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ABSTRACT 

Communication protocols for mobile ad hoc networks (MANETs) follow either an Optimum Routing 

Approach (ORA) or the Least Overhead Routing Approach (LORA): With ORA, protocols tend to 

determine and use the optimal communication structure at every time instant; whereas with LORA, a 

protocol tends to use a chosen communication structure as long as it exists. In this paper, we study the 

impact of the ORA and LORA strategies on minimum hop routes and minimum connected dominating sets 

(MCDS) in MANETs. Our primary hypothesis is that the LORA strategy could yield routes with a larger 

time-averaged hop count and MCDS node size when compared to the minimum hop count of routes and 

the node size of the MCDS determined using the ORA strategy. Our secondary hypothesis is that the 

impact of ORA vs. LORA also depends on how long the communication structure is being used. Our 

hypotheses are evaluated using extensive simulations under diverse conditions of network density, node 

mobility and mobility models such as the Random Waypoint model, City Section model and the 

Manhattan model. In the case of minimum hop routes, which exist for relatively a much longer time 

compared to the MCDS, the hop count of routes maintained according to LORA, even though not 

dramatically high, is appreciably larger (6-12%) than those maintained according to ORA; on the other 

hand, the number of nodes constituting a MCDS maintained according to LORA is only at most 6% 

larger than the node size of a MCDS maintained under the ORA strategy.  
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1. INTRODUCTION 

A mobile ad hoc network (MANET) is a dynamic distributed system of wireless nodes that 

move independently of each other. Routes in MANETs are often multi-hop in nature due to the 

limited transmission range of the battery-operated wireless nodes. MANET routing protocols 

are of two types [1][2]: proactive and reactive. Proactive routing protocols determine routes 

between every pair of nodes in the network, irrespective of their requirement. Reactive or on-

demand routing protocols determine routes between any pair of nodes only if data needs to be 

transferred between the two nodes and no route is known between the two nodes. Proactive 

routing protocols always tend to maintain optimum routes between every source-destination (s-

d) pair and this strategy is called the Optimum Routing Approach (ORA) [1][3]. In this pursuit, 

each node periodically exchanges its routing table and link state information with other nodes in 

the network, thus generating a significantly larger control overhead. On the other hand, reactive 

routing protocols use a Least Overhead Routing Approach (LORA) [1][3] wherein an s-d route 

is discovered through a global broadcast flooding-based route discovery process and the 

discovered route is used as long as it exists. With node mobility, an s-d route determined to be 
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optimal at a particular time instant need not remain optimal in the subsequent time instants, 

even though the route may continue to exist. Thus, with LORA, it is possible that the routing 

protocols continue to send data packets through sub-optimal routes. On the other hand, with 

ORA, even though, we could send data packets at the best possible route at any time instant, the 

cost of periodically discovering such a route may be significantly high. In dynamically changing 

network topologies, reactive on-demand routing protocols have been preferred over proactive 

protocols with respect to the routing control overhead incurred [4][5].  

From another perspective, among the routing algorithms and protocols proposed for MANETs, 

routing based on a connected dominating set (CDS) has been recognized as a suitable approach 

in adapting quickly to the unpredictable fast-changing topology and dynamic nature of a 

MANET [6]. It is considered adaptable because as long as topological changes do not affect the 

structure of the CDS, there is no need to reconfigure the CDS since the routing paths based on 

the CDS would still be valid. A MANET is often represented as a unit disk graph [7] built of 

vertices and edges, where vertices signify nodes and edges signify bi-directional links that exist 

between any two nodes if they are within each other’s transmission range. In a given graph 

representing a MANET, a CDS is a dominating set within the graph whose induced sub graph is 

connected. A dominating set of a graph is a vertex subset, such that every vertex is either in the 

subset or adjacent to a vertex in the subset [8]. Routing based on a CDS within a MANET 

means that routing control messages will be exchanged only amongst the CDS nodes and not 

broadcast by all the nodes in the network; this will reduce the number of unnecessary 

transmissions in routing [9]. 

There are multiple ways to form a CDS within a given MANET, and the algorithm used for 

CDS formation will affect the performance and lifetime of the CDS and the performance of the 

MANET as a whole. A popular approach in CDS formation is attempting to form the smallest 

possible CDS within a MANET, referred to as a minimum connected dominating set (MCDS). 

Reducing the size of the CDS will mean reducing the number of unnecessary transmissions. 

Unfortunately, the problem of determining a MCDS in an undirected graph like that of the unit 

disk graph is NP-complete [9][12]. Efficient heuristics [10][11][12] have been proposed to 

approximate the MCDS in wireless ad hoc networks. A common thread among these heuristics 

is to give the preference of CDS inclusion to nodes that have high neighborhood density. The 

MaxD-CDS heuristic [9] that we study in this paper is one such heuristic. 

The objective of this paper is to study the impact of adopting the ORA and LORA strategies on 

minimum hop routes and the node size of the MCDS in MANETs. Minimum hop routing is a 

very widely adopted route selection principle of MANET routing protocols, belonging to both 

proactive and reactive categories. Likewise, the primary objective of a majority of the MCDS-

based heuristics is to minimize the number of nodes constituting the CDS. As ORA determines 

the best optimal route at any time instant, our primary hypothesis is that the hop count of 

minimum hop routes and the node size of MCDS discovered under the LORA strategy would be 

greater than those discovered under the ORA strategy. Our secondary hypothesis is that the 

impact of ORA vs. LORA also depends on how long the communication structure is being used. 

We determine the percentage difference in the hop count of minimum hop s-d paths and the 

node size of the MCDS determined under the two strategies. We conduct extensive simulations 

under three different network densities and three different mobility models with three different 

levels of node mobility. The three mobility models [13] used are the Random Waypoint model, 

City Section model and Manhattan model. Even though performance comparison studies of 

individual proactive vs. reactive routing protocols as well as the different CDS algorithms are 

available in the literature, an extensive simulation based analysis on the impact of the ORA and 

LORA strategies on the minimum hop count of routes and the node size of the MCDS 

algorithms has not been conducted in the literature and therein lies our contribution through this 

paper. 
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The rest of the paper is organized as follows: Section 2 discusses the algorithms employed for 

determining minimum hop routes under the ORA and LORA strategies and also illustrates an 

example highlighting the difference between the two strategies and their impact on the hop 

count of s-d paths. Section 3 discusses the algorithms employed for determining MCDS under 

the ORA and LORA strategies and also illustrates an example highlighting the difference 

between the two strategies and their impact on the node size of the MCDS. Section 4 reviews 

the three different mobility models used in the simulations. Section 5 describes the simulation 

environment and presents the simulation results for hop count per s-d path, node size per 

MCDS, path lifetime and network connectivity. Section 6 concludes the paper and lists future 

work. Throughout the paper, the terms ‘node’ and ‘vertex’, ‘edge’ and ‘link’, ‘path’ and ‘route’ 

are used interchangeably. They mean the same. 

2. DETERMINATION OF MINIMUM HOP ROUTES UNDER THE ORA AND 

LORA STRATEGIES 

We use the notion of a mobile graph [14] defined as the sequence GM = G1G2 … GT of static 

graphs that represent the network topology changes over the time scale T, representing the 

simulation time. We sample the network topology periodically, for every 0.25 seconds, which in 

reality could be the instants of data packet origination at the source. Each of the static graphs is 

a unit disk graph [7] of nodes and edges, wherein there exists an edge if and only if the 

Euclidean distance between the two constituent end nodes of the edge is within the transmission 

range of the nodes. We assume every node operates at a fixed transmission range, R. 

For the ORA strategy, we determine the sequence of minimum hop s-d paths between a source 

node s and a destination node d by running the Breadth First Search (BFS) algorithm [15], 

starting from the source node s, on each of the static graphs of the mobile graph generated over 

the entire time period of the simulation. In the case of LORA, if we do not know a path from 

source s to destination d in static graph Gi, we run BFS (pseudo code in Figure 1), starting from 

node s, on Gi and determine the minimum hop path Ps-d from s to d. For subsequent static graphs 

Gi+1, Gi+2, …, we simply test the presence of path Ps-d. We validate the existence of a path Ps-d in 

static graph Gj by testing the existence of every constituent edge of Ps-d in Gj. If every 

constituent edge of Ps-d exists in Gj, then the path Ps-d exists in Gj. Otherwise, we run BFS on Gj, 

starting from the source node s, and determine a new s-d path Ps-d. This procedure is repeated 

until the end of the simulation time. The pseudo code of our algorithms to determine the 

minimum hop paths under the ORA and LORA strategies is given in Figures 2 and 3 

respectively.  

 

Input: Static Graph G = (V, E), source node s, destination node d 

Auxiliary Variables/Initialization: Nodes-Explored = Φ, FIFO-Queue = Φ 

                                                           ∀  node v∈V, Parent (v) = NULL 

Begin Algorithm BFS (G, s, d) 

    Nodes-Explored = Nodes-Explored U {s} 

    FIFO-Queue = FIFO-Queue U {s} 

    while ( |FIFO-Queue| > 0 ) do 

        node u = Dequeue(FIFO-Queue) // extract the first node 

        for (every edge (u, v) ) do // i.e. every neighbor v of node u 

             if ( v ∉ Nodes-Explored) then 

                  Nodes-Explored = Nodes-Explored U {v} 

                  FIFO-Queue = FIFO-Queue U {v} 

                  Parent (v) = u 

            end if 

        end for 
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   end while 
   if ( | Nodes-Explored | = | V | ) then 

         Path Pd-s = {d} 

         temp-node = d 

         while (Parent (temp-node) != NULL) do 

              Pd-s = Pd-s U {Parent (temp-node)} 

              temp-node = Parent (temp-node) 

         end while 
         Path Ps-d = reverse(Pd-s) 

         return Ps-d 

    end if 

    else 

         return NULL // no s-d path 

    end if 
End Algorithm BFS 

 

 

Figure 1: Breadth First Search (BFS) Algorithm to Determine Minimum Hop s-d Path 

 

Input: GM = G1G2 … GT, source s, destination d 

Auxiliary Variable: i, Path Ps-d 

Initialization: i=1; Ps-d = NULL 

Begin ORA-MinHopPaths 

     while (i ≤ T) do 

   Path Ps-d = BFS(Gi, s, d)  

   i = i + 1 

     end while 
End ORA-MinHopPaths 

 

Figure 2: Pseudo Code to Find a Sequence of Minimum Hop s-d Paths under the ORA Strategy 

 

Input: GM = G1G2 … GT, source s, destination d 

Auxiliary Variables: i, j, Path Ps-d 

Initialization: i=1; j=1; Ps-d = NULL 

Begin LORA-MinHopPaths 

     while (i ≤ T) do 
 

         if (Ps-d != NULL) then 

             for every edge (u, v) in Ps-d do 

                 if ( (u, v) does not exist in Gi) then 

                      Ps-d = NULL 

                 end if 

              end for 

         end if 
        if (Ps-d = NULL) then 

      Path Ps-d = BFS(Gi, s, d)  

        end if 
i = i + 1 

     end while 
End LORA-MinHopPaths 

 
Figure 3: Pseudo Code to Find Sequence of Minimum Hop s-d Paths under the LORA Strategy 
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Figure 4: Example to Illustrate the ORA and LORA Strategies for Minimum Hop Routing 

 

Figure 4 is an example to illustrate the difference between the ORA and LORA strategies with 

respect to minimum hop routing. We sample the network topology for five consecutive instants 

of time as shown. The source and destination node IDs are 1 and 4 respectively. We notice that 

under the LORA strategy, we could use path {1 – 2 – 4 – 5} for time instants t1 and t2 and path 

{1 – 7 – 2 – 4} for time instants t3, t4 and t5 respectively. The paths {1 – 2 – 4 – 5} and {1 – 7 – 

2 – 4} appear to be the best possible minimum hop paths at the time of discovery, i.e., at time 

instants t1 and t3 respectively. Nevertheless, after each of these paths is chosen at a particular 

time instant, we notice the emergence of relatively shorter paths (i.e., with a lower hop count) in 

the static graphs captured at subsequent time instants. But it is not possible to use these paths 

under the LORA strategy. With ORA, the strategy is to capture the minimum hop paths at every 

time instant. 

3. DETERMINATION OF MINIMUM CONNECTED DOMINATING SETS UNDER 

THE ORA AND LORA STRATEGIES 

The algorithm used to approximate a MCDS is referred to as the MaxD-CDS algorithm [9] as it 

prefers to include nodes that have a larger number of uncovered neighbors (density) to be part of 

the CDS. The MaxD-CDS algorithm uses the following principal data structures:  

(i) CDS-Node-List – includes all nodes that are members of the CDS 

(ii) Covered-Nodes-List – includes all nodes that are in the CDS-Node-List and all nodes 

that are adjacent to at least one member of the CDS-Node-List. 

 
Before we run the MaxD-CDS algorithm, we make sure the underlying network graph is 

connected by running the Breadth First Search (BFS) algorithm [15]; because, if the underlying 

network graph is not connected, we would not be able to find a CDS that will cover all the 

nodes in the network. We run BFS, starting with an arbitrarily chosen node in the network 

graph. If we are able to visit all the vertices in the graph, then the corresponding network is said 

to be connected. If the graph is not connected, we simply collect a snapshot of the network 

topology at the next time instant and start with the BFS test. The pseudo code for the BFS 

algorithm is given in Figure 5. 
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Input: Graph G = (V, E) 

Auxiliary Variables/Initialization: Nodes-Explored = Φ, FIFO-Queue = Φ 

Begin Algorithm BFS (G, s) 

     root-node = randomly chosen vertex in V 

     Nodes-Explored = Nodes-Explored U {root-node} 

    FIFO-Queue = FIFO-Queue U {root-node} 

    while ( |FIFO-Queue| > 0 ) do 

        front-node u = Dequeue(FIFO-Queue) // extract the first node 

        for (every edge (u, v) ) do // i.e. every neighbor v of node u 

             if ( v ∉ Nodes-Explored) then 

                  Nodes-Explored = Nodes-Explored U {v} 

                  FIFO-Queue = FIFO-Queue U {v} 

                  Parent (v) = u 

            end if 

        end for 

   end while 

 
   if ( | Nodes-Explored | = | V | ) then return Connected Graph - true 

   else return Connected Graph - false 

   end if 
End Algorithm BFS 

 

Figure 5: Modified BFS Algorithm to Test for Graph Connectivity 

 

The MaxD-CDS algorithm (pseudo code in Figure 6) outputs a CDS-Node-List based on a given 

input MANET graph. The first node to be included in the CDS-Node-List is the node with the 

maximum number of uncovered neighbors (any ties are broken arbitrarily). A CDS member is 

considered to be “covered”, so a CDS member is additionally added to the Covered-Nodes-List 

as it is added to the CDS-Node-List. All nodes that are adjacent to a CDS member are also said 

to be covered, so the uncovered neighbors of a CDS member are also added to the Covered-

Nodes-List as the member is added to the CDS-Node-List. To determine the next node to be 

added to the CDS-Node-List, we must select the node with the largest density amongst the nodes 

that meet the criteria for inclusion into the CDS. The criteria for CDS membership selection are 

the following: the node cannot already be a part of the CDS (CDS-Node-List), the node must be 

in the Covered-Nodes-List, and the node must have at least one uncovered neighbor (at least one 

neighbor that is not in the Covered-Nodes-List). Amongst the nodes that meet these criteria for 

CDS membership inclusion, we select the node with the largest density (i.e., the largest number 

of uncovered neighbors) to be the next member of the CDS. Ties are broken arbitrarily. This 

process is repeated until all nodes in the network are included in the Covered-Nodes-List. Once 

all nodes in the network are considered to be “covered”, the CDS has been formed and the 

algorithm returns a list of the members included in the resultant MaxD-CDS (nodes in the CDS-

Node-List). 

 

Input:  Graph G = (V, E); V – vertex set, E – edge set 

             Source vertex, s – vertex with the largest number of uncovered neighbors in V 

Auxiliary Variables and Functions: CDS-Node-List, Covered-Nodes-List, Neighbors(v) for 

every v in V   

Output: CDS-Node-List            

Initialization: Covered-Nodes-List = {s}, CDS-Node-List = Φ                           

Begin Construction of MaxD-CDS (G, s)        

     while ( |Covered-Nodes-List| < |V| ) do 
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           Select a vertex r∈Covered-Nodes-List and r∉CDS-Node-List such that r has the largest  

           number of uncovered neighbors that are not in Covered-Nodes-List        

            

           CDS-Node-List = CDS-Node-List U {r} 

            

            for all u∈Neighbors(r) and u∉Covered-Nodes-List                                    

                 Covered-Nodes-List = Covered-Nodes-List U {u} 

            end for 

        end while 

   return CDS-Node-List 

End Construction of MaxD-CDS 

 

Figure 6: Pseudo Code for the Algorithm to Construct Maximum Density (MaxD)-based CDS 

 
For the ORA strategy, we determine the sequence of MCDS by running the MaxD-CDS 

algorithm, starting from the source node s – the node with the largest number of neighbors, on 

each of the static graphs of the mobile graph generated over the entire time period of the 

simulation. In the case of LORA, if we do not know a MCDS in static graph Gi, we run the 

MaxD-CDS algorithm, starting from the source node s – the node with the largest number of 

neighbors in Gi and determine the MCDS. For subsequent static graphs Gi+1, Gi+2, …, we simply 

test the presence of the MCDS. We validate a MCDS in a static graph Gj by first testing the 

connectivity among the nodes that constitute the MCDS and then testing whether each non-

MCDS node in Gj is a neighbor of at least one node in the MCDS. If both these tests return true, 

then we consider the MCDS to exist in Gj. Otherwise, we run the MaxD-CDS algorithm on Gj, 

starting from a source node s – the node with the largest number of neighbors in Gj and 

determine a new MCDS. This procedure is repeated until the end of the simulation time. A 

pseudo code for the algorithm to validate a MCDS is given in Figure 7. The pseudo code of our 

algorithms to determine the MCDS under the ORA and LORA strategies is given in Figures 8 

and 9 respectively.  

 

Input: CDS-Node-List // Set of vertices part of the CDS                                

Auxiliary Variables and Functions: 

   CDS-Edge-List – Set of edges, ⊆ E, between the vertices that are part of CDS-Node-List 

   connectedCDS – Boolean variable that stores information whether CDS-Node-List and  

                               CDS-Edge-List form a connected sub graph of G. 

Output: true or false  

          // true, if the nodes in CDS-Node-List form a connected sub graph of G and every vertex  

                      v∉CDS-Node-List is a neighbor of a vertex u∈CDS-Node-List 

          // false, if the nodes in CDS-Node-List do not form a connected sub graph of G and/or  

            there exists at least one vertex v∉CDS-Node-List that has no neighbor in CDS-Node-List 

Initialization: CDS-Edge-List = Φ 

Begin CDS-Validation (CDS-Node-List, time instant t) 

   for every pair of vertices u, v ∈CDS-Node-List do 

       if there exists an edge (u, v)∈E at time instant t then 

            CDS-Edge-List = CDS-Edge-List U {(u, v)} 

       end if 

   end for 
   connectedCDS = Breadth-First-Search(CDS-Node-List, CDS-Edge-List)   

   if connectedCDS = true then 

      for every vertex v∉CDS-Node-List do 

          if there exists no edge (u, v)∈E where u∈CDS-Node-List at time instant t then 
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               return false 

          end if 

       end for 
 

       return true 

   end if 

    

   return false // if connectedCDS = false 

 

End CDS-Validation 

 

Figure 7: Pseudo Code for the CDS Validation Algorithm 

 

Input: GM = G1G2 … GT 

Auxiliary Variable: i, MCDSi 

Initialization: i=1; MCDSi = NULL 

 

Begin ORA-MCDS 

     while (i ≤ T) do 

          Choose the source node s – the node with the largest number of neighbors in Gi 

          if BFS (Gi, s) returns true 

       MCDSi = MaxD-CDS(Gi, s)  

   end if 
   i = i + 1 

     end while 

End ORA-MCDS 

 

Figure 8: Pseudo Code to Determine a Sequence of MCDS under the ORA Strategy 

 

Input: GM = G1G2 … GT, source s, destination d 

Auxiliary Variables: i, j, MCDS 

Initialization: i=1; j=1; MCDS = NULL 

Begin LORA-MCDS 

     while (i ≤ T) do 

         if (MCDS != NULL) then 

                if ( CDS-Validation (CDS-Node-List of MCDS, time instant i) returns false) then 

                      MCDS = NULL 

                 end if          

         end if 
        if (MCDS = NULL) then 

            Choose the source node s – the node with the largest number of neighbors in Gi 

            if BFS (Gi, s) returns true 

         MCDS = MaxD-CDS(Gi, s)  

     end if 

        end if 
 

i = i + 1 
 

     end while 

End LORA-MCDS 

 

Figure 9: Pseudo Code to Determine Minimum Hop s-d Paths under the LORA Strategy 
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Figure 10: Example to Illustrate the ORA and LORA Strategies for Determining MCDS 

 
Figure 10 is an example to illustrate the difference between the ORA and LORA strategies with 

respect to determining MCDS. We sample the network topology for five consecutive instants of 

time as shown. To determine a MCDS on a particular network topology, we start with the vertex 

(node ID 2 in all the cases) that has the largest number of neighbors. While deciding whether a 

covered node can be part of the CDS-Node-List of the MCDS, we include the covered node with 

the largest number of uncovered neighbors. Any tie in this case is broken in favor of the covered 

node that has the lowest ID. We notice that under the LORA strategy, we could use the MCDS 

comprising of nodes {2, 1, 5} with edges {1 – 2, 2 – 5} for time instants t1 and t2 and the MCDS 

comprising of nodes {2, 4, 7} with edges {2 – 4, 2 – 7} for time instants t3, t4 and t5 

respectively. The average MCDS node size under the LORA approach is 3.0 as there are three 

nodes in the MCDS used in each of the five time instants. On the other hand, under the ORA 

strategy, we determine MCDS comprising of nodes {2, 1, 5}, {2, 1}, {2, 4, 7}, {2, 4}, {2, 4} at 

time instants t1, t2, t3, t4 and t5 respectively. Hence, the average MCDS node size is 2.4. Notice 

that the absence of link 2 – 1 in the graph at time instant t3 forced us to choose the MCDS with 

nodes {2, 4, 7} at t3; once this link appears at time instants t4 and t5, by adopting the ORA 

strategy – we could reduce the number of nodes in the MCDS from three to two; whereas, by 

adopting the LORA strategy, we end up continuing to stay with a MCDS comprising of three 

nodes. Updating the MCDS for every time instant helps to reduce the number of constituent 

CDS nodes; however, with a significant control overhead. Using a CDS with a larger number of 

constituent nodes leads to redundant retransmissions in the case of flooding using the CDS. This 

illustrates the difference and trade off between the ORA and LORA strategies. 

4. REVIEW OF MOBILITY MODELS 

All the three mobility models assume the network is confined within fixed boundary conditions. 

The Random Waypoint mobility model assumes that the nodes can move anywhere within a 

network region. The City Section and the Manhattan mobility models assume the network to be 

divided into grids: square blocks of identical block length. The network is thus basically 

composed of a number of horizontal and vertical streets. Each street has two lanes, one for each 
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direction (north and south direction for vertical streets, east and west direction for horizontal 

streets). A node is allowed to move only along the grids of horizontal and vertical streets.  

 

          
 

 Figure 11: Movement under      Figure 12: Movement under      Figure 13: Movement under 

  Random Waypoint Model                City Section Model               Manhattan Mobility Model 

 

4.1. Random Waypoint Mobility Model 

Initially, the nodes are assumed to be placed at random locations in the network. The movement 

of each node is independent of the other nodes in the network. The mobility of a particular node 

is described as follows: The node chooses a random target location to move. The velocity with 

which the node moves to this chosen location is uniformly and randomly selected from the 

interval [vmin,…,vmax]. The node moves in a straight line (in a particular direction) to the chosen 

location with the chosen velocity. After reaching the target location, the node may stop there for 

a certain time called the pause time. The node then continues to choose another target location 

and moves to that location with a new velocity chosen again from the interval [vmin,…,vmax]. The 

selection of each target location and a velocity to move to that location is independent of the 

current node location and the velocity with which the node reached that location. In Figure 11, 

we observe that nodes A and B move independent of each other, in random directions with 

randomly chosen velocities.  

4.2. City Section Mobility Model 

Initially, the nodes are assumed to be randomly placed in the street intersections. Each street 

(i.e., one side of a square block) is assumed to have a particular speed limit. Based on this speed 

limit and the block length, one can determine the time it would take move in the street. Each 

node placed at a particular street intersection chooses a random target street intersection to 

move. The node then moves to the chosen street intersection on a path that will incur the least 

amount of travel time. If two or more paths incur the least amount of travel time, the tie is 

broken arbitrarily. After reaching the targeted street intersection, the node may stay there for a 

pause time and then again choose a random target street intersection to move. The node then 

moves towards the new chosen street intersection on the path that will incur the least amount of 

travel time. This procedure is repeated independently by each node. In Figure 12, the movement 

of two nodes A and B according to the City Section mobility model has been illustrated.  

4.3. Manhattan Mobility Model 

Initially, the nodes are assumed to be randomly placed in the street intersections. The movement 

of a node is decided one street at a time. To start with, each node has equal chance (i.e., 

probability) of choosing any of the streets leading from its initial location. In Figure 13, to start 

with, node A has 25% chance to move in each of the four possible directions (east, west, north 
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or south), where as node B can move only either to the west, east or south with a 1/3 chance for 

each direction. After a node begins to move in the chosen direction and reaches the next street 

intersection, the subsequent street in which the node will move is chosen probabilistically. If a 

node can continue to move in the same direction or can also change directions, then the node 

has 50% chance of continuing in the same direction, 25% chance of turning to the east/north and 

25% chance of turning to the west/south, depending on the direction of the previous movement. 

If a node has only two options, then the node has an equal (50%) chance of exploring either of 

the two options. For example, in Figure 13, once node A reaches the rightmost boundary of the 

network, the node can either move to the north or to the south, each with a probability of 0.5 

and the node chooses the north direction. After moving to the street intersection in the north, 

node A can either continue to move northwards or turn left and move eastwards, each with a 

probability of 0.5. If a node has only one option to move (this occurs when the node reaches any 

of the four corners of the network), then the node has no other choice except to explore that 

option. For example, in Figure 13, we observe node B that was traveling westward, reaches the 

street intersection, which is the corner of the network. The only option for node B is then to turn 

to the left and proceed southwards. 

5. SIMULATIONS 

Simulations have been conducted in a discrete-event simulator implemented by the author in 

Java. Network dimensions are 1000m x 1000m. For the Random Waypoint mobility model, we 

assume the nodes can move anywhere within the network. For the City Section and Manhattan 

mobility models, we assume the network is divided into grids: square blocks of length (side) 

100m. The network is thus basically composed of a number of horizontal and vertical streets. 

Each street has two lanes, one for each direction (north and south direction for vertical streets, 

east and west direction for horizontal streets). A node is allowed to move only along the grids of 

horizontal and vertical streets. The wireless transmission range of a node is 250m. The network 

density is varied by performing the simulations with 50 (low density), 100 (moderate density) 

and 150 (high density) nodes. The node velocity values used for each of the three mobility 

models are 2.5 m/s (about 5 miles per hour), 12.5 m/s (about 30 miles per hour) and 25 m/s 

(about 60 miles per hour), representing scenarios of low, moderate and high node mobility 

respectively. For the Random Waypoint mobility model, we assume vmin = vmax.   

We obtain a centralized view of the network topology by generating mobility trace files for 

1000 seconds under each of the three mobility models. The network topology is sampled for 

every 0.25 seconds to generate the static graphs and the mobile graph. Two nodes a and b are 

assumed to have a bi-directional link at time t, if the Euclidean distance between them at time t 

(derived using the locations of the nodes from the mobility trace file) is less than or equal to the 

wireless transmission range of the nodes. Each data point in Figures 14 through 19 and in 

Tables 1 to 6 is an average computed over 5 mobility trace files and 20 randomly selected s-d 

pairs from each of the mobility trace files. The starting time of each s-d session is uniformly 

distributed between 1 to 20 seconds.  

The following performance metrics are evaluated: 

• Percentage Network Connectivity: The percentage network connectivity indicates the 

probability of finding an s-d path between any source s and destination d in networks for a 

given density and a mobility model. Measured over all the s-d sessions of a simulation run, 

this metric is the ratio of the number of static graphs in which there is an s-d path to the total 

number of static graphs in the mobile graph. 

• Average Route Lifetime: The average route lifetime is the average of the lifetime of all the 

static paths of an s-d session, averaged over all the s-d sessions. 

• Average Hop Count: The average hop count is the time averaged hop count of a mobile path 

for an s-d session, averaged over all the s-d sessions. The time averaged hop count for an s-



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 3, No. 2, April 2011 

207 

 

d session is measured as the sum of the products of the number of hops per static s-d path 

and the lifetime of the static s-d path divided by the number of static graphs in which there 

existed a static s-d path. For example, if a mobile path spanning over 10 static graphs 

comprises of a 2-hop static path p1, a 3-hop static path p2, and a 2-hop static path p3, with 

each existing for 2, 3 and 5 seconds respectively, then the time-averaged hop count of the 

mobile path would be (2*2 + 3*3 + 2*5) / 10 = 2.3. 

• CDS Node Size: This is a time-averaged value of the number of nodes included in the 

sequence of minimum connected dominating sets used over the entire duration of the 

simulation. 

 
     Figure 14: % Connectivity (vel = 2.5 m/s)   Figure 15: Lifetime per s-d Path (vel = 2.5 m/s) 

 

 
  Figure 16: % Connectivity (vel = 12.5 m/s)   Figure 17: Lifetime per s-d Path (vel = 12.5 m/s) 

 

 
   Figure 18: % Connectivity (vel = 25 m/s)     Figure 19: Lifetime per s-d Path (vel = 25 m/s) 

 

5.1. Network Connectivity 

The percentage network connectivity (refer Figures 14, 16 and 18) is not dependent on the 

routing strategy (ORA or LORA) and is dependent only on the mobility model, the level of 

node mobility and network density. It is quite natural to observe that for a given mobility model 

and level of node mobility, the percentage network connectivity increases with increase in 

network density. In low density networks (50 nodes), the Random Waypoint model provided the 

largest network connectivity for a given level of node mobility; the City Section and Manhattan 

models yielded a relatively lower network connectivity, differing as large as by 11% . This can 

be attributed to the constrained motion of the nodes only along the streets of the network. On 

the other hand, as we increase the network density (100 node scenarios), the City Section model 

and/or the Manhattan model yielded network connectivity equal or larger than that incurred with 

the Random Waypoint model. As more nodes are added to the streets, the probability of finding 
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source-destination routes at any point of time increases significantly. It is also interesting to 

observe that for a given network density, the network connectivity provided by each of the three 

mobility models almost remained the same for different values of node velocity. Hence, 

network connectivity is mainly influenced by the number of nodes in the network and their 

initial random distribution. The randomness associated with the mobility models ensure that 

node velocity is not a significant factor influencing network connectivity. 

5.2. Route Lifetime 

The average route lifetime (Figures 15, 17 and 19) is measured only for routes discovered under 

the LORA strategy as routes are determined for every static graph under the ORA strategy. With 

LORA, a route is used as long as it exists. The average route lifetime of minimum hop routes is 

mainly influenced by node velocity and to a lesser extent by the mobility model and network 

density, in this order. For a given node velocity and network density, minimum hop routes 

determined under the City Section model had the largest lifetime and those determined under 

the Manhattan model had the smallest lifetime except the scenario of 100 nodes with 12.5 m/s 

velocity, wherein the Random Waypoint model yielded routes with the lowest average lifetime. 

For a given node velocity, the difference in the average lifetime of routes between the City 

Section model and the other two mobility models increase with increase in network density. The 

City Section model yielded a route lifetime that is 8-20% and 17-26% more than that discovered 

under the Random Waypoint model in low and high density networks respectively. Compared 

to the Manhattan model, the City Section model yielded routes that have 15-30% and 12-35% 

larger lifetime in low and high density networks respectively. For a given mobility model, the 

route lifetime seem to decrease proportionately with increase in node velocity. As we increase 

the node velocity from 2.5 m/s to 25 m/s, the average lifetime of minimum hop routes 

determined under a particular mobility model approximately reduced to 1/10th of their value at 

low node velocity. 

5.3. Hop Count of Minimum Hop Routes 

For each mobility model, node velocity and network density, we observe that minimum hop 

routes discovered under the LORA strategy has a larger hop count than those discovered under 

the ORA strategy. But, the increase in the hop count is not substantial and is within 12%. This 

indicates that if the on-demand MANET routing protocols based on the LORA strategy are 

designed meticulously with minimum hop routing as the primary routing principle, they could 

discover routes that have at most 12% larger hop count than those discovered by the ORA-based 

proactive routing protocols. Among the three mobility models, the maximum increase in the hop 

count under the LORA strategy vis-à-vis the ORA strategy is observed with the Random 

Waypoint model and the lowest increase in the hop count is observed with the Manhattan 

model. However, with regards to the absolute values of the hop count, the minimum hop routes 

determined under the Random Waypoint model have the smallest hop count and those 

determined under the Manhattan model have the largest hop count.  

For a given mobility model, the hop count of the minimum hop routes determined for a 

particular network density does not seem to be much influenced with different levels of node 

mobility. For a given mobility model and node velocity, we also observe that under both the 

ORA and LORA strategies, the average hop count of minimum hop routes decreases with 

increase in network density. This can be attributed to the reasoning that with a larger number of 

nodes in the network, there is a larger probability of finding an s-d path involving only fewer 

nodes that lie on the path from the source to the destination. The decrease in the hop count of 

minimum hop routes with increase in network density is very much appreciable for the 

Manhattan model compared to the other two mobility models. 
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Another interesting observation is that for a given network density, the percentage increase in 

the average hop count per minimum hop s-d path decreases with increase in node mobility. This 

can be attributed to significant decrease in the lifetime of the s-d routes with increase in node 

mobility. At higher node mobility, the sub-optimal routes do not exist for a longer time and the 

sequence of routes determined under the LORA strategy starts getting closer to the sequence of 

routes determined under the ORA strategy. This effect is more predominant in the case of 

MCDS as the lifetime per CDS under the LORA strategy is significantly smaller than the 

lifetime per s-d path.  

Table 1: Average Hop Count per s-d Path under Random Waypoint Mobility Model 

 

Node 

Velocity 

50 Node Network 100 Node Network 150 Node Network 

ORA LORA 
Percent 

Increase 
ORA LORA 

Percent 

Increase 
ORA LORA 

Percent 

Increase 

2.5 m/s 2.36 2.63 11.51% 2.27 2.50 10.40% 2.21 2.43 9.95% 

12.5 m/s 2.40 2.65 10.14% 2.36 2.58 9.46% 2.25 2.46 9.33% 

25 m/s 2.40 2.63 9.44% 2.31 2.52 9.31% 2.24 2.44 8.93% 

 

Table 2: Average Hop Count per s-d Path under City Section Mobility Model 

 

Node 

Velocity 

50 Node Network 100 Node Network 150 Node Network 

ORA LORA 
Percent 

Increase 
ORA LORA 

Percent 

Increase 
ORA LORA 

Percent 

Increase 

2.5 m/s 2.66 2.86 7.51% 2.45 2.71 10.40% 2.24 2.50 11.60% 

12.5 m/s 2.85 3.07 7.66% 2.70 2.93 8.68% 2.55 2.80 9.80% 

25 m/s 2.83 3.04 7.39% 2.60 2.82 8.47% 2.37 2.60 9.70% 

 

Table 3: Average Hop Count per s-d Path under Manhattan Mobility Model 

 

Node 

Velocity 

50 Node Network 100 Node Network 150 Node Network 

ORA LORA 
Percent 

Increase 
ORA LORA 

Percent 

Increase 
ORA LORA 

Percent 

Increase 

2.5 m/s 3.31 3.60 8.81% 3.08 3.34 8.38% 2.75 3.03 10.12% 

12.5 m/s 3.37 3.60 6.90% 3.00 3.26 8.60% 2.67 2.93 9.82% 

25 m/s 3.51 3.74 6.60% 3.03 3.27 7.94% 2.52 2.76 9.35% 

 

5.4. Node Size per Minimum Connected Dominating Sete 

For each mobility model, the average node size per MCDS determined under the LORA 

strategy is slightly higher than that determined under the ORA strategy. But, the increase is very 

minimal and is only within 6%. This implies that the number of retransmissions incurred by 

adopting the sequence of MCDS determined under the LORA strategy will not be substantially 

higher than those incurred using the sequence of MCDS determined under the ORA strategy. 

On the other hand, there would be a significant control overhead in updating the MCDS for 

every time instant. Hence, the LORA strategy could always be the preferred strategy to 

determine and use MCDS in MANETs. 

With respect to the absolute magnitude of the MCDS Node Size under the three mobility 

models, we observe that the MCDS Node Size determined under the Random Waypoint model 

is always the smallest and the MCDS Node Size determined under the Manhattan mobility 

model is always the largest under the different conditions of node mobility and network density. 

The MCDS Node Size determined under the City Section mobility model is 16%, 20%-25% and 
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22%-24% larger than that determined under the Random Waypoint model in conditions of low, 

moderate and high network density respectively. The MCDS Node Size determined under the 

Manhattan mobility model is 26%-36%, 31%-34% and 30%-34% larger than that determined 

under the Random Waypoint model in conditions of low, moderate and high network density 

respectively.  

Table 4: Average Node Size per MCDS under Random Waypoint Mobility Model 

 

Node 

Velocity 

50 Node Network 100 Node Network 150 Node Network 

ORA LORA 
Percent 

Increase 
ORA LORA 

Percent 

Increase 
ORA LORA 

Percent 

Increase 

2.5 m/s 9.80 10.12 3.27% 10.17 10.62 4.47% 10.09 10.65 5.55% 

12.5 m/s 9.88 10.23 3.52% 9.93 10.24 3.12% 10.41 10.75 3.25% 

25 m/s 9.54 9.94 4.19% 9.81 10.15 3.47% 10.21 10.51 2.93% 

 

Table 5: Average Node Size per MCDS under City Section Mobility Model 

 

Node 

Velocity 

50 Node Network 100 Node Network 150 Node Network 

ORA LORA 
Percent 

Increase 
ORA LORA 

Percent 

Increase 
ORA LORA 

Percent 

Increase 

2.5 m/s 11.43 11.78 3.06% 12.18 12.62 3.61% 12.58 13.07 3.89% 

12.5 m/s 11.37 11.79 3.69% 12.18 12.65 3.86% 12.91 13.31 3.09% 

25 m/s 11.15 11.47 2.87% 12.22 12.46 1.96% 12.68 12.91 1.81% 

 

Table 6: Average Node Size per MCDS under Manhattan Mobility Model 

 

Node 

Velocity 

50 Node Network 100 Node Network 150 Node Network 

ORA LORA 
Percent 

Increase 
ORA LORA 

Percent 

Increase 
ORA LORA 

Percent 

Increase 

2.5 m/s 12.42 12.89 3.78% 13.33 13.61 2.10% 13.53 13.95 3.10% 

12.5 m/s 12.90 13.42 4.03% 13.34 13.76 3.15% 13.58 13.98 2.94% 

25 m/s 13.01 13.32 2.38% 13.11 13.39 2.14% 13.45 13.73 2.08% 

 
As observed in the case of minimum hop routes, for a given network density, the percentage 

increase in the MCDS Node Size decreases with increase in node mobility. This can be 

attributed to the decrease in the MCDS lifetime by factors of 4 to 5 and 8 to 9 with increase in 

the node velocity from 2.5 m/s to 12.5 m/s and 25 m/s respectively. For a given condition of 

node mobility and network density, the lifetime per MCDS is only 1/3
rd

 to 1/4
th
 of the lifetime 

per s-d path determined under similar conditions. Hence, compared to the minimum hop routes, 

the CDS-Node-List of the sequence of MCDS formed under the LORA strategy fast coincides 

with that of the sequence of MCDS formed under the ORA strategy. 

6. CONCLUSIONS AND FUTURE WORK 

Our hypothesis that there would be difference in the hop count of minimum hop routes and the 

node size of the minimum connected dominating sets (MCDS) discovered under the ORA and 

LORA strategies has been observed to be true through extensive simulations, the results of 

which are summarized in Tables 1 through 6. However, the difference is not significantly high 

and is within 6-12% for minimum hop routes and at most 6% for MCDS, depending mainly on 

the mobility model employed and the level of node mobility and to a lesser extent on the 

network density. With respect to absolute values, the Random Waypoint model yields minimum 

hop routes with the smallest hop count and MCDS with the smallest node size; whereas, the 
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Manhattan model yields minimum hop routes with the largest hop count and MCDS with the 

largest node size. With respect to the increase in the hop count of minimum hop routes due to 

the use of LORA strategy vis-à-vis the ORA strategy, we observe that the Random Waypoint 

model incurs the maximum increase and the Manhattan model incurs the smallest increase. The 

City Section model is ranked in between the two mobility models with regards to the absolute 

value of the hop count and the relative increase in the hop count with the LORA strategy. In the 

context of the MCDS, the percentage increase in the number of nodes per MCDS due to the use 

of LORA vis-à-vis ORA is about the same for all the three mobility models. With regards to the 

route lifetime, the minimum hop routes determined under the City Section model are relatively 

more stable (i.e. have larger lifetime) compared to the other two mobility models.  

Another interesting observation is that for a given network density, the percentage increase in 

the average hop count per minimum s-d path and the number of nodes per MCDS decreases 

with increase in node mobility. This can be attributed to the significant decrease in the lifetime 

of the s-d routes and the MCDS with increase in node mobility. This effect is more predominant 

in the case of MCDS as the lifetime per MCDS under the LORA strategy is significantly 

smaller than the lifetime per s-d path. Hence, compared to the minimum hop routes, the CDS-

Node-List of the sequence of MCDS formed under the LORA strategy fast coincides with that 

of the sequence of MCDS formed under the ORA strategy. As future work, we will be 

extending this study and will examine the impact of the ORA vs. LORA strategies and the three 

mobility models on minimum-hop based multicast routing, minimum-link based multicast 

Steiner trees, as well as node-disjoint and link-disjoint multi-path routing for MANETs. 
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