
International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

DOI : 10.5121/ijdps.2013.4302 17

Scalable Distributed Job Processing with Dynamic

Load Balancing

Srinivasrao Putti1, Dr V P C Rao2, Dr. A. Govardhan3, Ambika Prasad
Mohanty4

1Dept. of Computer Science, Y P R College of Engineering and Technology, AP, India

yourpsr@gmail.com
2Dept. of Computer Science, St. Peters Engineering College, AP, India

pcrao.vemuri@gmail.com
3Dept. of Computer Science, JNTU, Hyderabad, AP, India,

govardhan_cse@yahoo.co.in
4Infotech Enterprises, Hyderabad, AP, India,

apmohanty@yahoo.com

ABSTRACT

We present here a cost effective framework for a robust scalable and distributed job processing system that
adapts to the dynamic computing needs easily with efficient load balancing for heterogeneous systems. The
design is such that each of the components are self contained and do not depend on each other. Yet, they
are still interconnected through an enterprise message bus so as to ensure safe, secure and reliable
communication based on transactional features to avoid duplication as well as data loss. The load
balancing, fault-tolerance and failover recovery are built into the system through a mechanism of health
check facility and a queue based load balancing. The system has a centralized repository with central
monitors to keep track of the progress of various job executions as well as status of processors in real-time.
The basic requirement of assigning a priority and processing as per priority is built into the framework.
The most important aspect of the framework is that it avoids the need for job migration by computing the
target processors based on the current load and the various cost factors. The framework will have the
capability to scale horizontally as well as vertically to achieve the required performance, thus effectively
minimizing the total cost of ownership.

KEYWORDS

Job Processing, Load Balancing, Monitoring, Distributed And Scalable.

1. INTRODUCTION

The need for a distributed processing system arises from the fact that smaller and inexpensive
heterogeneous computer systems should be utilized to achieve the required computation without a
need for a large super computer. Such systems are usually independent with their own memory
and storage resources, but connected to a network so that the systems communicate with each
other for sharing the load. In such a computing environment, the systems usually remain idle until
they are instructed to perform a computational task by a centralised monitor. Since the
capabilities of such systems may vary, the central monitor usually keeps track of the load on each
such system and assigns tasks to them. Over a period of time, the performance of each system
may be identified and the information can be used for effective load balancing. Such distributed
systems are extremely suitable for job processing. For load balancing, apart from the
computational efficiency of each node, other factors like network latency, I/O overhead, job

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

18

arrival rate, processing rate may be considered to distribute the jobs to various nodes so as to
derive maximum efficiency and minimum wait time for jobs.

Various algorithms have been proposed for load balancing in distributed job processing systems.
The algorithms can be classified into Static and Dynamic. While, the Static algorithm relies on a
predetermined distribution policy, the Dynamic Load balancing algorithm makes its decisions
based on the current state of the system. This framework uses the dynamic algorithm to analyse
the current system load and various cost factors in arriving at the best target processor to handle
the job processing.

2. RELATED WORK

Scheduling plays an important role in distributed systems in which it enhances overall system
performance metrics such as process completion time and processor utilization [2]The basic idea
behind distributed process scheduling is to enhance overall system performance metrics [4].Load
sharing allows busy processors to load some of their work to less busy, or even idle, processors
[5].Load balancing is a special case of load sharing, in which the scheduling algorithm is to keep
the load even (or balanced) across all processors [6].Scheduling algorithms themselves can also
be characterized as being either static or dynamic [2].

Static load balancing policies [20, 22, 23] use only the statistical information on the system (e.g.,
the average behaviour of the system)in making load-balancing decisions, and their principal
advantage is lower overhead cost needed to execute them and their simplicity in implementation.
Dynamic load balancing policies [8, 21, 22] attempt to dynamically balance the workload
reflecting the current system state and are therefore thought to be able to further improve the
system performance. Thus, it would be thought that, compared to static ones, dynamic load
balancing policies are better able to respond to system changes and to avoid those states that
result in poor performance. Load balancing policies can be classified as centralized or
decentralized.

In centralized policies [17,19], it may be considered as a system with only one load balancing
decision maker. The decentralized policies, on the other hand, delegates job distribution decisions
to individual nodes . The decentralized load balancing is widely used to handle the imperfect
system load information [19]. Sandeep Sharma, SarabjitSingh, and Meenakshi Sharma [2008]
have studied various Static(Round Robin and Randomized Algorithms, Central Manager
Algorithm, Threshold Algorithm) and Dynamic (Central Queue Algorithm, Local Queue
Algorithm) Load Balancing Algorithms in distributed system and their results shows static load
balancing algorithms are more stable . Vishwanathan developed incremental balancing and buffer
estimation strategies to derive optimal load distribution for non critical load

In the traditional Sender / Receiver model[3] (we will call each such component as a node), a
node acts as either a Sender or a Receiver. Each one has its own Job queue. Based on the
prevailing load level crossing the threshold values, either Sender changes itself to a Receiver or
Receiver changes itself to a Sender. In order that such a system works correctly, each such node
needs to have the knowledge of all other nodes. This is the biggest disadvantage of such a system.
This burdens the sender / receiver of having to discover other nodes by sending a broadcast
request and expecting a response. When all these nodes do the same operation, there is
considerable network overhead involved.

We proposed a Dispatcher / Processor model that is distinctly different from the Sender /
Receiver model. The dispatcher has the responsibility of identifying a processor and dispatching a
job. The processor will only execute the job.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

19

we simulate the framework with a Java and JMS compliant ActiveMQ based monitor,
dispatchers, processors and a centralized database. The framework will have the capability to
scale horizontally as well as vertically to achieve the required performance, thus effectively
minimizing the total cost of ownership.

3. APPROACH

In this article, we will discuss about an approach and feasible implementations of a priority and
cost based job processing system with monitoring and load balancing capability. It is assumed
that there are one or more processors available, but not necessarily online. By ‘not necessarily
online’, we mean that a processor is capable of processing the job, but is currently not available
and will be available in the near future. The system also has the reporting capability through its
own persistence, possibly through a local or remote database. So, the status of a job is maintained
in the persistence medium, a database. Since the data about the jobs is available centrally, load
distribution can easily be supported. The reporting can be done from the data available in this
database located centrally. With suitable monitoring and feedback capabilities, an intelligent Load
balancing algorithm can be implemented.

Additionally, the framework allows the user to choose various algorithms through a set of
configurable parameters, viz. based on Priority only, Cost only or Time based. With all these
options, the scheduling remains dynamic in nature. When the user chooses Priority based
scheduling, the scheduler identifies the best processor with minimal load that can handle the
requested priority. If the user chooses Cost based scheduling, the scheduler, along with the
current load of the system, takes into account various cost factors to arrive at the best processor
that has minimal load and optimal cost effectiveness. The user can also choose a mixed mode
where the scheduling is done with optimal load factor and cost.

The components (i.e. Dispatcher, Scheduler, Processor and Monitor) communicate over message
queues, using a persistent message queue (part of Enterprise Message Bus). This solves the
problem of sequencing of messages and avoids problems of messages being lost when the
network fails of systems crash. The status of a job is maintained in the persistence layer, a
database.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

20

Figure 1: Architecture

4. DESIGN

The fundamental assumption in this design is the distributed nature of the nodes. The nodes may
be present in any physical location, with any type of connectivity to a central message bus. The
communication protocol used is standard TCP/IP. As will be clear later, the design has built-in
load balancing option.

Most of the existing Sender/Receiver models need to have considerable knowledge of other
receivers and have necessary logic to re-route a job. In the traditional Sender / Receiver model
(we will call each such component as a node); a node acts as either a Sender or a Receiver. Each
one has its own Job queue. Based on the prevailing load level crossing the threshold values, either
Sender changes itself to a Receiver or Receiver changes itself to a Sender. In order that such a
system works correctly, each such node needs to have the knowledge of all other nodes. This is
the biggest disadvantage of such a system. This burdens the sender / receiver of having to
discover other nodes by sending a broadcast request and expecting a response. When all these
nodes do the same operation, there is considerable network overhead involved. Considerable
amount of time is wasted at each node to query other nodes. This time could have been utilized
for processing the job.

The proposed framework addresses these drawbacks and provides a better approach to managing
the jobs. We propose a Dispatcher / Processor model that is distinctly different from the Sender /
Receiver model. The dispatcher has the responsibility of identifying a processor and dispatching a
job. The processor will only execute the job. Given below is brief description of various
components of the system.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

21

In order to simulate the model, two major components were developed using Java technology
with ActiveMQ as messaging infrastructure. The first being the GridFramework and the second is
the Grid Launcher.

4.1 COMPONENTS

 Job Dispatcher – This is the component that accepts the job requests (manual or
otherwise), validates them and places the jobs in the Job Queue for scheduling. The
dispatcher also records all the requests in the Database.

 Job Scheduler – This component receives a Job request from dispatcher, identifies the

current load on the system and identifies the most suitable target processor that can
process the new request. It then forwards the Job request to the target processor. Various
options like Cost based, Priority based or Mixed mode can be specified with the job
request so that the scheduler applies the appropriate algorithm to arrive at the best
possible target processor for the job. However, it is possible to override this logic to
enforce Processor affinity for a specific Job through suitable parameters for the job
request.

 Job Processor – The processor is the component that picks up a job request from the

queue, processes it. As shown in the diagram, the processor also reports the progress and
status of job processing to the monitor. If a job is a long running job, progress
information is sent at periodic intervals to the monitor. The Job processor also needs to
report its health status back to the monitor.

 Job Monitor – This component is responsible for monitoring the status messages and

updates the database. The component watches the progress messages and Heartbeat
messages from various processors and saves the status in the database. This information
also acts as feedback to the Job Dispatchers to take some intelligent decision at the time
of dispatching the job to a target processor.

 Dispatch Queue – This is the message queue that stores the job requests dispatched until

a processor picks them up for processing. Note that, for reliable job processing system,
this Queue should have persistence capability, so that, in case of system failures, the
requests lying in the queue are not lost.

 Progress / Status Queue – These are the message queues that store the job status sent by

either dispatcher or processor. The monitor continuously monitors this queue for Job
Status as well as Processor status messages. The information should include the current
load, job status etc. This information is gathered by the Monitor and made available to the
Job Dispatcher. The Job Dispatcher can then take intelligent decision based on this
information to decide if a new job is to be dispatched to a target Job Processor or al
alternate processor.

 Database / Persistence – This is the most critical component in the entire system. All the

information about the Job, the Processors, the state of processing and the availability of
processors are maintained at a central database. The proposed system also takes into
account important design aspects that greatly enhance the Job processing. They are:
Processor Affinity & Priority Thread Pool

 Thread Pool – We introduce here another important component in our design. The

processor is designed to have a pool of threads. Each pool has a priority assigned to it.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

22

Therefore, all the threads that are part of this group will inherit the priority assigned to the
pool. Currently, the system supports two priority levels. They are: Low Priority and High
Priority. However, the system has the flexibility to support more priority levels.

4.2 SOLUTION

Let us consider that all the processors are capable of handling any job and of any priority. In such
a scenario, the system will have the following features:

i. Dispatcher can dispatch a job to the request queue, without bothering about the priority.
ii. The scheduler will have the capability to identify a processor based on the algorithm

selected.
iii. The processor is capable of handling jobs of any priority.
iv. The processor internally, maintains independent thread-pools for different priority jobs.
v. Based on the priority, the processor assigns the job to appropriate pool.

vi. The threads in a given pool have pre-defined priority, i.e. they are allocated CPU time
based on the priority number assigned to them.

This solution appears simple and feasible. Let us discuss in detail about how such a system can be
implemented.

4.3 ALGORITHMS

4.3.1 DISPATCH ALGORITHM

READ Job Definition From DATABASE
PREPARE Message
ASSIGN Job Request Options
DISPATCH Request

4.3.2 SCHEDULER ALGORITHM

READ Request
TargetNode = RequestNode
READ Alternate Targets From DATABASE
FOR EACH Alternate Target
 IF Target IS NOT AVAILABLE Continue To Next
 IF Least Load AND Target Load Is Minimum
 TargetNode = Target
 BREAK
 END IF
 IF Least Cost AND Target Cost Is Minimum
 TargetNode = Target
 BREAK
 END IF
END FOR
IF NO Target IS FOUND
 ABORT JOB
ELSE
 MARK TARGET FOR JOB AS TargetNode
 DISPATCH To TargetNode
ENDIF

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

23

4.3.3 PROCESSING ALGORITHM

WAIT For A Job Request
READ A Request
GET Job Priority

IF Priority = NORMAL
THEN
 ADD Job To Normal Priority Pool
ENDIF
IF Priority = HIGH
THEN
 ADD Job To High Priority Pool
ENDIF
UPDATE Job Status To IN-PROGRESS

4.3.4 MONITOR ALGORITHM

WAIT For A Status Message
READ A Message
GET Message Type
IF Message Type = HEARTBEAT
THEN
 UPDATE Processor Status
ENDIF
IF Message Type = JOB-STATUS
THEN
 UPDATE Job Status
ENDIF

4.4 ADVANTAGES OF THE PROPOSED SYSTEM

The advantages of such a Dispatcher / Processor model are as follows.

i. There is a clear distinction between Dispatcher (Sender), Scheduler, Processor
(Receiver) and Monitor.

ii. Dispatcher just submits the Job request with appropriate parameters to the Scheduler.
iii. Processors are responsible for processing of the Jobs dispatched to them.
iv. When a job is submitted, the Scheduler analyses the status of all the processors and

takes the intelligent decision about the best processor available.
v. As per Job definition, the dispatcher assigns priority to a Job.

vi. Processors have priority pools. A Job received is assigned to the respective pool,
without interfering with the other Jobs being processed.

vii. Processors report status to a central monitor at a configurable interval and there is
only one way communication.

viii. Scheduler need to query the central persistence (database) to check the status. This
avoids nodes sending a request for status and other nodes responding with the status.
This is a huge saving on the network usage.

ix. Any number of processors can be added and/or removed dynamically to the system
without the need for configuration anywhere. Thus, the system has the ability to
easily scale horizontally.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

24

x. Each processor maintains it’s internal Thread Pool based on the priority. The pool
size is configurable. Thus, on a high end server, the same processor can be
configured to handle more loads. This allows the system to easily scale vertically.

xi. Each Processor can be assigned an ID and thus, Processor affinity of a Job can be
defined at the time of submission.

xii. Using a standard Message Queue with persistence helps the system retain the
messages during a crash and subsequent recovery.

xiii. Processors utilize the time only for processing and need not have to be burdened with
the decision of re-distributing the job when they are loaded. This situation will not
arise because the dispatcher would have considered the load situation and distributed
the job to the best processor which can immediately pick up the job for processing
(assuming not all processors are 100% loaded). The job is dispatched only once. This
minimizes wait of the jobs as well as network delays.

xiv. Theoretically, there is no limit on the number of threads in a priority pool. However,
depending on the configuration of the hardware, processors may be configured to
have appropriate priority pool sizes.

5. SIMULATION AND ANALYSIS

For simulating our design, we implemented a Java based job processing system with multiple
processors, monitors and dispatchers. As part of this experiment, we defined a Job that compute
200,000 prime numbers. Thus, the Job processing time was allowed to take whatever time it takes
to compute based on the priority assigned to the requested job. We started only one Processor and
sent 100 Job requests. The wait time of the jobs were monitored

We performed experiments on the algorithm in three groups. The Group-1 experiment included
one processor, one monitor, a dispatcher and a Scheduler. The Group-2 experiment included two
processors, one monitor, a dispatcher and a Scheduler.

5.1 EXPERIMENT 1 (WITH NO TIME LIMIT)

We implemented a Java based job processing system with various options. As part of this
experiment, we defined a Job that compute 200,000 prime numbers. Thus, the Job processing
time was allowed to take whatever time it takes to compute.

i. The Job could take the priority as an attribute. The priority could be Low or High.
Processors were assigned various cost factors for simulation.

ii. The scheduler was able to compute the most suitable target and dispatch the job to the
appropriate queue (i.e. based on the options selected).

iii. The processor was designed to have two independent thread pools, one for Low priority
and the other was for high priority.

iv. Each thread pool had the capacity to process 10 jobs concurrently, beyond which, jobs
will wait in the queue.

v. When the Job processing was delegated to the appropriate thread, the thread priority was
set to either low or high based on the Job’s priority.

vi. The job was configured to compute 200,000 prime numbers.
vii. A total of 40 Jobs were dispatched, 20 with low priority and 20 with high priority.

viii. The wait time, processing time was measured for each job.
ix. Finally, the average values were plotted as a graph as shown in Figure 12.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

25

Here is the data collected.

Priority
Wait
Time
(ms)

Processing
Time (ms)

Total
Time
(ms)

Low
Priority 231217 112141 343358
High
Priority 133129 72955 206084

5.2 EXPERIMENT 2 (WITH TIME LIMIT)

We then implemented a Java based job processing system with more options. As part of this
experiment, we defined a Job that compute prime numbers for a fixed period of approximately 40
seconds. Thus, the Job processing time was fixed and we monitored how many prime numbers
were computed.

i. The Job could take the priority as an attribute. The priority could be Low or High.
ii. The scheduler was able to dispatch the job to the alternate queues (i.e. based on the

option selected).

The processor was designed to have two independent thread pools, one for Low priority and the
other was for high priority.

i. Each thread pool had the capacity to process 10 jobs concurrently, beyond which, jobs
will wait in the queue.

ii. When the Job processing was delegated to the appropriate thread, the thread priority was
set to either low or high based on the Job’s priority.

iii. The job was configured to compute for approximately 40 seconds.
iv. A total of 40 Jobs were dispatched, 20 with low priority and 20 with high priority.
v. The wait time, processing time and number of prime computations were measured for

each job.
vi. Finally, the average values were plotted as a graph as shown in Figure 13.

The data collected is shown in Table 4.

Priority
Wait
Time
(ms)

Processing
Time (ms)

Number
of
Primes

Low Priority 104630 44014 349504
High Priority 116286 42012 701410

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

26

6. COMPARISON

We performed a comparison analysis of the data we collected after implementing a system using
Sender initiated algorithm. The network overhead in the system was quite enormous and it
increased the waiting time of the jobs as compared to that in the proposed algorithm. The results
show that at-least 12% improvement in the total processing time in our proposed approach.

Table 1: Results

Algorithm Wait Time Processing Time Total Time

Sender 284397 137933 422330

Proposed
Algorithm 237549 134494 372043

Figure 2. Comparison Results.

So far, in most of the systems implemented, the mechanism and protocol of communication
between senders and receivers are not explained in detailed manner. This may lead to ambiguity
in defining the overhead associated with the Sender initiated algorithms and/or Receiver initiated
algorithms. The approach described here eliminates that ambiguity and also eliminates the
overhead of processors participating in routing of jobs. This also keeps the architecture and
implementation of such a system simple, dynamically scalable and flexible. This is an important
aspect of requirement of a large array of networked Job processing systems.

7. CONCLUSIONS

The framework presented here can be easily implemented in a heterogeneous network of systems
of varied capacity. The processors need not necessarily be of identical capability. Depending on
the processing capacity of the systems, the processors can be configured to have, starting from 1
to any number of Threads with the required pool size and associated priority. The health and load
of the processors in the network is available to any component in the network. The dispatchers
running anywhere on the network can utilize this information for efficient routing.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

Wait Time Processing Time Total Time

Sender Proposed Algorithm

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

27

As compared to the existing implementations, the framework is quite flexible and can be scaled
up and scale out easily by changing few configuration parameters. As explained earlier, new jobs
can be added easily by writing a job that implements the interface defined. Therefore, the
expandability of the framework is quite high.

The future enhancements for improve reliability is to enhance failover-recovery mechanism for
the processors. While, the experiment did not include the failover-recovery, the framework
provides for maintaining the state of processing at various stages of processing. Therefore, adding
a recovery mechanism will be quite easy by adding the feature of saving the state in a persistence
medium and then recovering from where the processor failed after the next start-up.

Another enhancement would be to provide for Pause/Abort/Resume option for jobs. This feature
would be of great benefit for long running Jobs in a network.

REFERENCES

[01] Framework for a Scalable Distributed Job Processing System, Ambika Prasad Mohanty (Senior

Consultant, Infotech Enterprises Ltd.), P Srinivasa Rao (Professor in CSC, Principal, YPR College of
Engineering & Technology), Dr A Govardhan (Professor in CSC, Principal, JNTUH College of
Engineering), Dr P C Rao (Professor in CSC, Principal, Holy Mary Institute of Technology &
Science)

[02] Tel, G., Introduction to Distributed Process Scheduling. 1998,University of Cambridge..
[03] Ramamritham, K. and J.A. Stankovic, Dynamic Task Scheduling in Hard Real-Time Distributed

Systems. IEEE Software, 2002. 1(3): p. 65-75.
[04] Audsley, N. and A. Burns, Real -Time Scheduling, in Department of Computer Science. 1994,

University of York.
[05] Boger, M., Java in Distributed Systems. 2001: Wiley.
[06] Malik, S., Dynamic Load Balancing in a Network Workstations. 2003: Prentice-Hall.
[07] Monitoring system performance tools (URL:

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/rzahx/rzahxmonitorperf1.htm)
[08] Konstantinou, Ioannis; Tsoumakos, Dimitrios; Koziris, Necta/8532.rios, “Fast and Cost-Effective

Online Load-Balancing in Distributed Range-Queriable Systems” Parallel and Distributed Systems,
IEEE Transactions on Volume: 22, Issue: 8 (2011), Pages 1350 – 1364

[09] Konstantinou, Ioannis; Tsoumakos, Dimitrios; Koziris, Necta/8532.rios, “Fast and Cost-Effective
Online Load-Balancing in Distributed Range-Queriable Systems” Parallel and Distributed Systems,
IEEE Transactions on Volume: 22, Issue: 8 (2011), Pages 1350 - 1364.

[10] Pravanjan Choudhury, P. P. Chakrabarti, Rajeev Kumar Sr., "Online Scheduling of Dynamic Task
Graphs with Communication and Contention for Multiprocessors," IEEE Transactions on Parallel and
Distributed Systems, 17 Mar. 2011. IEEE computer Society Digital Library. IEEE Computer Society

[11] Sunita Bansal, and Chittaranjan Hota, Priority - based Job Scheduling in Distributed Systems, in
Third International Conference (ICISTM 2009), Ghaziabad, INDIA, Sartaj Sahani et al. (Eds.),
Information Systems and Technology Management, Communications in Computer and Information
Science Series, Vol 31, pp. 110-118, Springer-Verlag Berlin Heidelberg, March 2009.

[12] J. H. Abawajy, S. P. Dandamudi, "Parallel Job Scheduling on Multi-cluster Computing Systems,"
Cluster Computing, IEEE International Conference on, pp. 11, Fifth IEEE International Conference
on Cluster Computing (CLUSTER'03), 2003.

[13] Dahan, S.; Philippe, L.; Nicod, J.-M., The Distributed Spanning Tree Structure, Parallel and
Distributed Systems, IEEE Transactions on Volume 20, Issue 12, Dec. 2009 Page(s):1738 – 1751

[14] Norman Bobroff, Richard Coppinger, Liana Fong, Seetharami Seelam, and Jing Xu, Scalability
analysis of job scheduling using virtual nodes, 14th Workshop on Job Scheduling Strategies for
Parallel Processing held in conjunction with IPDPS 2009, Rome, Italy, May 29, 2009

[15] Parallel Job Scheduling on Multi-cluster Computing Systems, J. H. Abawajy, S. P. Dandamudi,
"Parallel Job Scheduling on Multi-cluster Computing Systems," Cluster Computing, IEEE Inter-
national Conference on, pp. 11, Fifth IEEE International Conference on Cluster Computing
(CLUSTER'03), 2003.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

28

[16] Load Sharing in Distributed Systems, Y-T.Wang and R.J.T.Morris. Load Sharing in Distributed
Systems. IEEE Trans. Computers, Vol. C-34, No. 3, 1985, pp. 204-215

[17] Kameda H., Li J., Kim C., and Zhang Y. Optimal Load Balancing in Distributed Computer Systems.
Springer, Tokyo, 1997.

[18] X.H. Zhang, J.L. Freschl and J.M. Schopf: “A Performance Study of Monitoring and Information
Services for Distributed Systems” 12th IEEE International Symposium on High Performance
Distributed Computing, Seattle, USA pp. 270-282 (2003)

[19] Shirazi B. A., Hurson A. R., and Kavi K. M. Scheduling and load balancing in parallel and distributed
systems.IEEE Computer Society Press, Tokyo, 1995.

[20] El-Zoghdy S. F., Kameda H., and Li J. Comparison of dynamic vs. static load balancing policies in a
mainframe-personal computer network model. INFORMATION, 5(4):431–446, 2002.

[21] Ahmad I., Ghafoor A. and Mehrotra K. “Performance Prediction of Distributed Load Balancing on
Multicomputer Systems”. ACM, 830-839, 1991.

[22] Kabalan K.Y., Smari W.W. and Hakimian J.Y. “Adaptive load Sharing in heterogeneous system:
Policies, Modifications and Simulation”. CiteSeerx, 2008.

[23] Lin H. C. and Raghavendra C.S. “A Dynamic Load Balancing Policy with a Central Job Dispatcher
(LBC)”. IEEE,1992.

AUTHORS

P Srinivasa Rao did his B.Tech in 1998 from Osmania University, Hyderabad,
India and M.Tech (Comp. Science) in 2003 from JNTU, Hyderabad, India. He has
about 15 years of experience in teaching Computer Science at various engineering
colleges. Currently, he is working as Professor and Principal at Y P R College of
Engineering and Technology, AP, India. He specializes in Parallel and Distributed
Systems. He is a life member of Indian Society for Technical Education (ISTE).
His students have won several prizes at national level like IBM Great Mind
Challenge. The author can be reached via e-mail: yourpsr@yahoo.com or
yourpsr@gmail.com.

Dr PC Rao did his M.Tech and Ph.D. from IIT, Kharagur and he worked in IT
industry for nearly 15 years and 10 years in teaching and as a professor. At
present he is principal of Jyothishmathi Institute of Technological Sciences . He
has published 20 papers in IEEE and INFOR, Philippine Statistician and
International conferences. The author can be reached via e-mail:
pcrao.vemuri@gmail.com.

Dr. A. Govardhan did his B.E (CSE) in 1992, M.Tech in 1994 and Ph.D in 2003.
He has published 125 technical papers in International and National journals and
conferences, including IEEE, ACM and Springer. He has guided 6 PhDs, received
several National and International Academic and service oriented awards. He has
delivered several invited and keynote lectures. His areas is interest include
Database, Data warehousing & Mining, Object Oriented Systems and Operating
Systems, Currently, he is Professor in CSE & Director of Evaluation, JNTU
Hyderabad AP, India. He has 18 years of experience in teaching and research.
The author can be reached via e-mail: govardhan_cse@yahoo.co.in.

Ambika Prasad Mohanty did his B.Tech (Instrumentation) in 1988 from
Madras Institute of Technology, Chennai, India, M.Tech (Computer Science) in
2003 from JNTU, Hyderabad, India and MBA (Technology Management) in
2011 from Anna University, TN, India. He had worked in the field of
Instrumentation for four years and in the field of software design and
development since 1993. The author specializes on software architectures,
enterprise integration, and performance tuning, network and application security.
He holds CVA and ITIL certification. The author can be reached via e-mail:
apmohanty@yahoo.com.

