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ABSTRACT 
 
All new computers have multicore processors. To exploit this hardware parallelism for improved 
performance, the predominant approach today is multithreading using shared variables and locks. This 
approach has potential data races that can create a nondeterministic program. This paper presents a 
promising new approach to parallel programming that is both lock-free and deterministic. The standard 
forall primitive for parallel execution of for-loop iterations is extended into a more highly structured 
primitive called a Parallel Operation (POP). Each parallel process created by a POP may read shared 
variables (or shared collections) freely. Shared collections modified by a POP must be selected from a 
special set of predefined Parallel Access Collections (PAC). Each PAC has several Write Modes that 
govern parallel updates in a deterministic way. This paper presents an overview of a Prototype Library 
that implements this POP-PAC approach for the C++ language, including performance results for two 
benchmark parallel programs. 
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1. INTRODUCTION 
 
The National Research Council of the USA National Academies of Sciences recently issued a 
report entitled The Future of Computing Performance [1]. Following is a brief excerpt from the 
Preface of this report (p. vii): 
 
“Fast, inexpensive computers are now essential for nearly all human endeavors and have been a 
critical factor in increasing economic productivity, enabling new defense systems, and advancing 
the frontiers of science.  ...  For the last half-century, computers have been doubling in 
performance and capacity every couple of years. This remarkable, continuous, exponential 
growth in computing performance has resulted in an increase by a factor of over 100 per decade 
and more than a million in the last 40 years. ... The essential engine that made that exponential 
growth possible is now in considerable danger.” 
 
The response of the computer processor manufacturers (such as Intel) to this challenge has been 
the introduction of chip multiprocessors with multiple processing cores per chip, usually called 
multicore processors. Each core is essentially a miniature processor, capable of executing its own 
independent sequence of instructions in parallel with the other cores. Processors for new laptop 
computers now typically have 2 to 4 cores, processors for desktops have 4 to 6 cores, and high-
performance processors have 8 to 12 cores. The number of cores per processor is expected to 
double every two to three years. This gradually increasing hardware parallelism offers the 
potential for greatly improved computer performance. Therefore, the NRC Report concludes the 
following (p. 105): 
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“Future growth in computing performance will have to come from software parallelism that can 
exploit hardware parallelism. Programs will need to be expressed by dividing work into multiple 
computations that execute on separate processors that communicate infrequently or, better yet, 
not at all.” 
 
To achieve this goal, the NRC Report gives the following recommendation: 
“Invest in research in and development of programming methods that will enable efficient use of 
parallel systems not only by parallel systems experts but also by typical programmers.” (p. 138) 
The purpose of this paper is to address this critical need in computing today, as expressed in the 
NRC Report. We explore a new high-level parallel programming abstraction that is easy to use 
and achieves good performance, without the need for locking and without the possibility of data 
races that can cause nondeterministic program execution. 
 
2. BACKGROUND 
 
The predominant approach to parallel programming in current computer technology is 
Multithreading:  the programming language has special primitives for creating parallel threads of 
activity, which then interact through shared variables and shared data structures. To prevent 
conflicts in the use of the shared data, locking is used to provide atomic access. Examples of 
popular multithreading systems are OpenMP [2] and Java Threads [3]. One of the main problems 
with this multithreading approach is data races that result when parallel threads update the same 
memory location (or one thread reads and the other updates). Depending on which thread wins 
the race, the final result may be different. This essentially creates a nondeterministic program:  a 
program that may produce different outputs for the same input data during different executions. 
This nondeterminism complicates the software development process, and makes it more difficult 
to develop reliable software [4]. This introduction of data races and nondeterminism into 
mainstream computer programs is hardly a step of progress in computer programming, and is 
considered by many to be unacceptable (see S. Adve, “Data Races are Evil with No Exceptions” 
[5]). 
 
In multithreaded parallel programming, locking is generally used to control access to shared data 
by parallel threads. If correctly used, locking helps to maintain the consistency of shared data 
structures. However, locking introduces other problems that complicate parallel programming. 
Even if used correctly, multiple locks used to protect different data structures can interact in 
unfortunate ways to create a program deadlock:  a circular wait among a group of parallel threads 
which ends program execution prematurely. Furthermore, these deadlocks may occur in a 
nondeterministic manner, appearing and then disappearing during different executions of the 
same program with the same input data. Of course, there is a wide variety of proposed solutions 
to this deadlock problem, but none is completely effective or has achieved wide acceptance in 
practice [6]. 
 
Another problem with locking is performance degradation. The locking operation itself takes 
considerable time and is an additional execution overhead for the parallel program. Also, the lock 
by its very nature restricts parallelism by making threads wait, and thus reduces parallel program 
performance and limits the scalability of the program. (A parallel program is said to be scalable if 
the execution time goes down proportionately as more processors, or cores, are added.) There has 
been some research on lock-free parallel access data structures [7], but with limited success so 
far. 
 
We have developed a new high-level parallel programming abstraction that does not require 
locking and does not allow data races. With this new abstraction, parallel programs are 
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guaranteed to be deterministic and deadlock-free even in the presence of program bugs. In the 
following sections, we will describe the details of this new approach to parallel programming. 
 
3. OUR APPROACH 
 
Anyone who has been a serious parallel programmer or parallel algorithm designer knows that the 
best source of scalable parallelism is program loops. Computationally intensive programs, which 
are candidates for parallel execution, typically have program loops (or nested loops) in which the 
loop body is executed many times sequentially. If the loop iterations are fairly independent, they 
can be executed in parallel by different processor cores to significantly speedup program 
execution. This property of programs was recognized early in the history of parallel computing. 
Early parallelizing compilers, such as Parafrase [8], had some limited success with automatic 
parallelization of sequential program loops. Numerical programs that operate on large multi-
dimensional data arrays typically have lots of such loops that in principle can be parallelized. 
Unfortunately, the automatic parallelization by compilers has shown itself to be too limited. More 
often than not, a programmer is needed to restructure the underlying algorithm to expose a more 
complete level of parallelism [9]. 
 
This has led to explicit parallel loop constructs in many programming languages (or APIs for 
parallel programming). Recent versions the Fortran language have a DOALL directive for parallel 
DO-loop execution [10]. Many parallel versions of the C programming language have some kind 
of forall instruction, which is a parallel form of the ordinary sequential for-loop [11]. The popular 
OpenMP standard for parallel programming in the C language [2] has a parallel-for directive for 
assigning sequential for-loop iterations to different threads for parallel execution. Unfortunately, 
these parallel loop instructions alone do not solve the problem of data races for access to shared 
data structures. Therefore, additional primitives such as locks are needed to synchronize the 
parallel processes. This introduces the problems of deadlock and performance degradation as 
described earlier. Also, if the process synchronization is not done completely correctly by the 
programmer, data races can remain in the parallel program causing nondeterministic execution. 
We feel the parallel for-loop is a good step in the right direction moving from sequential to 
parallel programming, but does not go far enough. A more highly structured (or more abstract) 
form of the parallel-for is needed to prevent data races and guarantee deterministic execution 
without explicit locking by the programmer. We have developed a new high-level parallel 
programming abstraction for the C/C++ language that has an operational component and a data 
component. The operational component is called a Parallel Operation (abbreviated POP). The 
data component is called a Parallel Access Collection (abbreviated PAC). 
 

An ordinary program loop has three basic categories of data:   
 

• Local Data:  variables (or data structures) declared local to each loop iteration and only 
accessible by one loop iteration. 

• Read-only Shared Data:  variables (or data structures) read by multiple loop iterations, 
but not updated by any loop iterations. 

• Write Shared Data:  variables (or data structures) accessed by multiple loop iterations and 
updated by at least one loop iteration. 
 

Local data and Read-only shared data do not pose a problem for parallel loop execution, and thus 
can be accessed freely within a POP. Data races and consequent nondeterminacy arise from Write 
Shared Data. Therefore, access to Write Shared Data must be carefully controlled. In our new 
parallel programming abstraction, all Write Shared Data of any POP must be selected from a 
special category of data structures called Parallel Access Collections (PACs). The POPs and 
PACs work together to allow deterministic access to the Write Shared Data of the parallel loop 
iterations. 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014 
 

4 

A POP has the following basic syntax: 
 

POP (integer n, FunctionPointer, PAC1, PAC2, ... , PACm) 
 

where 
n is the total number of parallel processes (parallel loop iterations) 
FunctionPointer is a pointer to the executable function (code) forming the body of the loop 
PAC1, ... , PACm  is a list of all write shared data collections used by the loop body 

In the POP abstraction, each loop iteration is viewed as a separate parallel process. However, 
since the number of physical processors (cores) is limited in practice, the POP may be 
implemented by assigning groups of parallel processes for execution on each physical processor. 
Problems with parallel access to shared data collections arise when parallel processes access the 
same memory location, and at least one is a writer. For the POP abstraction, this problem can be 
divided into two general categories:  
 

Two parallel processes access the same memory location and  
 1.  one process is a reader, and the other a writer 
 2.  both processes are writers 
 
We resolve the first case (reader and writer) by using deferred update of PACs inside a POP 
operation. Writes to a PAC by any parallel process (parallel loop iteration) are not seen by other 
processes of the same POP. During the POP execution, each process is reading the old values of 
all PACs. This solves the data race problem for parallel reader and writer processes. The second 
case where both parallel processes are writers is more difficult to resolve. We require that each 
writeable PAC of a POP has an assigned Write Mode that prevents conflicting writes by parallel 
processes of the POP. So far in our research we have identified two fundamental Write Modes for 
PACs: 
 
Private Mode:  Each location in the PAC can be written by at most one process during each POP. 
A single process may write to the same PAC location many times, but two different processes are 
not permitted to write to the same location. Locations in the PAC are not assigned in advance to 
the processes. Any process is allowed to write into any PAC location, provided no other process 
writes to the same location during the POP. This prevents the possibility of write-write data races 
by the parallel processes of each POP. If a process attempts to write a location already written by 
another process, this is a runtime error and generates a program exception. 
 
Reduce Mode:  Any number of processes is allowed to write the same location in the PAC. All 
the writes to a given location are combined using an associative and commutative reduction 
function, such as sum, product, minimum, maximum, logical AND, logical OR. The reduction 
guarantees that the final result of each PAC location is independent of the relative speeds of the 
writer processes, and thus removes the possibility of data races. User-defined reduction functions 
are also allowed, although this introduces the possibility of nondeterministic execution if the user-
defined function is not completely associative and commutative. 
 
For all of the input PACs of any POP, the program must assign a Write Mode to each PAC before 
the POP is executed. The implementation of the two Write Modes within each PAC is done 
automatically by the runtime system. The details of the implementation are not seen by the User 
Program. 
 
4. POP-PAC LIBRARY 
 
We have implemented a prototype library for this POP abstraction in the C++ programming 
language with three types of PACs. This library was then used for performance testing of two  
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parallel benchmark programs. In the following sections, we will describe the details of this library 
and the benchmarks. 
 
The three types of PACs implemented in the C++ library are as follows: 
 

• pArray:  A simple one-dimensional array where each element has the same base type 
• pArray2:  A standard two-dimensional version of the pArray 
• pList:  An extension of pArray where elements can be appended to the end of the list 

 
Each of these types of PACs is capable of functioning in either of the two Write Modes (Private 
or Reduce). Each PAC is represented in the C++ library as a template class. The prototype library 
also contains several template classes to implement the POP operation. We used this prototype 
library to implement two parallel algorithms: 
 

• Shortest Path in a Graph:  This parallel algorithm uses three pArray PACs all in Reduce 
Mode. 

• Jacobi Relaxation to solve a Partial Differential Equation:  This parallel algorithm 
uses a total of three pArray2 PACs. Two of the PACs are in Private Mode, and one in 
Reduce Mode. 
 

We will begin our discussion of the feasibility study by describing the details of the parallel 
program for determining the Shortest Path in a weighted, directed graph. To simplify the 
algorithm, only the shortest distance from the source vertex 0 to every other vertex will be 
computed, and stored in a one-dimensional array mindist. To represent a graph with n vertices, 
use an n by n two-dimensional array called weight. The value of weight[x][w] will give the weight 
of the edge from vertex x to vertex w in the graph. The algorithm for finding the shortest distances 
is based on gradually finding new shorter distances to each vertex. Whenever a new short 
distance is found to a vertex x, then each neighboring vertex w of vertex x is examined to 
determine if mindist[x] + weight[x][w] is less than mindist[w]. If so, a new shorter distance has 
been found to vertex w via x. Vertex w is then put into a queue of vertices that have to be further 
explored. When the neighbors of x have all been considered in this way, the algorithm selects a 
new vertex x from the queue and examines all of its neighbors. When the queue is empty, the 
algorithm terminates and the mindist array contains the final shortest distance from the source 
vertex to every other vertex. A sequential version of this shortest path algorithm is shown in 
Figure 1 (ref. [11], p. 412). 
 
For a large graph, the queue will grow in size very quickly and then gradually diminish as the 
algorithm progresses until it is eventually empty and the algorithm terminates. The sequential  

initialize mindist array to infinity; 
initialize queue to contain source vertex 0; 
mindist[0] = 0; 
while queue is not empty do { 
  x = head of queue; 
  foreach neighboring vertex w of x { 
    newdist = mindist[x]+ weight[x][w]; 
    if (newdist < mindist[w]) { 
      mindist[w] = newdist; 
      if w not in queue then append w to queue; 
    } 
  } 
} 

Figure 1  Sequential Shortest Path Algorithm 
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algorithm is naturally parallelized by considering all the vertices in the queue in parallel. Let us 
use an inflag[n] array of True and False values, which indicates whether each vertex of the graph 
is currently in the queue. Then a POP can be created that assigns one process to each element of 
the inflag array. If any element inflag[x] is True, then the process examines the neighboring 
vertices w of vertex x, as described above for the sequential algorithm. If a new shorter path is 
found to vertex w, then mindist[w] is updated, vertex w is added to the queue, and outflag[w] is 
set to True. When the current POP finishes, then the outflag array replaces the inflag array and 
becomes the starting point for the next POP. These POPs are iteratively repeated until an outflag 
array of all False results.  
 
In an ordinary parallel implementation of this algorithm using multithreading, locking would be 
needed to prevent conflicts during updates of the arrays. However, by using PACs with the proper 
Write Modes, locking is not needed in our parallel formulation. This parallel shortest path 
algorithm requires three PACs:  inflag, outflag, and mindist are each represented as an integer 
pArray with n elements. To simplify the termination detection, an additional integer pArray called 
more is used with one element. All of the pArrays are set to Reduce Mode. Since the inflag array 
indicates which vertices are currently in the queue, a queue data structure is not actually needed in 
the parallel algorithm. A centralized queue would pose a performance bottleneck and limit 
scalability. A high-level pseudo-code description of the parallel algorithm is shown in Figure 2. 
 
The main( ) function contains the initializations and the high-level do-while loop that drives the 
algorithm. Each loop iteration contains one POP that creates n parallel processes:  one for each  
 

void main(  ) { 
  initialize mindist array to infinity; 
  initialize inflag array to False; 
  inflag[0] = True;  mindist[0] = 0;  // set vertex 0 as source 
  Set Write Mode of mindist, inflag, outflag, more to Reduce; 
  Set Reduction Function of mindist to minimum( ); 
  Set Reduction Function of inflag, outflag, more to logicalOR( ); 
  do { 
    more = False; 
    POP ( n, ShortPathFunction, &mindist, &outflag, &more ); 
    Exchange outflag and inflag arrays; 
  } while (!more) 
} 
 
 
// this function forms the body of each process 
void ShortPathFunction( int x, mindist, outflag, more ){ 
  if (inflag[x]) { // if vertex x is in the queue 
    foreach neighboring vertex w of x { 
      newdist = mindist[x]+ weight[x][w]; 
      if (newdist < mindist[w]) { 
   // found a new shorter distance to w via x 
        mindist[w] = newdist; 
        outflag[w] = True; 
   more = True; 
      } 
    } 
    inflag[x] = False; // vertex x is removed from queue 
} 
 

Figure 2  Parallel Shortest Path Algorithm 
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vertex of the graph. Each process is given its own unique index from 0 to n-1. The 
ShortPathFunction( ) forms the body of each process. Notice that the ShortPathFunction( ) is 
almost identical to the sequential version of the Shortest Path Algorithm shown in Figure 1. The 
inflag array is a PAC, but it is read-only in ShortPathFunction( ), and thus does not have to be 
included in the list of input PACs. It is possible that two parallel processes may update the same 
element in the mindist array. This potential for a data race is resolved by the minimum( ) function, 
which is the Reduction Function assigned to the mindist array. Since minimum( ) is associative 
and commutative, the final result in mindist will be independent of the relative timing of the 
process updates to mindist. The same is true of the PACs outflag and more, which have 
logicalOR( ) as the Reduction Function. Thus, no locking or other process synchronization is 
needed in the parallel algorithm. All parallel writes to the PACs are resolved in a deterministic 
way by the assigned Write Modes. 
 
As part of our feasibility study, we implemented a prototype C++ library for the POP and the 
three types of PACs described above (pArray, pArray2, pList). The POP and PACs are all 
implemented as template classes in the library. The library also contains some additional “helper” 
template classes to implement the Write Modes. This POP and PAC library was used to execute 
the Parallel Shortest Path Algorithm shown in Figure 2 on a Dell Studio XPS workstation with a 
six-core AMD Opteron processor. Figure 3 shows the performance results for a graph with 4000 
vertices, as the number of cores applied to the parallel computation is varied from one to six. The 
graph in Figure 3 shows that the POP program for Shortest Path does appear to scale well:  the 
program runs 4.8 times faster using six cores than using one core. 
 
5. ADDITIONAL EXAMPLE:  JACOBI RELAXATION 
 
The next example program considered in the Feasibility study is Solving a Partial Differential 
Equation using Jacobi Relaxation. Consider a simple application to determine the voltage level 
across the surface of a two-dimensional  rectangular metal plate, assuming that the voltage along 
the four boundaries is held constant. Using a two-dimensional coordinate system with x and y 
axes, the voltage function on the metal plate v(x, y) can be computed by solving Laplace's 
Equation in two dimensions: 

Number of Cores 
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This equation can be solved numerically using a two-dimensional array of discrete points across 
the surface of the metal sheet. Initially, the points along the boundaries are assigned the 
appropriate constant voltage. The internal points are all set to 0 initially. Then Jacobi Relaxation 
is used to iteratively recompute the voltage at each internal point as the average of the four  

immediate neighboring points (above, below, left, right). Convergence is tested by comparing a  
desired tolerance value to the maximum change in voltage across the entire grid during each 
iteration. 
 
The parallel version of this program requires two different POP operations:  one for performing 
the Jacobi iterations, and another for the Convergence test. Three different PACs are required:  
 

• Array A[n][n] contains the current value at each point at the start of the iteration 
• Array B[n][n] holds the newly computed value at each point (average of four neighboring 

points) 
• Scalar maxchange holds the maximum change across the whole array during a given 

iteration  

void main(  ) { 
  initialize pArray2 A; 
  Set Write Mode of A, B to Private; 
  Set Write Mode of pArray maxchange to Reduce; 
  Set Reduction Function of maxchange to maximum( ); 
  tolerance = .00001; 
  do { 

    // perform 10 Jacobi iterations 
    for ( i = 0; i < 10; i++) { 
      POP ( n, JacobiFunction, &B ); 
      Exchange A and B arrays; 
    } 

    // convergence test every ten iterations 
    POP ( n, ConvergenceTestFunction, &maxchange); 

  } while (maxchange > tolerance) 
} 

 
// this function forms the body of each process 
void JacobiFunction( int myNum, B ){ 
  // compute row and column position of this process myNum 
  row = myNum/n;  col = myNum % n; 
  // compute new value of this point as average of four neighbors 
  B[row][col] = A[row-1][col] + A[row+1][col]  
                + A[row][col-1] + A[row][col+1] / 4.0; 
} 
 
// this function performs the convergence test 
void ConvergenceTestFunction( int myNum, maxchange ) { 
  // compute row and column position of this process myNum 
  row = myNum/n;  col = myNum % n; 
  // compute change in value of this point 
  maxchange = fabs( B[row][col] - A[row][col] ); 
} 

Figure 4  Parallel Jacobi Relaxation Program 
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Arrays A and B are represented in the parallel program as pArray2 PACs in Private Mode. 
Variable maxchange can be represented as a pArray (with one element) in Reduce Mode. The 
parallel program is shown in Figure 4. The main( ) function drives the whole program with two 
nested loops. The first loop performs ten Jacobi iterations using a POP that calls the 
JacobiFunction( ). The ten iterations are sequential, but within each iteration, a separate parallel 
process is assigned to compute each point of the two-dimensional grid. Since only one parallel 
process writes to each point of pArray2 B, Private mode is used for the Write Mode. After ten 
Jacobi iterations, the second POP is invoked to perform the convergence test by subtracting the 
values in the corresponding locations of A and B. By having each process write its change directly 
into maxchange, the overall maximum value of the change is computed because maxchange is set 
to Reduce Mode with reduction function maximum( ). 
 
The Jacobi Relaxation program of Figure 4 was tested using an array of 40,000 points on a Dell 
Workstation with a six-core processor. The graph of Figure 5 shows the performance results as 
the number of cores assigned to the program is varied from one to six. The results are similar to 
the Shortest Path program. The parallel Jacobi program appears to exhibit good scalability:  the 
program runs 4.4 times faster using six cores than one core. 
 
6. RESEARCH COMPARISON 
 
There has been a considerable amount of research over the years in lock-free parallel 
programming and deterministic parallel programming. We will briefly focus on some of the 
major trends in this research that are most relevant to our proposed research direction. One 
important approach to lock-free parallel programming is Software Transactional Memory (STM) 
[ref. 12, 13, 14]. With STM, the programmer can specify certain portions of code to be 
transactions. The STM implementation will automatically guarantee that each transaction is 
executed in an atomic way, without interference from other transactions. This is usually 
implemented with some form of optimistic scheduling:  parallel transactions may proceed freely 
until some possibility of conflict is detected. Then one of the conflicting transactions is rolled 
back and rescheduled. This guarantees a serializable execution of parallel transactions – 
equivalent to some serial (sequential) execution of the transactions. The main problem with STM 
has been the implementation overhead that slows parallel program execution. 

Number of Cores 
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In our opinion, Software Transactional Memory has some usefulness, but does not go far enough. 
A serializable schedule of transactions is not necessarily deterministic. For example, consider two 
parallel transactions to update a variable x with initial value 50:  transaction A reads the current 
value of x, squares it, and writes the result back to x;  transaction B reads the current value of x, 
adds 10, and writes the result back to x. If Transaction A executes first then B, the result is x = 
2510. If Transaction B executes first then A, the result is x = 3600. Both schedules are 
serializable, and thus permitted by STM. Since both transactions read and write variable x, there 
is a possibility of interference between the transactions. This kind of interference is prevented by 
STM, but it still does not guarantee determinacy. STM eliminates some of the data races in a 
parallel program, but not all. Thus, the parallel programmer will still be faced with debugging 
nondeterministic programs that may produce different outputs using the same input data. 
 
Our proposed use of POPs and PACs for parallel programming is really quite different from 
Software Transactional Memory. The POP is a very specific way of creating a team of parallel 
process. The PACs are special data structures with Write Modes. Whereas, with STM, the 
programmer just inserts some begin and end transaction primitives into the program. These can be 
inserted anywhere and apply to any type of data. Our PACs have Reduce and Private Mode – 
there is nothing like this in Software Transactional Memory. 
 
Another notable trend of research in parallel programming that has some relevance to our 
research on POPs and PACs is data parallel programming [15, 16, 17], sometimes called 
“Collection-Oriented” (CO) parallel programming [18]. With CO programming, certain 
commonly used highly parallel operations on collections (data structures) are built into a 
collections library. This saves the parallel programmer from having to “reinvent the wheel” in 
every program. Some simple examples of such highly parallel operations are Broadcast, Reduce, 
Permute, Map, Scatter, Gather [19]. These standard operations are implemented internally in the 
collections library in a highly parallel way. As is the case with ordinary sequential program 
libraries, this approach is very useful and improves programmer productivity. However, practical 
experience has shown that the standard library operations alone are not sufficient to structure a 
whole parallel program. Often the parallel program requires some “custom” operations that are 
not easily created from a combination of the available collections library operations. Thus, our 
proposed POPs and PACs are not a replacement for collection-oriented parallel programming, but 
a supplement to it. The two approaches are complementary and can be used together in the same 
program. 
 
Another research direction for deterministic parallel programming is deterministic scheduling of 
multithreaded programs with shared variables [20, 21, 22, 23]. This approach allows the data 
races to remain in the parallel program, but forces the data races to be resolved in a repeatable 
(deterministic) manner. One major drawback of this approach is the resultant parallel programs 
are fragile: even an insignificant modification in the program code can change the outcome of a 
data race in some unrelated portion of the program, thus changing the final outcome of the 
program. As long as the program is not modified at all, the deterministic scheduling will 
guarantee a repeatable outcome for all the data races, but a small change in the code may expose a 
data race bug in a completely different portion of the program. Our POP-PAC approach is quite 
different than this deterministic scheduling approach. Our approach is more highly structured 
because we have a specific parallel control structure (POP) and specific parallel access data 
structures (PACs) with many Write Modes. 
 

7. FUTURE RESEARCH 
 

As defined in Section 3, each POP has an associated function, which is the executable code 
supplied by the User. Local variables are (non-static) variables declared inside the function body. 
Variables defined outside the function body are considered as shared variables. For the POP to be 
deterministic, the User's POP function  must satisfy the following simple rules: 
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 Local variables may be read or written freely. 
 Shared variables must be read-only, except for those explicitly included as arguments in 

the POP invocation. 
 

These are fairly simple rules for a programmer to follow in order to guarantee determinacy of 
each POP. However, the prototype library we describe in this paper does not enforce these rules. 
Therefore, it is possible for bugs in the User function to violate these rules and cause 
nondeterministic execution of the POP. The next phase of our research on the POP-PAC approach  
will be to modify the C++ compiler (and language runtime system) to enforce these rules. Then 
all program POPs will be guaranteed to be deterministic even in User programs with bugs. 
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