
International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

DOI : 10.5121/ijdps.2014.5301 1

LOCK-FREE PARALLEL ACCESS COLLECTIONS

Bruce P. Lester

Department of Computer Science, Maharishi University of Management, Fairfield, Iowa,
USA

ABSTRACT

All new computers have multicore processors. To exploit this hardware parallelism for improved
performance, the predominant approach today is multithreading using shared variables and locks. This
approach has potential data races that can create a nondeterministic program. This paper presents a
promising new approach to parallel programming that is both lock-free and deterministic. The standard
forall primitive for parallel execution of for-loop iterations is extended into a more highly structured
primitive called a Parallel Operation (POP). Each parallel process created by a POP may read shared
variables (or shared collections) freely. Shared collections modified by a POP must be selected from a
special set of predefined Parallel Access Collections (PAC). Each PAC has several Write Modes that
govern parallel updates in a deterministic way. This paper presents an overview of a Prototype Library
that implements this POP-PAC approach for the C++ language, including performance results for two
benchmark parallel programs.

KEYWORDS

Parallel Programming, Lock-free Programming, Parallel Data Structures, Multithreading.

1. INTRODUCTION

The National Research Council of the USA National Academies of Sciences recently issued a
report entitled The Future of Computing Performance [1]. Following is a brief excerpt from the
Preface of this report (p. vii):

“Fast, inexpensive computers are now essential for nearly all human endeavors and have been a
critical factor in increasing economic productivity, enabling new defense systems, and advancing
the frontiers of science. ... For the last half-century, computers have been doubling in
performance and capacity every couple of years. This remarkable, continuous, exponential
growth in computing performance has resulted in an increase by a factor of over 100 per decade
and more than a million in the last 40 years. ... The essential engine that made that exponential
growth possible is now in considerable danger.”

The response of the computer processor manufacturers (such as Intel) to this challenge has been
the introduction of chip multiprocessors with multiple processing cores per chip, usually called
multicore processors. Each core is essentially a miniature processor, capable of executing its own
independent sequence of instructions in parallel with the other cores. Processors for new laptop
computers now typically have 2 to 4 cores, processors for desktops have 4 to 6 cores, and high-
performance processors have 8 to 12 cores. The number of cores per processor is expected to
double every two to three years. This gradually increasing hardware parallelism offers the
potential for greatly improved computer performance. Therefore, the NRC Report concludes the
following (p. 105):

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

2

“Future growth in computing performance will have to come from software parallelism that can
exploit hardware parallelism. Programs will need to be expressed by dividing work into multiple
computations that execute on separate processors that communicate infrequently or, better yet,
not at all.”

To achieve this goal, the NRC Report gives the following recommendation:
“Invest in research in and development of programming methods that will enable efficient use of
parallel systems not only by parallel systems experts but also by typical programmers.” (p. 138)
The purpose of this paper is to address this critical need in computing today, as expressed in the
NRC Report. We explore a new high-level parallel programming abstraction that is easy to use
and achieves good performance, without the need for locking and without the possibility of data
races that can cause nondeterministic program execution.

2. BACKGROUND

The predominant approach to parallel programming in current computer technology is
Multithreading: the programming language has special primitives for creating parallel threads of
activity, which then interact through shared variables and shared data structures. To prevent
conflicts in the use of the shared data, locking is used to provide atomic access. Examples of
popular multithreading systems are OpenMP [2] and Java Threads [3]. One of the main problems
with this multithreading approach is data races that result when parallel threads update the same
memory location (or one thread reads and the other updates). Depending on which thread wins
the race, the final result may be different. This essentially creates a nondeterministic program: a
program that may produce different outputs for the same input data during different executions.
This nondeterminism complicates the software development process, and makes it more difficult
to develop reliable software [4]. This introduction of data races and nondeterminism into
mainstream computer programs is hardly a step of progress in computer programming, and is
considered by many to be unacceptable (see S. Adve, “Data Races are Evil with No Exceptions”
[5]).

In multithreaded parallel programming, locking is generally used to control access to shared data
by parallel threads. If correctly used, locking helps to maintain the consistency of shared data
structures. However, locking introduces other problems that complicate parallel programming.
Even if used correctly, multiple locks used to protect different data structures can interact in
unfortunate ways to create a program deadlock: a circular wait among a group of parallel threads
which ends program execution prematurely. Furthermore, these deadlocks may occur in a
nondeterministic manner, appearing and then disappearing during different executions of the
same program with the same input data. Of course, there is a wide variety of proposed solutions
to this deadlock problem, but none is completely effective or has achieved wide acceptance in
practice [6].

Another problem with locking is performance degradation. The locking operation itself takes
considerable time and is an additional execution overhead for the parallel program. Also, the lock
by its very nature restricts parallelism by making threads wait, and thus reduces parallel program
performance and limits the scalability of the program. (A parallel program is said to be scalable if
the execution time goes down proportionately as more processors, or cores, are added.) There has
been some research on lock-free parallel access data structures [7], but with limited success so
far.

We have developed a new high-level parallel programming abstraction that does not require
locking and does not allow data races. With this new abstraction, parallel programs are

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

3

guaranteed to be deterministic and deadlock-free even in the presence of program bugs. In the
following sections, we will describe the details of this new approach to parallel programming.

3. OUR APPROACH

Anyone who has been a serious parallel programmer or parallel algorithm designer knows that the
best source of scalable parallelism is program loops. Computationally intensive programs, which
are candidates for parallel execution, typically have program loops (or nested loops) in which the
loop body is executed many times sequentially. If the loop iterations are fairly independent, they
can be executed in parallel by different processor cores to significantly speedup program
execution. This property of programs was recognized early in the history of parallel computing.
Early parallelizing compilers, such as Parafrase [8], had some limited success with automatic
parallelization of sequential program loops. Numerical programs that operate on large multi-
dimensional data arrays typically have lots of such loops that in principle can be parallelized.
Unfortunately, the automatic parallelization by compilers has shown itself to be too limited. More
often than not, a programmer is needed to restructure the underlying algorithm to expose a more
complete level of parallelism [9].

This has led to explicit parallel loop constructs in many programming languages (or APIs for
parallel programming). Recent versions the Fortran language have a DOALL directive for parallel
DO-loop execution [10]. Many parallel versions of the C programming language have some kind
of forall instruction, which is a parallel form of the ordinary sequential for-loop [11]. The popular
OpenMP standard for parallel programming in the C language [2] has a parallel-for directive for
assigning sequential for-loop iterations to different threads for parallel execution. Unfortunately,
these parallel loop instructions alone do not solve the problem of data races for access to shared
data structures. Therefore, additional primitives such as locks are needed to synchronize the
parallel processes. This introduces the problems of deadlock and performance degradation as
described earlier. Also, if the process synchronization is not done completely correctly by the
programmer, data races can remain in the parallel program causing nondeterministic execution.
We feel the parallel for-loop is a good step in the right direction moving from sequential to
parallel programming, but does not go far enough. A more highly structured (or more abstract)
form of the parallel-for is needed to prevent data races and guarantee deterministic execution
without explicit locking by the programmer. We have developed a new high-level parallel
programming abstraction for the C/C++ language that has an operational component and a data
component. The operational component is called a Parallel Operation (abbreviated POP). The
data component is called a Parallel Access Collection (abbreviated PAC).

An ordinary program loop has three basic categories of data:

• Local Data: variables (or data structures) declared local to each loop iteration and only
accessible by one loop iteration.

• Read-only Shared Data: variables (or data structures) read by multiple loop iterations,
but not updated by any loop iterations.

• Write Shared Data: variables (or data structures) accessed by multiple loop iterations and
updated by at least one loop iteration.

Local data and Read-only shared data do not pose a problem for parallel loop execution, and thus
can be accessed freely within a POP. Data races and consequent nondeterminacy arise from Write
Shared Data. Therefore, access to Write Shared Data must be carefully controlled. In our new
parallel programming abstraction, all Write Shared Data of any POP must be selected from a
special category of data structures called Parallel Access Collections (PACs). The POPs and
PACs work together to allow deterministic access to the Write Shared Data of the parallel loop
iterations.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

4

A POP has the following basic syntax:

POP (integer n, FunctionPointer, PAC1, PAC2, ... , PACm)

where
n is the total number of parallel processes (parallel loop iterations)
FunctionPointer is a pointer to the executable function (code) forming the body of the loop
PAC1, ... , PACm is a list of all write shared data collections used by the loop body

In the POP abstraction, each loop iteration is viewed as a separate parallel process. However,
since the number of physical processors (cores) is limited in practice, the POP may be
implemented by assigning groups of parallel processes for execution on each physical processor.
Problems with parallel access to shared data collections arise when parallel processes access the
same memory location, and at least one is a writer. For the POP abstraction, this problem can be
divided into two general categories:

Two parallel processes access the same memory location and
 1. one process is a reader, and the other a writer
 2. both processes are writers

We resolve the first case (reader and writer) by using deferred update of PACs inside a POP
operation. Writes to a PAC by any parallel process (parallel loop iteration) are not seen by other
processes of the same POP. During the POP execution, each process is reading the old values of
all PACs. This solves the data race problem for parallel reader and writer processes. The second
case where both parallel processes are writers is more difficult to resolve. We require that each
writeable PAC of a POP has an assigned Write Mode that prevents conflicting writes by parallel
processes of the POP. So far in our research we have identified two fundamental Write Modes for
PACs:

Private Mode: Each location in the PAC can be written by at most one process during each POP.
A single process may write to the same PAC location many times, but two different processes are
not permitted to write to the same location. Locations in the PAC are not assigned in advance to
the processes. Any process is allowed to write into any PAC location, provided no other process
writes to the same location during the POP. This prevents the possibility of write-write data races
by the parallel processes of each POP. If a process attempts to write a location already written by
another process, this is a runtime error and generates a program exception.

Reduce Mode: Any number of processes is allowed to write the same location in the PAC. All
the writes to a given location are combined using an associative and commutative reduction
function, such as sum, product, minimum, maximum, logical AND, logical OR. The reduction
guarantees that the final result of each PAC location is independent of the relative speeds of the
writer processes, and thus removes the possibility of data races. User-defined reduction functions
are also allowed, although this introduces the possibility of nondeterministic execution if the user-
defined function is not completely associative and commutative.

For all of the input PACs of any POP, the program must assign a Write Mode to each PAC before
the POP is executed. The implementation of the two Write Modes within each PAC is done
automatically by the runtime system. The details of the implementation are not seen by the User
Program.

4. POP-PAC LIBRARY

We have implemented a prototype library for this POP abstraction in the C++ programming
language with three types of PACs. This library was then used for performance testing of two

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

5

parallel benchmark programs. In the following sections, we will describe the details of this library
and the benchmarks.

The three types of PACs implemented in the C++ library are as follows:

• pArray: A simple one-dimensional array where each element has the same base type
• pArray2: A standard two-dimensional version of the pArray
• pList: An extension of pArray where elements can be appended to the end of the list

Each of these types of PACs is capable of functioning in either of the two Write Modes (Private
or Reduce). Each PAC is represented in the C++ library as a template class. The prototype library
also contains several template classes to implement the POP operation. We used this prototype
library to implement two parallel algorithms:

• Shortest Path in a Graph: This parallel algorithm uses three pArray PACs all in Reduce
Mode.

• Jacobi Relaxation to solve a Partial Differential Equation: This parallel algorithm
uses a total of three pArray2 PACs. Two of the PACs are in Private Mode, and one in
Reduce Mode.

We will begin our discussion of the feasibility study by describing the details of the parallel
program for determining the Shortest Path in a weighted, directed graph. To simplify the
algorithm, only the shortest distance from the source vertex 0 to every other vertex will be
computed, and stored in a one-dimensional array mindist. To represent a graph with n vertices,
use an n by n two-dimensional array called weight. The value of weight[x][w] will give the weight
of the edge from vertex x to vertex w in the graph. The algorithm for finding the shortest distances
is based on gradually finding new shorter distances to each vertex. Whenever a new short
distance is found to a vertex x, then each neighboring vertex w of vertex x is examined to
determine if mindist[x] + weight[x][w] is less than mindist[w]. If so, a new shorter distance has
been found to vertex w via x. Vertex w is then put into a queue of vertices that have to be further
explored. When the neighbors of x have all been considered in this way, the algorithm selects a
new vertex x from the queue and examines all of its neighbors. When the queue is empty, the
algorithm terminates and the mindist array contains the final shortest distance from the source
vertex to every other vertex. A sequential version of this shortest path algorithm is shown in
Figure 1 (ref. [11], p. 412).

For a large graph, the queue will grow in size very quickly and then gradually diminish as the
algorithm progresses until it is eventually empty and the algorithm terminates. The sequential

initialize mindist array to infinity;
initialize queue to contain source vertex 0;
mindist[0] = 0;
while queue is not empty do {
 x = head of queue;
 foreach neighboring vertex w of x {
 newdist = mindist[x]+ weight[x][w];
 if (newdist < mindist[w]) {
 mindist[w] = newdist;
 if w not in queue then append w to queue;
 }
 }
}

Figure 1 Sequential Shortest Path Algorithm

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

6

algorithm is naturally parallelized by considering all the vertices in the queue in parallel. Let us
use an inflag[n] array of True and False values, which indicates whether each vertex of the graph
is currently in the queue. Then a POP can be created that assigns one process to each element of
the inflag array. If any element inflag[x] is True, then the process examines the neighboring
vertices w of vertex x, as described above for the sequential algorithm. If a new shorter path is
found to vertex w, then mindist[w] is updated, vertex w is added to the queue, and outflag[w] is
set to True. When the current POP finishes, then the outflag array replaces the inflag array and
becomes the starting point for the next POP. These POPs are iteratively repeated until an outflag
array of all False results.

In an ordinary parallel implementation of this algorithm using multithreading, locking would be
needed to prevent conflicts during updates of the arrays. However, by using PACs with the proper
Write Modes, locking is not needed in our parallel formulation. This parallel shortest path
algorithm requires three PACs: inflag, outflag, and mindist are each represented as an integer
pArray with n elements. To simplify the termination detection, an additional integer pArray called
more is used with one element. All of the pArrays are set to Reduce Mode. Since the inflag array
indicates which vertices are currently in the queue, a queue data structure is not actually needed in
the parallel algorithm. A centralized queue would pose a performance bottleneck and limit
scalability. A high-level pseudo-code description of the parallel algorithm is shown in Figure 2.

The main() function contains the initializations and the high-level do-while loop that drives the
algorithm. Each loop iteration contains one POP that creates n parallel processes: one for each

void main() {
 initialize mindist array to infinity;
 initialize inflag array to False;
 inflag[0] = True; mindist[0] = 0; // set vertex 0 as source
 Set Write Mode of mindist, inflag, outflag, more to Reduce;
 Set Reduction Function of mindist to minimum();
 Set Reduction Function of inflag, outflag, more to logicalOR();
 do {
 more = False;
 POP (n, ShortPathFunction, &mindist, &outflag, &more);
 Exchange outflag and inflag arrays;
 } while (!more)
}

// this function forms the body of each process
void ShortPathFunction(int x, mindist, outflag, more){
 if (inflag[x]) { // if vertex x is in the queue
 foreach neighboring vertex w of x {
 newdist = mindist[x]+ weight[x][w];
 if (newdist < mindist[w]) {
 // found a new shorter distance to w via x
 mindist[w] = newdist;
 outflag[w] = True;
 more = True;
 }
 }
 inflag[x] = False; // vertex x is removed from queue
}

Figure 2 Parallel Shortest Path Algorithm

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

7

vertex of the graph. Each process is given its own unique index from 0 to n-1. The
ShortPathFunction() forms the body of each process. Notice that the ShortPathFunction() is
almost identical to the sequential version of the Shortest Path Algorithm shown in Figure 1. The
inflag array is a PAC, but it is read-only in ShortPathFunction(), and thus does not have to be
included in the list of input PACs. It is possible that two parallel processes may update the same
element in the mindist array. This potential for a data race is resolved by the minimum() function,
which is the Reduction Function assigned to the mindist array. Since minimum() is associative
and commutative, the final result in mindist will be independent of the relative timing of the
process updates to mindist. The same is true of the PACs outflag and more, which have
logicalOR() as the Reduction Function. Thus, no locking or other process synchronization is
needed in the parallel algorithm. All parallel writes to the PACs are resolved in a deterministic
way by the assigned Write Modes.

As part of our feasibility study, we implemented a prototype C++ library for the POP and the
three types of PACs described above (pArray, pArray2, pList). The POP and PACs are all
implemented as template classes in the library. The library also contains some additional “helper”
template classes to implement the Write Modes. This POP and PAC library was used to execute
the Parallel Shortest Path Algorithm shown in Figure 2 on a Dell Studio XPS workstation with a
six-core AMD Opteron processor. Figure 3 shows the performance results for a graph with 4000
vertices, as the number of cores applied to the parallel computation is varied from one to six. The
graph in Figure 3 shows that the POP program for Shortest Path does appear to scale well: the
program runs 4.8 times faster using six cores than using one core.

5. ADDITIONAL EXAMPLE: JACOBI RELAXATION

The next example program considered in the Feasibility study is Solving a Partial Differential
Equation using Jacobi Relaxation. Consider a simple application to determine the voltage level
across the surface of a two-dimensional rectangular metal plate, assuming that the voltage along
the four boundaries is held constant. Using a two-dimensional coordinate system with x and y
axes, the voltage function on the metal plate v(x, y) can be computed by solving Laplace's
Equation in two dimensions:

Number of Cores

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

8

 02

2

2

2

y
v

x
v

This equation can be solved numerically using a two-dimensional array of discrete points across
the surface of the metal sheet. Initially, the points along the boundaries are assigned the
appropriate constant voltage. The internal points are all set to 0 initially. Then Jacobi Relaxation
is used to iteratively recompute the voltage at each internal point as the average of the four

immediate neighboring points (above, below, left, right). Convergence is tested by comparing a
desired tolerance value to the maximum change in voltage across the entire grid during each
iteration.

The parallel version of this program requires two different POP operations: one for performing
the Jacobi iterations, and another for the Convergence test. Three different PACs are required:

• Array A[n][n] contains the current value at each point at the start of the iteration
• Array B[n][n] holds the newly computed value at each point (average of four neighboring

points)
• Scalar maxchange holds the maximum change across the whole array during a given

iteration

void main() {
 initialize pArray2 A;
 Set Write Mode of A, B to Private;
 Set Write Mode of pArray maxchange to Reduce;
 Set Reduction Function of maxchange to maximum();
 tolerance = .00001;
 do {

 // perform 10 Jacobi iterations
 for (i = 0; i < 10; i++) {
 POP (n, JacobiFunction, &B);
 Exchange A and B arrays;
 }

 // convergence test every ten iterations
 POP (n, ConvergenceTestFunction, &maxchange);

 } while (maxchange > tolerance)
}

// this function forms the body of each process
void JacobiFunction(int myNum, B){
 // compute row and column position of this process myNum
 row = myNum/n; col = myNum % n;
 // compute new value of this point as average of four neighbors
 B[row][col] = A[row-1][col] + A[row+1][col]
 + A[row][col-1] + A[row][col+1] / 4.0;
}

// this function performs the convergence test
void ConvergenceTestFunction(int myNum, maxchange) {
 // compute row and column position of this process myNum
 row = myNum/n; col = myNum % n;
 // compute change in value of this point
 maxchange = fabs(B[row][col] - A[row][col]);
}

Figure 4 Parallel Jacobi Relaxation Program

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

9

Arrays A and B are represented in the parallel program as pArray2 PACs in Private Mode.
Variable maxchange can be represented as a pArray (with one element) in Reduce Mode. The
parallel program is shown in Figure 4. The main() function drives the whole program with two
nested loops. The first loop performs ten Jacobi iterations using a POP that calls the
JacobiFunction(). The ten iterations are sequential, but within each iteration, a separate parallel
process is assigned to compute each point of the two-dimensional grid. Since only one parallel
process writes to each point of pArray2 B, Private mode is used for the Write Mode. After ten
Jacobi iterations, the second POP is invoked to perform the convergence test by subtracting the
values in the corresponding locations of A and B. By having each process write its change directly
into maxchange, the overall maximum value of the change is computed because maxchange is set
to Reduce Mode with reduction function maximum().

The Jacobi Relaxation program of Figure 4 was tested using an array of 40,000 points on a Dell
Workstation with a six-core processor. The graph of Figure 5 shows the performance results as
the number of cores assigned to the program is varied from one to six. The results are similar to
the Shortest Path program. The parallel Jacobi program appears to exhibit good scalability: the
program runs 4.4 times faster using six cores than one core.

6. RESEARCH COMPARISON

There has been a considerable amount of research over the years in lock-free parallel
programming and deterministic parallel programming. We will briefly focus on some of the
major trends in this research that are most relevant to our proposed research direction. One
important approach to lock-free parallel programming is Software Transactional Memory (STM)
[ref. 12, 13, 14]. With STM, the programmer can specify certain portions of code to be
transactions. The STM implementation will automatically guarantee that each transaction is
executed in an atomic way, without interference from other transactions. This is usually
implemented with some form of optimistic scheduling: parallel transactions may proceed freely
until some possibility of conflict is detected. Then one of the conflicting transactions is rolled
back and rescheduled. This guarantees a serializable execution of parallel transactions –
equivalent to some serial (sequential) execution of the transactions. The main problem with STM
has been the implementation overhead that slows parallel program execution.

Number of Cores

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

10

In our opinion, Software Transactional Memory has some usefulness, but does not go far enough.
A serializable schedule of transactions is not necessarily deterministic. For example, consider two
parallel transactions to update a variable x with initial value 50: transaction A reads the current
value of x, squares it, and writes the result back to x; transaction B reads the current value of x,
adds 10, and writes the result back to x. If Transaction A executes first then B, the result is x =
2510. If Transaction B executes first then A, the result is x = 3600. Both schedules are
serializable, and thus permitted by STM. Since both transactions read and write variable x, there
is a possibility of interference between the transactions. This kind of interference is prevented by
STM, but it still does not guarantee determinacy. STM eliminates some of the data races in a
parallel program, but not all. Thus, the parallel programmer will still be faced with debugging
nondeterministic programs that may produce different outputs using the same input data.

Our proposed use of POPs and PACs for parallel programming is really quite different from
Software Transactional Memory. The POP is a very specific way of creating a team of parallel
process. The PACs are special data structures with Write Modes. Whereas, with STM, the
programmer just inserts some begin and end transaction primitives into the program. These can be
inserted anywhere and apply to any type of data. Our PACs have Reduce and Private Mode –
there is nothing like this in Software Transactional Memory.

Another notable trend of research in parallel programming that has some relevance to our
research on POPs and PACs is data parallel programming [15, 16, 17], sometimes called
“Collection-Oriented” (CO) parallel programming [18]. With CO programming, certain
commonly used highly parallel operations on collections (data structures) are built into a
collections library. This saves the parallel programmer from having to “reinvent the wheel” in
every program. Some simple examples of such highly parallel operations are Broadcast, Reduce,
Permute, Map, Scatter, Gather [19]. These standard operations are implemented internally in the
collections library in a highly parallel way. As is the case with ordinary sequential program
libraries, this approach is very useful and improves programmer productivity. However, practical
experience has shown that the standard library operations alone are not sufficient to structure a
whole parallel program. Often the parallel program requires some “custom” operations that are
not easily created from a combination of the available collections library operations. Thus, our
proposed POPs and PACs are not a replacement for collection-oriented parallel programming, but
a supplement to it. The two approaches are complementary and can be used together in the same
program.

Another research direction for deterministic parallel programming is deterministic scheduling of
multithreaded programs with shared variables [20, 21, 22, 23]. This approach allows the data
races to remain in the parallel program, but forces the data races to be resolved in a repeatable
(deterministic) manner. One major drawback of this approach is the resultant parallel programs
are fragile: even an insignificant modification in the program code can change the outcome of a
data race in some unrelated portion of the program, thus changing the final outcome of the
program. As long as the program is not modified at all, the deterministic scheduling will
guarantee a repeatable outcome for all the data races, but a small change in the code may expose a
data race bug in a completely different portion of the program. Our POP-PAC approach is quite
different than this deterministic scheduling approach. Our approach is more highly structured
because we have a specific parallel control structure (POP) and specific parallel access data
structures (PACs) with many Write Modes.

7. FUTURE RESEARCH

As defined in Section 3, each POP has an associated function, which is the executable code
supplied by the User. Local variables are (non-static) variables declared inside the function body.
Variables defined outside the function body are considered as shared variables. For the POP to be
deterministic, the User's POP function must satisfy the following simple rules:

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

11

 Local variables may be read or written freely.
 Shared variables must be read-only, except for those explicitly included as arguments in

the POP invocation.

These are fairly simple rules for a programmer to follow in order to guarantee determinacy of
each POP. However, the prototype library we describe in this paper does not enforce these rules.
Therefore, it is possible for bugs in the User function to violate these rules and cause
nondeterministic execution of the POP. The next phase of our research on the POP-PAC approach
will be to modify the C++ compiler (and language runtime system) to enforce these rules. Then
all program POPs will be guaranteed to be deterministic even in User programs with bugs.

REFERENCES

[1] S. H. Fuller and L. I. Millett, Editors, (2011) The Future of Computing Performance: Game Over or

Next Level?, National Research Council, National Academies Press.
[2] B. Chapman, et al., (2007) Using OpenMP: Portable Shared Memory Parallel Programming. MIT

Press.
[3] C. Horstmann and G. Cornell, (2007) Core Java, Volume I--Fundamentals (8th Edition). Prentice

Hall, pp. 715-808.
[4] E. Lee, “The problem with threads,”(2006) Computer, Vol. 39, No. 5, pp. 33–42.
[5] S. Adve, (2010) “Data Races are Evil with No Exceptions,” Communications of the ACM, vol. 53, no.

11, p. 84.
[6] S. Bensalem, et al., (2006) “Dynamic Deadlock Analysis of Multi-threaded Programs,” In

Proceedings First Haifa International Conference on Hardware and Software Verification and
Testing, pp. 208-223.

[7] N.Shavit, (2011) “Data Structures in the Multicore Age,” Communications of the ACM, vol. 54, no.
3, p. 76-84.

[8] Polychronopoulos, C., et al., (1989) “Parafrase-2: An Environment for Parallelizing, Partitioning,
Synchronizing and Scheduling Programs on Multiprocessors,” In Proceedings 1989 International
Conference on Parallel Processing, Vol. II, pp. 39-48.

[9] G. Tournavitis, et al., (2009) “Towards a Holistic Approach to Auto-Parallelization” presented at
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2009),
Toronto, Canada, pp. 177-187.

[10] Fortran Programming Guide, (2001) Sun Microsystems, Palo Alto, CA.
[11] B. Lester, (2006) The Art of Parallel Programming (Second Edition). First World Publishing.
[12] A. Dragojevic et al., (2011) “Why STM Can Be More Than a Research Toy,” Communications of the

ACM, vol. 54, no. 4, pp. 70-77.
[13] J. Larus and C. Kozyrakis, (2008) “Transactional Memory,” Communications of the ACM, vol. 51, no.

7, pp. 80-88.
[14] C. Caşcaval, et al. , (2008) “Software Transactional Memory: Why is it Only a Research Toy?”

Communications of the ACM, vol. 51, no. 1, pp. 40-46.
[15] G. E. Blelloch, (1990) Vector Models for Data-Parallel Computing. The MIT Press, Cambridge,

Massachusetts.
[16] G. Tanase, et. al., (2011) “The STAPL Parallel Container Framework,” In Proceeding ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP), pp. 235-246.
[17] Array Building Blocks Application Programming Interface Reference Manual. (2011) Intel

Corporation.
[18] B. Lester, (2011) “Improving Performance of Collection-Oriented Operations through Parallel

Fusion,” In Proceedings of The World Congress on Engineering 2011, pp. 1519-1529.
[19] B. Lester, (1993) The Art of Parallel Programming (First Edition). Prentice Hall.
[20] T. Bergan et al. (2010) “CoreDet: A compiler and runtime system for deterministic multithreaded

execution,” In Proceedings Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2010), pp. 53-64.

[21] M. Olszewski, J. Ansel, and S. Amarasinghe, (2009) “Kendo: Efficient Deterministic Multithreading
in Software,” In Proceedings Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2009), pp. 97-108.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.5, No.1/2/3, May 2014

12

[22] E. D. Berger et al., (2009) “Grace: Safe multithreaded programming for C/C++,” In Proceedings
ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA 2009), pp. 81-96.

[23] H. Cui, J. Wu, and J. Yang. (2010) “Stable deterministic multithreading through schedule
memoization,” In Proceedings 9th USENIX Conference on Operating Systems Design and
Implementation (OSDI 10).

Author

Dr. Bruce Lester received his Ph.D. in Computer Science from M.I.T. in 1974. He was a Lecturer in the
Department of Electrical Engineering and Computer Science at Princeton University for two years. Dr.
Lester is one of the pioneering researchers in the field of parallel computing, and has published a textbook
and numerous research papers in this area. He founded the Computer Science Department at Maharishi
University of Management (MUM), where he has been a faculty member for sixteen years.

