . 

2.1. Errors for a non-frequency selective channel 

Now treat the case where the channel is not frequency selective 
0>tε

 as shown in Figure 1 

below: 

 

Figure 1. Cas d’un canal non sélectif en fréquence pour 0>tε  
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Where 
N

N tε− in Part 1 is the coefficient showing the loss of signal and N

kj t

e

επ2

 is the phase shift 

term. So the quantization errors on the time lag expressed by calculating the variance of the last 

two terms Part 2 and Part 3 of the previous relation : 
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2.2. Errors of a noiseless non-frequency selective channel  

In the case of a noiseless non-frequency selective channel we will rely on the assumptions of 

non-selectivity following: 

),(),( thth =τ  snTtnnnn thhNnhxy
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We can write the vector of received symbols as follows:
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We replace xn by its value, and then we can rewrite the vector of received symbols as follows: 
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Otherwise in writing, the vector of received symbols can be separated into two components to 

make appeared the ICI noise related to the additive white Gaussian noise (AWGN) [1] [3] [9] 

[10] [11] [13]. 
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Now energetically, we can simplify the power of the fast fading by calculating the variance of 
the noise component in the vector of received symbols given by the following relation: 
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2.3. Errors of a noiseless frequency selective channel  

In this section we will develop equations for the effect of a noiseless frequency selective 

channel as in the previous paragraph we quantify the power of synchronization effects related to 

interference from the temporal selectivity. 

Let the following assumptions: 
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However, according to the above assumptions and substituting its value is obtained: 
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This gives a new expression vector symbols as: 
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Where the final expression vector of received symbols: 
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Where the energy quantization of the ICI effects caused by selectivity 2

fdσ : 
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3. QUANTIFYING OF THE LOCAL OSCILLATOR ERRORS 

In practice, we use oscillators that are subject to phase noise, a random perturbation of the sine 

wave phase stationary [7] [12] [14]. Since we will keep the assumption that uses modules of the 

FFT and IFFT for modulation and demodulation of the OFDM signal and to introduce the 

notion of error, we will resume the received signal with a phase noise and frequency offset is:  
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The carrier can be developed with a frequency offset and phase noise as follows: 

)(2)(,
))(2(

ttte f

ttfj o ϕπδθθπ +=+
   (33) 

Where 
∆f  characterizes the frequency offset and )(tϕ  

characterizes the phase noise when 

πϕ 2)( <<t  all assuming that the disturbances caused by the random process are relatively 

small. Then we can write: 

     ���(�) ≈ 1 + 
�(�)     (34)

   

Where the carrier will have the following form:  

��(������(�)) ≈ ���(�����)�(1 + 
�(�))   (35) 
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Where ∆
f and )(tϕ  characterize the overall effects of the oscillators of the transmitter and 

receiver �� characterized by the use of ppm (part per million) for example: if GHzf 4,2
0

= then 

KHzppm 8,63 ±→±
 

)(tϕ  Is a stationary process broadly characterized by a spectral density function such as:  
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With ( ) [ ])()( τϕϕτϕ += ttER  Where C: is the carrier power, F {.} is the Fourier transform and 

E [.] is the expectation which the shape of the spectral density power oscillator types is 

illustrated in Figure 2. According to the model proposed in [34] we have:  
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Figure 2. PSD of phase noise in a typical oscillator. 

Typical values are: KHzfKHzfcba 10,15.10,4,5.6
21

===== Where c is the background  

4. QUANTIFICATION OF FREQUENCY OFFSET ERRORS 

The OFDM systems are very sensitive to frequency shifts. In Indeed, if such shifts are not 

compensated, the subcarriers lose their orthogonality and receiver performances are thereby 

degraded[15] [16] [17] [18]. Quantization errors due to degradation performance due to a 

frequency offset is developed in following paragraphs.  

The components of the vector of received symbols are of the form: 
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By replacing n
y  by its expression can then rewrite the vector of received symbols as follows: 
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This can also be written: 
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This gives: 
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Writing that can be analyzed according to the value of Ωε  

Where Ωε  is an integer then we have: 
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Which gives: 
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Where Ωε is not an integer then we have: 
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By mathematical simplification we can write: 

   

N

j

jN

n

N

nj

e

e

N
e

N Ω

ΩΩ

−

−
=∑

−

=
πε

πεεπ

2

21

0

2

1

111
    (45) 

This can also be written in another way: 
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After change of variables we can write: 
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We can write the increases relationship as follows: 
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Based on the following assumptions and introducing the concept of energy per symbol and 

always under the assumption of independent white symbols having the same energy, we get[1] 

[2] [7] [8] [11] [15] [19]: 
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For an ideal channel, we can write: 
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Numerically, it was determined in [37] that the sum shown in equation (50) is increased by 

0.5947 for this case can be rewritten as: 
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HXEs = : is the average energy received. Equation (54) gives directly 
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Figure 3. Degradation of signal to noise ratio due to frequency offset, for N = 256, K= 96 for 

two values of 13dB and ES/N0 be 25 dB.  

5. CONCLUSION 

In this paper we presented several approaches for time and frequency synchronization on the 

OFDM transmission systems which can be applied on wireless communication systems such as 

HiperLAN WLAN. First, studies that we conducted on the impact of errors synchronization on 

system performance have shown that stress recovery sampling frequency were particularly 

harsh because of the use of a number Minimum pilot symbols and a maximum number of states 

constellations. The mathematical approach that we followed during this chapter provides a joint 

estimate of the channel response and frequency shift of the clock which is an original 

contribution. We conducted parallel to mathematical analysis, simulations to evaluate relative 

performance approaches presented in terms of estimators of the frequency approach, the results 

obtained allow devalue the performance of the system to synchronization effects. 
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