
International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

DOI : 10.5121/ijdps.2013.4303 29

HIGHLY SCALABLE, PARALLEL AND DISTRIBUTED

ADABOOST ALGORITHM USING LIGHT WEIGHT
THREADS AND WEB SERVICES ON A NETWORK OF

MULTI-CORE MACHINES

Munther Abualkibash, Ahmed ElSayed, Ausif Mahmood

Department Of Computer Science, University of Bridgeport, Bridgeport, CT, USA
mabualki@bridgeport.edu, aelsayed@bridgeport.edu,

mahmood@bridgeport.edu

ABSTRACT

AdaBoost is an important algorithm in machine learning and is being widely used in object detection.
AdaBoost works by iteratively selecting the best amongst weak classifiers, and then combines several weak
classifiers to obtain a strong classifier. Even though AdaBoost has proven to be very effective, its learning
execution time can be quite large depending upon the application e.g., in face detection, the learning time
can be several days. Due to its increasing use in computer vision applications, the learning time needs to
be drastically reduced so that an adaptive near real time object detection system can be incorporated. In
this paper, we develop a hybrid parallel and distributed AdaBoost algorithm that exploits the multiple
cores in a CPU via light weight threads, and also uses multiple machines via a web service software
architecture to achieve high scalability. We present a novel hierarchical web services based distributed
architecture and achieve nearly linear speedup up to the number of processors available to us. In
comparison with the previously published work, which used a single level master-slave parallel and
distributed implementation [1] and only achieved a speedup of 2.66 on four nodes, we achieve a speedup of
95.1 on 31 workstations each having a quad-core processor, resulting in a learning time of only 4.8
seconds per feature.

1. INTRODUCTION

One of the challenging research topics in object detection in recent years has been face detection.
Many approaches to reliable face detection have been attempted e.g., [1-4]. A survey on face
detection techniques presented in [3] classifies recent work into four major categories: First,
knowledge-based methods where human knowledge is the basis for face determination. Second,
feature invariant approaches where facial feature structures are easy to find even in difficult
conditions, such as poor lighting. Third, template matching methods where storing faces is
important for matching purposes. Lastly, appearance-based methods which rely on faces training
set to be learned before being able to detect faces.

In this paper, we focus on the method used in the last category. Viola and Jones have used this
method in [4] and their algorithm has proven to be very successful in real time face detection. For
learning of the face detection classifier, Viola Jones’ algorithm uses AdaBoost [5] on a training
set of approximately 5000 faces and 10,000 non faces. Since the training set and the number of
possible features used in learning a classifier is quite large, running time of AdaBoost can be very

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

30

high and the time to complete training of one feature can be on the order of several minutes. Thus
depending on the total number of features desired, the learning time of the algorithm can be
several days. For example, to obtain a 200 feature classifier, it takes about one day on a modern
workstation. Thus for applications, where we would like the object detection to be adaptive, this
training time needs to be greatly reduced. An example where this is highly desirable is identifying
a particular model of a car when it gets stolen, and the traffic cameras need to detect only that
model. Since there are tens of thousands of make model and year of cars, waiting for several days
until a classifier is ready would not be an option.

Parallel and distributed processing can be employed for speeding up of the AdaBoost algorithm.
With the wide availability of multicore workstations and high speed network of workstations, we
can take advantage of the computing power available. Software frameworks targeting the
efficient use of multiple cores within a workstation have been recently developed for both
Windows and Unix/Linux environments e.g., Task Parallel Library [6] allows creation of light
weight threads where the cost to launch a thread is only 50 assembly language instructions as
opposed to approximately 200 instructions for a regular thread. Further, web services frameworks
based on scalable WS* standards are available where efficient distributed implementation can be
successfully developed. In this paper, we develop a hybrid parallel as well as distributed
implementation of the AdaBoost algorithm exploiting both the multiple cores in a machine via the
Task Parallel Library, as well as multiple machines via a novel hierarchical web services based
distributed implementation to achieve significant reduction in training time.

1.1. Related Work

A recent work at a parallel and distributed implementation of AdaBoost has been reported in [1].
Their system consists of a client computer and a server pool. The parallelization of AdaBoost is
accomplished by using feature blocks. They employ four computing nodes in the distributed
model and thus achieve a speedup of only 2.66.

Another parallel implementation of face detection has carried out on GPUs in [7] and have
demonstrated the improvement in face detection time of the Haar feature based Adaboost
algorithm to about 30 frames per second (FPS) using CUDA on the GeForce GTX 480 GPU. The
main problem with their work is that they focused on the object detection time, not the classifier
training time, so if the training dataset is updated, the training process will be repeated again. Our
main focus in this paper is the parallelization of training of the Haar feature classifier to make
training process near real-time such that any changes in the feature types or the training dataset
can be handled in a short retraining time.

The reminder of this paper is organized as follows. In section 2, we provide a brief background
on the AdaBoost algorithm before presenting our parallel and distributed approach in section 3.
Section 4 provides the experimental results. Conclusions are presented in section 5.

2. ADABOOST ALGORITHM

One of the main contributions of Viola and Jones is the integral image [4]. The benefit of using
integral image is to speed up the computation of rectangular features used in AdaBoost. We
review the calculations in the integral image below and then describe the AdaBoost algorithm.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

31

2.1. Integral Image

To get the integral image value on position x, y, the summation of the all pixels values located on
top and to the left of x, y is taken. Figure 1 explains this concept.

Figure 1. Summation of all pixels on top and to the left of x,y is the integral image value at x,y

The following equation explains the computations to get the integral image:

푖(푥,푦) = 표(푥 , 푦)
,

where 푖(푥,푦) represents the integral image, and 표(푥, 푦) represents the original image.

 x

 y

Figure 2. Calculating the integral image in a rectangular region.

For obtaining the integral image in the dark rectangle in Figure 2 only, the following equation
is followed:

푖(푑푎푟푘 푟푒푐푡푎푛푔푙푒) = 4 + 1− (2 + 3)

2.2. Extracted Feature Types and Selection

The features extraction in Viola Jones’ algorithm are based on Haar basis functions [4, 8]. Five
types of features have been used in the original algorithm as shown in Figure 3.

 i(x, y)

(a) (b) (c)

 1 2

 3 4

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

32

Figure 3. Five rectangular features. Figure (a) shows two rectangles horizontal and vertical features, figure
(b) shows three rectangles horizontal and vertical features, and figure (c) shows a four rectangles feature.

To calculate the value of each one of the features, the sum of pixels located in the white side of
the rectangle are subtracted from the dark side [4]. The window size used for training and
detecting purposes in face detection is 24x24. For scaling, the starting point is the smallest size of
a rectangular feature, e.g. in three rectangle feature type, it is 3x1 pixels, in a two rectangle
feature type, it is 2x1 pixels, etc.. Each rectangular feature is scaled up until reaching total
window size of 24x24. As a result, the total number of features for each type is:

 For three rectangle feature type, 27,600 features.
 For two rectangle feature type, 43,200 features.
 For four rectangle feature type, 20,736 features.

The total number for all features combined is going to be:

Three rectangles horizontal + three rectangles vertical + two rectangles horizontal + two
rectangles vertical + four rectangles = 27600 + 27600 + 43200 + 43200 + 20736 = 162,336
features. During the learning phase, all of these features are going to be computed for all faces in
the training set. The set of faces which we use for training purpose is the same one that has been
used by Viola and Jones for face detection [4]. The size of each image is 24x24. There are 4916
faces and 7960 non-faces. Thus, the total number of all possible features in all training images is
2,090,238,336 (i.e., number of training images multiplied by features per image).

Viola and Jones have used AdaBoost to combine weak classifiers into a stronger classifier [5].
The conventional AdaBoost algorithm works by assigning good features relatively higher weight
and the poor ones a smaller weight to determine the best weak classifier [4]. The main goal of a
weak classifier is to get the optimal threshold among positive and negative examples for any
rectangular feature. This technique has been known as the decision stump. The selected threshold
minimizes the number of misclassified examples. The decision of a weak classifier is 1 or 0, i.e.,
positive or negative. The following equation explains the way a weak classifier works.

ℎ(푥, 푓,푝, 휃) = 1, 푖푓 푝푓(푥) < 푝휃
0, 표푡ℎ푒푟푤푖푠푒

where p is either 1 or -1, 휃 is the threshold, and f is the feature.

2.3. AdaBoost Algorithm used by Viola and Jones

 Suppose there are N numbers of images as training set. Each image is labelled as 0 for

negative images, and, 1 for positive images, as shown in table 1.

Table 1. Example of images and labels.

Images x x x x
Label 1 0 0 1

 Initializing the weight for each image in the first round as shown in the following table:

Table 2. Example of images and labels and weights.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

33

Images w , w , w , w ,
Label 1 0 0 1
Weight 1

2l
1

2m
1

2m 1
2l

Where l is the total number of positive images i.e., faces, and m is the total number of
nonfaces.

 For t = 1 to T:

1. Normalizing the weight of each image in each round as the following:

w , = , , where w is the sum total of the weight of all images in the same round.
2. Calculating the error of all features, until getting the feature has the minimum error. The

selected feature is the best weak classifier in t round.

ϵ = min , , ∑ w h(x , f, p, θ)− y

3. Based on the minimum error (ϵ), which is determined by f , p , and θ , get h (x), where:
h (x) = h(x, f , p ,θ) .

4. As preparation for the next round, the weight should be updated:
w , = w , β

where e = 1, if x is misclassified, e = 0 otherwise, and β =

 .

 At the end, after going through all rounds, the strong classifier is determined as the following:

C(x) = 1, α h (x) ≥
1
2 α

0, 표푡ℎ푒푟푤푖푠푒

where α = log

3. OUR PARALLEL AND DISTRIBUTED WEB SERVICES- BASED ADABOOST
ARCHITECTURE

The original AdaBoost determines the best weak classifier in each round based on the minimum
classification error. It needs to go through all features and determine which feature yields the
minimum error. Since there are a large number of features, the execution time during the learning
phase is high. Our parallel approach speeds up the execution time by efficiently parallelizing the
AdaBoost algorithm. We implement a three way approach to get results in shortest possible time.
We run main computational part of AdaBoost in parallel using Task parallel Library (TPL). Task
parallel library is a built in library in Microsoft .NET framework. The advantage of using TPL is
noticed in multi-core CPUs, where the declared parallel workload is automatically distributed
between the different CPU cores by creating light weight threads called tasks [6].

To further improve the execution time of AdaBoost, we use web services to run parallel Adaboost
on multiple workstations in a distributed manner. Our first level architecture does workload

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

34

division based on the feature type. Since there are five feature types, we use five workstations at
level 1. As shown in figure 4, total of six machines are used, i.e., one master and five slaves. To
achieve further scalability, computation of each of the feature types is further expanded to a
second level using web services. Figure 5 shows twenty one PC’s being used, in a two-level
hierarchy, Master, Sub-Master, and Slaves.

Figure 4. One hierarchal level for Web Services and Parallel AdaBoost, based on Master and five Salves
(Total of six Pc’s)

Figure 5. Two hierarchal level for Web Services and Parallel AdaBoost, based on Master and five Sub-
Master and 3 Salves for each Sub-Master (Total of twenty one Pc’s)

3.1. The Parallel AdaBoost Algorithm

Three approaches for speeding up execution are implemented in the AdaBoost algorithm:
 Parallel execution.
 Web Services and Parallel execution on one hierarchal level.
 Web Services and Parallel execution on two hierarchal levels.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

35

3.3.1. Parallel execution

All features are grouped based on type, such as, three rectangle horizontal, three rectangle
vertical, two rectangle horizontal, two rectangle vertical, and four rectangle. Each group is
uploaded to the system memory in parallel. Once all of these have been loaded, then the
AdaBoost rounds from 1 to T are started. Since the goal is to find the feature has the minimum
error in each group in parallel in each round, five features are selected from five groups. Among
them, the feature that has the least minimum error is picked and based on that the weight is
updated for the next round of AdaBoost algorithm. Since selecting a minimum error feature runs
in parallel, the execution time time is reduced by a factor of five.

3.3.2. Web Services and Parallel execution on one hierarchal level

Each group of features is distributed to a separate PC. Since five groups exist, five PC’s are used
for feature calculations, and a master coordinates the five PC’s as shown in figure 4. The parallel
and distributed pseudo code for this approach is described below.

Pseudocode of one level master and five slaves Parallel Adaboost

 Given example images (푥 ,푦), … , (푥 ,푦) where 푦 = 0,1 for negative and positive examples

respectively.
 Prepare one master workstation and five slaves.
 Each slave is assigned to one particular feature type.
 (slave 1, Three rectangles Horizontal)
 (slave 2, Three rectangles Vertical)
 (slave 3, Two rectangles Horizontal)
 (slave 4, Two rectangles Vertical)
 (slave 5, Four rectangles)

 On slave’s workstations: Initialize all images on each slave.
 On master workstation:
 Initialize weights 푤 , = , for 푦 = 0,1 respectively, where 푚 and 푙 are the number of

negatives and positives respectively.
 For 푡 = 1, … ,푇 ∶

1. Normalize the weights, 푤 , ← ,
∑ ,

 so that 푤 is a probability distribution.

2. Send the weights to all slaves.
3. On each slave:

a. For each feature,푗, train a classifier ℎ which is restricted to using a single feature.
The error is evaluated with respect to 푤 , 휖 =∑ 푤 |ℎ (푥)− 푦 |.

b. Send the classifier,ℎ , with the lowest error 휖 , to master workstation.
4. On master workstation:

a. Amongst the received classifiers from each slave, choose the classifier,ℎ , with
the lowest error 휖 .

b. Update the weights: 푤 , =푤 , 훽 where 푒 = 0 if example 푥 is classified
correctly, 푒 = 1 otherwise, and훽 = .

 The final strong classifier is:

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

36

 ℎ(푥) = 1, ∑ 훼 ℎ (푥) ≥ ∑ 훼
0, 표푡ℎ푒푟푤푖푠푒

where 훼 = log

3.3.3. Web Services and Parallel Execution on two Hierarchal Levels

The previous technique divided the work based on feature type. Now we further distribute the
calculations in a feature type to another set of machines in the next hierarchical level as shown in
figure 5.

Pseudocode of Two level Master, five sub-master, and N slaves

 Given example images (x , y), … , (x , y) where y = 0,1 for negative and positive
examples respectively.

 Prepare one master workstation, five sub-masters, and twenty five slaves.
 Each sub-master and its slaves are assigned to one particular feature type.
 (sub-master 1 and 5 slaves, Three rectangles Horizontal)
 (sub-master 2 and 5 slaves, Three rectangles Vertical)
 (sub-master 3 and 5 slaves, Two rectangles Horizontal)
 (sub-master 4 and 5 slaves, Two rectangles Vertical)
 (sub-master 5 and 5 slaves, Four rectangles)

 On all slaves’ workstations: Initialize all images on each slave.
 On master workstation:
 Initialize weights w , = , for y = 0,1 respectively, where m and l are the

number of negatives and positives respectively.
 For t = 1, … , T ∶

1. Normalize the weights, w , ← ,
∑ ,

 so that w is a probability distribution.

2. Send the weights to all sub-masters, and then sub-master sends them to its slaves.
3. Sub-masters divide the features between their slaves, where each slave

responsible for some parts of the features.
4. On each slave:

a. For each feature,j, train a classifier h which is restricted to using a single
feature. The error is evaluated with respect to w , ϵ =∑ w |h (x) − y |.

b. Send the classifier,h , with the lowest error ϵ , to the assigned sub-master
workstation.

c. Each sub-master choose the classifier,h , with the lowest error ϵ amongst
their slaves and send it to the master.

5. On master workstation:
a. Amongst the received classifiers from each sub-master, choose the

classifier,h , with the lowest error ϵ .
b. Update the weights: w , =w , β where e = 0 if example x is classified

correctly, e = 1 otherwise, and β = .

 The final strong classifier is:

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

37

 h(x) = 1, ∑ α h (x) ≥ ∑ α
0, otherwise

where α = log

3. EXPERIMENTAL RESULTS

We developed four variations of the AdaBoost algorithm, as follows:

 Sequential algorithm.
 Parallel on one machine that only uses TPL.
 Web Services and Parallel execution on one hierarchal level.
 Web Services and Parallel execution on two hierarchal levels.

Table 3 shows a comparison of the different approaches we implemented. These results show a
significant improvement in speedup as compared to the previous work reported in [1]. We obtain
a speedup of 95.1 as compared to a speedup of 2.6 reported in [1]. Figure 6 shows the parallel
execution time of our implementation as the number of slaves is increased. With 31 machines, an
execution time per feature of 4.8 second is achieved.

Table 3. Comparison of all used approaches (Times are in seconds).

 Uploading time to
memory – done
one time only
(seconds)

Average execution
time for each
round (seconds)

Speed-up (with
respect to
sequential
execution)

Sequential alg. On one PC 1780.6 456.5 ----
Parallel alg. on one PC 330.7 116.1 3.9
Parallel and distributed one-level
architecture on 6 PC’s

92.7 24.6 18.6

Parallel and distributed two-level
architecture on 21 PC’s

30.3 6.4 71.3

Parallel and distributed two-level
architecture on 26 PC’s

35.4 5.2 87.8

Parallel and distributed two-level
architecture on 31 PC’s

31.7 4.8 95.1

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

38

Figure 6. Parallel execution time based on total number of slaves workstations

To be able to predict the speedup for any number of machines available, we develop the
following predictive equation for calculating parallel execution time based on the number of
nodes in the last level attached to one sub-master node in the middle level (see figure 6 and 7).

푃푎푟푎푙푙푒푙 푒푥푒푐푢푡푖표푛 = (0.2 ∗ 푛) +
0.5

1000 ∗ (
푚
푛)

Where 푛 is the number of nodes attached to a one sub-master node, and 푚 is the
maximum number of features allocated to one sub-master node.

It is noticed that increasing number of nodes in the last level beyond 7 per feature type is not
going to further help in speeding up execution. Since communication overhead in the network is
going to dominate. Table 4, 5 and 6, and figure 6 explain that.

Figure 7. Real and predictive parallel execution time based on total number of slaves workstations in the
last level

116.1

24.6
11.96 8.14 6.4 5.25 4.8

0

20

40

60

80

100

120

140

1 5 10 15 20 25 30

Ex
ec

ut
io

n
tim

e

Number of slaves

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
tim

e
in

 se
co

nd
s

Total number of nodes

Predictive parallel
execution time

Real parallel
execition time

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

39

Table 4. The result of the predictive equation based on number of nodes attached to one sub-master node.

Number of nodes Execution time per round (seconds)
1 21.8
2 11.2
3 7.8
4 6.2
5 5.3
6 4.8
7 4.5
8 4.3
9 4.2

10 4.1

Table 5. Overhead on the one level network using master and 5 slaves only.

 Average overhead on network per round (mille
seconds)

4 rectangle node 251.04
3 rectangle vertical node 257.8
3 rectangle horizontal node 384.8
2 rectangle vertical node 253.3
2 rectangle horizontal node 356.61

Table 6. Overhead on the two levels network using master, 5 sub-master, and 25 slaves.

 Average overhead on

network per round (mille
seconds)

4 rectangle node 280.2
3 rectangle vertical node 283.43
3 rectangle horizontal node 334.82
2 rectangle vertical node 294.86
2 rectangle horizontal node 410.3

5. CONCLUSIONS

We have developed a hybrid parallel and distributed implementation of AdaBoost algorithm that
exploits the multiple cores in a CPU via light weight threads, and also uses multiple machines via
web service software architecture to achieve high scalability. We also develop a novel
hierarchical web services based distributed architecture for maximal exploitation of concurrency
in the AdaBoost algorithm. We demonstrate nearly linear speedup upto the number of processors
available to us, and can accomplish the learning of a feature in the AdaBoost algorithm within a
few seconds. This may be particularly useful in applications where the classifier needs to be
dynamically adapted to changing training set data e.g., in car model detection. In comparison with
the previously published work, which used a single level master slave parallel and distributed
implementation [8], and only achieved a speedup of 2.66 using four nodes, we achieve a speedup
of 95.1 on 31 workstations each having a quadcore processor, resulting in a learning time of only
4.8 seconds per feature. Our future work involves developing a learning framework that can adapt
to different object detection needs in a near real time manner.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

40

REFERENCES

[1] H. ZheHuang and S. Xiaodong, "A distributed parallel AdaBoost algorithm for face detection," in

Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on, 2010,
pp. 147-150.

[2] Z. Z. C. Zhang, "A Survey of Recent Advances in Face Detection," Technical Report 66, Microsoft
Research, Redmond, Washington, USA (June 2010).

[3] Y. Ming-Hsuan, et al., "Detecting faces in images: a survey," Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 24, pp. 34-58, 2002.

[4] P. Viola and M. J. Jones, "Robust Real-Time Face Detection," Int. J. Comput. Vision, vol. 57, pp.
137-154, 2004.

[5] Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an
application to boosting," presented at the Proceedings of the Second European Conference on
Computational Learning Theory, 1995.

[6] D. Leijen, et al., "The design of a task parallel library," presented at the Proceedings of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages and applications, Orlando,
Florida, USA, 2009.

[7] A. Obukhov, "Haar Classifiers for Object Detection with CUDA," in GPU Computing Gems Emerald
Edition (Applications of GPU Computing Series). vol. (1), W.-m. W. Hwu, Ed., ed: Morgan
Kaufmann's Applications of GPU Computing Series, 2011.

[8] C. P. Papageorgiou, et al., "A General Framework for Object Detection," presented at the Proceedings
of the Sixth International Conference on Computer Vision, 1998.

