
International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

DOI : 10.5121/ijdps.2013.4301 1

A LIGHT-WEIGHT DISTRIBUTED SYSTEM FOR THE

PROCESSING OF REPLICATED COUNTER-LIKE
OBJECTS

 Joel M. Crichlow, Stephen J. Hartley

 Computer Science Department, Rowan University

Glassboro, NJ, USA
crichlow@rowan.edu, hartley@elvis.rowan.edu

Michael Hosein

Computing and Information Technology Department, University of the West Indies

St. Augustine, Trinidad
mhosein2006@gmail.com

ABSTRACT

 In order to increase availability in a distributed system some or all of the data items are replicated and
stored at separate sites. This is an issue of key concern especially since there is such a proliferation of
wireless technologies and mobile users. However, the concurrent processing of transactions at separate
sites can generate inconsistencies in the stored information. We have built a distributed service that
manages updates to widely deployed counter-like replicas. There are many heavy-weight distributed
systems targeting large information critical applications. Our system is intentionally, relatively light-
weight and useful for the somewhat reduced information critical applications. The service is built on our
distributed concurrency control scheme which combines optimism and pessimism in the processing of
transactions. The service allows a transaction to be processed immediately (optimistically) at any
individual replica as long as the transaction satisfies a cost bound. All transactions are also processed in a
concurrent pessimistic manner to ensure mutual consistency.

KEYWORDS

Distributed System, Availability, Replication, Optimistic Processing, Pessimistic Processing, Concurrent
Processing, Client/Server

1. INTRODUCTION

Our system is called COPAR (Combining Optimism and Pessimism in Accessing Replicas). It
runs on a collection of computing nodes connected by a communications network. The
transactions access data that can be fully or partially replicated. Transactions can originate at any
node and the transaction processing system attempts to treat all transactions in a uniform manner
through cooperation among the nodes. We have had test runs on private LANs as well as over the
Internet, and preliminary results have been published and presented (see [1], [2], [3] and [4]).
This paper provides some background to the project in this section, explains the basic interactions
between the optimistic and pessimistic processing in section 2, and discusses recent key upgrades
in sections 3 to 6.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

2

One of the main reasons for replicating the data in distributed systems is to increase availability.
Replication has become increasingly more useful in the face of wireless technology and roaming
users. However, this replication increases the need for effective control measures to preserve
some level of mutual consistency. Several replica control techniques have been proposed to deal
with this issue and these techniques are described to different levels of detail in many articles and
presentations (e.g. see [5], [6], [7], [8], [9], [10] and [11]).

The techniques vary in a number of ways including the number of the replicas that must
participate before a change can be made to a replica, the nature of the communication among the
replicas, and if a replica can be changed before the others how is the change propagated. A key
contributor to the choice of specific procedures is the nature of the application. For example some
applications can tolerate mutually inconsistent replicas for longer periods than others. The twin
objective is

 process the transaction correctly as quickly as possible, and
 reflect this at all the replicas so that no harm is done.

One approach is to employ pessimistic strategies which take no action unless there are guarantees
that consistent results and states will be generated. Such techniques sacrifice availability. Another
approach is to employ optimistic techniques that take actions first and then clean up afterwards.
Such techniques may sacrifice data and transaction integrity. Saito & Shapiro [12] and Yu &
Vahdat [13] deal specifically with the issue of optimistic replication.

There is also the matter of failure. How do we achieve consistency and availability when the
network partitions? That is when some nodes cannot communicate with other nodes. In many
cases the key objective remains the same, i.e. to provide a quick response. Although that response
may not be accurate it may be tolerable. Strong arguments have been made for the relaxation of
consistency requirements in order to maintain good availability in the face of network
partitioning. Indeed in what is referred to as Brewer’s CAP theorem, the argument was made that
a system can provide just two from Consistency, Availability and Partition tolerance (see [14] and
[15]).

We will first demonstrate how our system works without partition tolerance to provide
consistency and availability. Then we will discuss a partition tolerance implementation that
maintains availability with delayed or weak consistency. Our system can be described as adhering
to the Base Methodology (see [16]). That is our system conforms to the following:

 Basically Available: Provides a fast response even if a replica fails.
 Soft State Service: Optimistic processing does not generate permanent state. Pessimistic

processing provides the permanent state.
 Eventual Consistency: Optimistic processing responds to users. Pessimistic processing

validates and makes corrections.

The use of a cost bound in the processing of transactions is useful in a system where countable
objects are managed. Lynch et al [17] proposed such a technique as a correctness condition in
highly available replicated databases. Crichlow [18] incorporated the cost bound in a scheme that
combined a simple pessimistic technique with a simple optimistic mechanism to process objects
that are countable. We regard an object as countable if its data fields include only its type and
how many of that object exists. For example an object may be of type blanket and there are one
thousand blankets available.

Every transaction submitted to the system enters concurrently a global pessimistic two-phase
commit sequence and an optimistic individual replica sequence. The optimistic sequence is
moderated by a cost bound, which captures the extent of inconsistency the system will tolerate.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

3

The pessimistic sequence serves to validate the processing and to commit the changes to the
replicas or to undo an optimistic run if it generated an inconsistency. Using this scheme we built
the COPAR service that can provide highly available access to counter-like replicas widely
deployed over a network.

There are several examples of systems that process countable data items. Reservation systems
handle available seats, rooms, vehicles, etc. Distribution systems handle available resources, e.g.
blankets, bottles of water, first-aid kits and so on for disaster relief. Traffic monitoring systems
count vehicles. Therefore our system COPAR although limited to countable objects has wide
applicability.

The main objectives in the design were to:

 Provide a high level of availability at a known penalty to the application,
 Permit wide distribution of replicas over the network,
 Preserve data integrity, and
 Build a system that is conceptually simple.

2. COPAR Operation

COPAR uses the client-server model of distributed processing. Servers maintain the “database” of
resources (i.e. the resource counts), and accept transactions from client machines. In our current
prototype there is one client machine called the generator (it generates the transactions) and the
“database” is fully replicated at all the servers. We call these servers the nodes.

Each node maintains two counts of available resources. One count is called the pessimistic or
permanent count; the other count is called the optimistic or temporary count. Changes to the
permanent count are synchronized with all the other nodes over the network using the two-phase
update/commit algorithm (see [19], and [20]). This algorithm forces all the participating nodes to
agree before any changes are made to the count. Thus, this count is the same at all the nodes and
represents true resource availability. The temporary count is maintained separately and
independently by each node.

In general, resource counts for availability are a single non-negative integer R, such as for one
type of resource, or a vector of non-negative integers (R1,R2, ...,Rm), such as for m types of
resources. Similarly, resource counts for transactions are a single integer r, negative for an
allocation and positive for a deallocation or release, or a vector of integers (r1, r2, ..., rm).
When the system is initialized, the permanent count Pjk at each node j (where k ranges from 1 to
m resource types) is set to the initial resource availability Rk. For example let R1 = 2000 first aid
kits, R2 = 1000 blankets, or R3 = 4000 bottles of water for disaster relief. Then the Pjk for 4 nodes
will be initialized as in Table 1:

Table 1. An initial state at 4 nodes

Nodes
1 P11 = 2000 P12 = 1000 P13 = 4000
2 P21 = 2000 P22 = 1000 P23 = 4000
3 P31 = 2000 P32 = 1000 P33 = 4000
4 P41 = 2000 P42 = 1000 P43 = 4000

The temporary count Tjk at each node is set to the initial permanent count divided by the number
of nodes n. Tjk is then adjusted upward by an over-allocation allowance c, called the cost bound,
where c >= 1. Therefore,

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

4

Tjk = c * Pjk /n

For example, if there are four nodes, if R1 is 100, and if c is 1.16, then Pj1 is set to 100 and Tj1 is
set to 29 at each node as in Table 2:

Table 2. Initial permanent and temporary counts at 4 nodes

Nodes
1 P11 = 100

T11 = 29
2 P21 = 100

T21 = 29
3 P31 = 100

T31 = 29
4 P41 = 100

T41 = 29

Most reservation/allocation systems allow some over-allocation to compensate for reservations
that are not used, such as passengers not showing up for an airline flight or people not picking up
supplies when delivered to a relief center. There is a cost involved in over-allocation, such as
compensating passengers denied boarding on an airline flight. Organizations using a
reservation/allocation system must carefully evaluate the cost of over-allocation and limit it to
what can be afforded or tolerated.

Currently, interaction with the system is simulated by generating a transaction ti, which makes a
request (r1, r2, ..., rm), i.e. for ri resources of type i, where i ranges from 1 to m types of resources.
This request is sent to a node j. This node is then considered the parent or owner of the
transaction.

The m integers in a transaction are generated randomly and the node j is chosen at random from 1
to n, where there are n nodes. Transactions from the generator are numbered sequentially.
Additions to the pool of resources are handled differently. Such additions are discussed in section
4.

For example, a transaction may make a request (-10, -20, -100) for 10 first aid kits, 20 blankets
and 100 bottles of water, where there are 3 resource types: type1 – first aid kits, type 2 – blankets
and type 3 – bottles of water. Furthermore a transaction deallocating or returning 10 first aid kits,
20 blankets and 100 bottles of water may be expressed as (10, 20, 100).

Each node maintains two queues of transactions, called the parent or owner queue and the child
queue. A parent node, on receiving a transaction, adds that transaction to its parent queue and to
its child queue. The transaction is also broadcast to all nodes to be added to each node’s child
queue. The transactions ti in each node’s parent queue, are kept sorted in order of increasing i, in
other words, in the order generated by the transaction generator.

Note that a particular transaction ti is in exactly one node’s parent queue. Each node j has two
processors (threads), one responsible for maintaining the parent queue and the permanent count
Pjk at the node, and the other responsible for maintaining the child queue and the temporary count
Tjk at the node (see Figure 1).

The permanent processor at each node participates in a two-phase commit cycle with all the other
node permanent processors. After the processing of transaction ti−1 by its parent, the node whose
parent queue contains transaction ti becomes the coordinator for the two-phase commit cycle that

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

5

changes the permanent count Pjk at all nodes j to Pjk + rk for k = 1, 2, ...,m. The temporary counts
are also forced to change after permanent processing. We will discuss this in the following
section.

The change to the permanent count is subject to the restriction that Pjk + rk is nonnegative for all
k. If that is not the case, all Pjk are left unchanged and the transaction ti is marked as a violation.
This in effect means that if a request cannot be totally granted then nothing is granted. (This will
be upgraded during further research to allow non-violation if Pjk + rk is nonnegative for at least
one k, i.e. to allow granting of partial requests). At the end of the two-phase commit cycle, the
owner (parent) of transaction ti sends a message to all nodes, including itself, to remove ti from
the node’s child queue if ti is present.

Temporary processing takes place concurrently with permanent processing. The temporary
processor at each node j removes the transaction th at the head of its child queue, if any, and
calculates if the request rk made by th can be allocated or satisfied from its temporary (optimistic)
count Tjk. In other words, node j checks if it is the case that Tjk +rk is non-negative for all k = 1, 2,
… m. If that is not the case, th is discarded (This will be upgraded during further research so that
transaction th is not discarded if Tjk + rk is nonnegative for at least one k); otherwise, node j sets
Tjk to Tjk + rk and sends a message to the parent (owner) node of the transaction, i.e. the node
whose parent queue contains the transaction.

When a parent node n receives such a message from node j for transaction th, node n makes two
checks.

• Is this the first such message received from any node’s temporary processor for transaction th?
• Has transaction th been done permanently yet?

If this is not the first such message, a reply is sent to node j that it should back out of the
temporary allocation it did for th, that is, change its temporary count Tjk to Tjk − rk. This operation
is necessary since another node will have done the temporary processing. This is possible because
all the nodes get a chance to make an individual response to a request. The fastest one wins.
A temporary transaction may have to be “undone”. Therefore, if this is the first such message and
if the transaction th has not yet been done permanently (pessimistically), node j sending the
message is marked as the node having done transaction th temporarily (optimistically). If this is
the first such message, but transaction th has already been done permanently, no node is recorded
as having done the transaction temporarily.

When the permanent processor in a node j coordinates the two-phase commit for a transaction ti
and has decided that transaction ti is a violation, that is, Pjk + rk is negative for one or more k,
node j checks to see if the transaction was marked as having been done optimistically earlier by
some node’s temporary processor. If so, the transaction ti is marked as “undone,” meaning that a
promised request cannot now be granted.

1 1

2

2

3

3 1

2

3

P C P
C

A B

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

6

Figure 1. Each node A and B has a parent queue P and a child queue C. Node A owns
transactions 1 and 2 and will process these pessimistically in a two-phase commit protocol
involving A and B. Node B owns transaction 3 and will process it pessimistically in a two-phase
commit protocol involving A and B. Concurrently nodes A and B process transactions 1, 2 and 3
optimistically.

If no node has done the transaction optimistically and it is not a violation, the owner’s temporary
processor allocation Tjk is “charged” for it, Tjk = Tjk + rk. This is done to lessen the probability of a
later transaction being performed optimistically but then marked “undone” by the permanent
processor.

3. Updating Optimistic counts after Pessimistic/Permanent Processing

The temporary optimistic counts Tjk change at the end of optimistic transaction processing. The
pessimistic counts Pjk change at the end of permanent transaction processing. Whenever there is a
change to Pjk this should generate an update to Tjk which is consistent with the new Pjk. Therefore
Tjk is updated by the temporary optimistic processing and after the pessimistic permanent
processing.

As is stated above, when the system is initialized, the permanent count Pjk at each node j (where k
ranges from 1 to m resource types) is set to the initial resource availability Rk. However,
permanent processing of a transaction generates a new Pjk where

(new) Pjk = (old) Pjk + rk

Therefore a new Tjk is generated where

Tjk = c * (new) Pjk * wjk

You may notice that there is an apparent difference between how Tjk is derived here and how it
was derived initially (/n is replaced by * wjk). The wjk is a weight which captures the amount of
allocations done by a node and influences the reallocation of the Tjk values.

We will now discuss how the wjk is calculated. Permanent processing uses the two-phase commit
protocol which requires a coordinating node. Permanent processors via the coordinator maintain a
running total of allocations done by each node. Let rajk be the total allocations of resource k done
by node j on completion of permanent processing. Let RAk will be the total allocations of
resource k done by all the nodes at end of permanent processing. We let

wjk = (rajk + 1)/(RAk + n) where n is the number of nodes.

Note that initially rajk and RAk are equal to zero, therefore on initialization wjk is equal to 1/n. This
is consistent with the initial derivation of Tjk.

The coordinating parent processor can now use

Tjk = c * Pjk * wjk

to compute the new temporary counts for optimistic processing. However there is a problem here.
While the coordinating pessimistic processing was being done, the optimistic temporary
processors were still running. Therefore the information used in the computation of the Tjk can be
stale. That is the rajk used in the computation of the new Tjk for node j could have been changed
due to further optimistic processing by that node.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

7

We must therefore distinguish between two rajk. Let the one that was used by pessimistic
processing to compute the new count be called rajk,recorded and the current one be rajk,current.

When the temporary processors receive Tjk from the permanent processor the temporary
processors adjust the Tjk as follows in order to reflect its current position:

Tjk = Tjk – (rajk,current - rajk,recorded)

If this result is negative make it 0. The zero value forces temporary processing at this node to
stop.

For example, let R1 denote resources of type 1 (say blankets) initially 100 and c = 1.1.

Then Pj1 = 100 and Tj1 = 110/n.
Let there be 3 replicas i.e. n = 3.
Therefore T11 = T21 = T31 = 37.

Let permanent processors at nodes 1, 2, 3 record allocations of 30, 20, 10 blankets respectively.

Therefore
ra11,recorded = 30, ra21,recorded = 20, and ra31,recorded = 10.
Therefore Pj1 = R1 is now 40 (i.e. 100 – 30 – 20 – 10) and
Tj1 = 1.1 * 40 * wj1

Therefore
T11 = ((30 + 1) / (60 + 3))* 44 = 22

Assume that 6 more blankets were allocated at temporary processor 1.

Therefore
T11 = T11 - (ra11,current - ra11,recorded) = 22 – (36 – 30) = 16

We now compute the new temporary count for temporary processor 2.
T21 = ((20 + 1) / (60 + 3))* 44 = 15

Assume 4 more blankets were allocated at temporary processor 2.

Therefore
T21 = T21 - (ra21,current - ra21,recorded) = 15 – (24 – 20) = 11

We now compute the new temporary count for temporary processor 3.
T31 = ((10 + 1) / (60 + 3))* 44 = 7

Assume 3 blankets were returned/deallocated at temporary processor 3.

Therefore
T31 = T31 - (ra31,current - ra31,recorded) = 7 – (7 – 10) = 10

On the other hand let’s assume that 8 more blankets were allocated at temporary processor 3, then
ra31,current = 18, and

T31 = T31 - (ra31,current - ra31,recorded) = 7 – (18 – 10) = -1. This temporary count is then set to 0 and
temporary processor 3 is stopped until it gets a count greater than 0.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

8

Note that this still does not prevent temporary over-allocations since one temporary does not
know what the other temporary is doing and cost bound c = 1.1. However, it reduces the incidents
of over-allocations and hence the number of “undones”. But our objective of high-availability is
being maintained.

4. ADDITIONS

At any time while the system is running additions can be made to the available pool of resources,
e.g. new donations can be made to a pool of resources for disaster relief. An addition is
considered a unique transaction called ai(r1 … rm) that adds rk, (i.e. r resources of type k where k
ranges from 1 to m) to the pool of available resources. It is not appended to the child queues.
When this transaction is processed Pjk and Tjk are updated by the permanent processor:

Pjk = Pjk + rk

Tjk = c * Pjk * wjk using the current values of the wjk.

The temporary processors will then update Tjk to reflect their current situation as discussed in
section 3.

5. RESULTS FROM TESTS WHERE THERE ARE NO FAILURES

The COPAR test-bed includes a transaction generator and servers on a LAN at Rowan University
in New Jersey (R) interconnected via the Internet with a server about 40 miles away at Richard
Stockton College in New Jersey (RS) and a server at the University of the West Indies (UWI)
located in Trinidad in the southern Caribbean approximately 2000 miles away.

The transaction generator and servers are all started with a program running on the transaction
generator node that reads and parses an XML file containing the data for the run. We have
demonstrated that a large percentage of transactions submitted to the system can be handled
optimistically (without multi-server agreement) at significantly faster turnaround times and with a
very small percentage of “undones”.

The figures and tables display results when 200 transactions were generated at a rate of 5
transactions per second. There are 200 resources of each type available initially. The cost bound
is 1.16. Transactions include requests for resources, returns of resources and new donations (i.e.
additions). Requests and returns range from 3 to 9 resources per transaction. Donations range
from 3 to 10 resources per donation. Tests were done on two platforms: a four node platform with
all servers (including transaction generator) at Rowan (R); and a six node platform including
Rowan, Richard Stockton and UWI (R+RS+UWI).

In Figure 2, of the 200 transactions 18 are donations totaling 136. There is one resource type of
200 resources available initially. On the R platform 159 transactions are done optimistically and 4
are undone. On the R+RS+UWI platform 182 transactions are done optimistically and 25 are
undone.

During these tests on the R platform, pessimistic processing times (PT) range from 29
milliseconds to 288 milliseconds, optimistic processing times (OT) range from 1 millisecond to
20 milliseconds. The average PT to RT ratio is 18. The R+RS+UWI platform is subject to the
vagaries of the Internet and the vast geographical expanse. The PT times range from 2.6 seconds
to 10 minutes, OT times range from 1 millisecond to 1 second. The average PT to RT ratio is
117000 (see Table 3).

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

9

Figure 2. Tests were done on two platforms: a four node platform with all servers (including
transaction generator) at Rowan (R); and a six node platform including Rowan, Richard Stockton
and UWI (R+RS+UWI); 200 transactions were generated at a rate of 5 transactions per second.

Table 3. Pessimistic (PT) and Optimistic (OT) times from tests in Figure 2

 Min Max Ave

PT/OT
ratio

R
PT

29
msec

288
msec

18

R
OT

1
msec

20
msec

R+RS+UWI
PT

2.6
sec

10
min

117000

R+RS+UWI
OT

1
msec

1
sec

In Figure 3 there are 3 resource types each with 200 resources initially. There are 28 donations
totaling 189, 172 and 181 for resource types 1, 2 and 3 respectively. On the R platform 161
transactions are done optimistically and 2 are undone. On the R+RS+UWI platform 172
transactions are done optimistically and 10 are undone.

During these tests on the R platform, PT times range from 29 milliseconds to 255 milliseconds,
OT times range from 1 millisecond to 21 milliseconds. The average PT to RT ratio is 19. The
R+RS+UWI platform is subject to the vagaries of the Internet and the vast geographical expanse.
The PT times range from 3 seconds to 8 minutes, OT times range from 1 millisecond to 258
milliseconds. The average PT to RT ratio is 111000, (see Table 4).

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

10

Figure 3. There are 3 resource types each with 200 resources initially. There are 28 donations
totaling 189, 172 and 181 for resource types 1, 2 and 3 respectively. On the R platform 161
transactions are done optimistically and 2 are undone. On the R+RS+UWI platform 172
transactions are done optimistically and 10 are undone

Table 4. Pessimistic (PT) and Optimistic (OT) times from tests in Fig. 3

 Min Max Ave PT/OT

ratio
R
PT

29
msec

255
msec

19

R
OT

1
msec

21
msec

R+RS+UWI
PT

3
sec

8
min

111000

R+RS+UWI
OT

1
msec

258
msec

6. HANDLING FAILURE

Our failure handling model addresses only the case of a node that can no longer be reached.
Failing to reach a node may be due to that node’s failure, communication link failure, or an
unacceptably long response time. Such a failure handling model is workable in COPAR since the
transactions handled and the information maintained by the system can tolerate certain margins of
error.

If a node cannot be reached due to node or communication link failure then the pessimistic 2PC
processing will fail. However optimistic processing will continue at all operating nodes until the
cost bound at those nodes is zero. The objective will be to restart pessimistic processing only if a
majority of the initial group of nodes can be reached.

The restart of pessimistic processing among the majority uses the concept of the “distinguished
partition”. That is, the network is now partitioned and processing is allowed to continue in a
favored partition. This favored partition is called the “distinguished partition”. Voting schemes in
which nodes possess read/write votes are often used to determine that “distinguished partition”
(see [21] and [9]).

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

11

Our “distinguished partition” for pessimistic processing will be the partition with the majority of
the initial group of nodes. The restart will use the current permanent/pessimistic resource counts
and generate new temporary/optimistic counts for the new reachable pool of nodes.

For example, given the following 4-node situation in Table 5:

Table 5. The current state at 4 nodes

Nodes
1 P11 = 100

T11 = 29
2 P21 = 100

T21 = 29
3 P31 = 100

T31 = 29
4 P41 = 100

T41 = 29

After some processing, assume that each node has allocated 4 resources and this has been
processed pessimistically, therefore the new situation is Table 6:

Table 6. The new state after allocating 4 resources

Nodes
1 P11 = 84

T11 = 25
2 P21 = 84

T21 = 25
3 P31 = 84

T31 = 25
4 P41 = 84

T41 = 25

Assume that node 4 can no longer be reached, but it is still operable. That node can continue to
process requests until T41 = 0. Pessimistic processing can restart with nodes 1, 2 and 3 with a P
value of 84 and 3 being the number of nodes.

Currently the system is controlled by a transaction generator, which can be viewed as a single
point of failure. In the future transaction handling should be separated from system management.
The system manager will handle system start-up, initialization, monitoring, restart, etc. The
transaction handlers should exist at all nodes. In the meantime the transaction generator assumes
the role of the monitor of the system.

We would like the two-phase commit processing to recover from the failure of a participating
node. Therefore we are proposing the following pseudo two-phase commit sequence.

In phase one, after a time-out before receiving all votes, the coordinator will count the number of
votes to determine if it heard from a majority of the initial set of participants. If it did not hear
from a majority the transaction will be aborted. If it heard from a majority it will start phase two
with the majority as the group of participants.

In phase two, after a time-out before receiving all commit responses, the coordinator will
determine if it heard from a majority of the initial set of participants. If it did not hear from a
majority the transaction will be aborted. If it heard from a majority the coordinator will complete

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

12

the commit sequence. The subsequent processing round will start phase one with this new group
of participants.

If the transaction generator times out on a coordinator it will assume that the coordinator is no
longer reachable. The transaction generator will determine if a majority of the initial set of nodes
is still operable. If a majority is operable the transaction generator will select a new coordinator
and restart transaction processing with the new group of nodes. If a majority is not operable the
transaction generator will wait until a majority of nodes come back online.

As a proof of concept we ran some tests of COPAR that simulated a node failure during
transaction processing. We did this in the following way. Whenever a server is notified that a
transaction has been selected for pessimistic processing, that server increments a counter that was
initially zero. When that counter reaches 50 the server checks the notification message to
determine if the sender was a specified server s. If it is s then s is classified as inactive and is
dropped from the two-phase commit pool. The pessimistic processing continues with the pool
reduced by one server.

However, since server s is in reality still active it will continue optimistic processing until it
empties its child queue or until its cost bound is less than or equal to zero. At this point the
transaction generator does not know that server s is no longer in the two-phase commit pool and
so the generator can continue to send new transactions to server s.

In order to prevent this, the generator increments a counter whenever it generates a new
transaction. When that counter reaches 25 the generator stops sending transactions to server s.
Transactions that should have gone to s are sent alternately to its downstream and upstream
neighbor. In the tests 200 transactions are generated. Therefore the counter values must be less
than 200. Since the selection of a coordinator/parent is pseudo-random and since we do not keep a
history of the interactions between servers then our choice of the counter values are somewhat
arbitrary, and it is intended primarily to ensure that new transactions are not sent to server s after
it has been dropped from the pessimistic two-phase pool.

In the tests discussed below a server on the Rowan(R) LAN is dropped during the processing. In
Figure 4, of the 200 transactions 18 are donations totaling 136. There is one resource type of 200
resources available initially. On the R platform 157 transactions are done optimistically and 1 is
undone. On the R+RS+UWI platform 182 transactions are done optimistically and 25 are undone.
Notice the similarity between these results and those displayed in Figure 2 where the only change
here is in the dropped server.

0

50

100

150

200

250

r r+rs+uwi

All Trans

Opt

Undone

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

13

Figure 4. A server on the Rowan(R) LAN is dropped during the processing. Results are similar to
case when no server is dropped.

During these tests on the R platform, pessimistic processing times (PT) range from 29
milliseconds to 222 milliseconds, optimistic processing times (OT) range from 1 millisecond to
17 milliseconds. The average PT to RT ratio is 21. The R+RS+UWI platform is subject to the
vagaries of the Internet and the vast geographical expanse. The PT times range from 2.6 seconds
to 8.8 minutes, OT times range from 1 millisecond to 991 milliseconds. The average PT to RT
ratio is 117000 (see Table 7).

Notice that whereas the numbers of completions are similar to the case when all servers were
operable (see Table 3), there are differences in completion times when a server is dropped. It is
expected that the pessimistic processing should decrease after a server was dropped. On the R
platform max PT dropped from 288 milliseconds to 222 milliseconds, and on the R+RS+UWI
platform max PT dropped from 10 minutes to 8.8 minutes.

Table 7. Pessimistic (PT) and Optimistic (OT) times from tests in Fig. 4

 Min Max Ave PT/OT
ratio

R
PT

29
msec

222
msec

21

R
OT

1
msec

17
msec

R+RS+UWI
PT

2.6
sec

8.8
min

97251

R+RS+UWI
OT

1
msec

991
msec

In Figure 5, of the 100 transactions 9 are donations totaling 66. There is one resource type of 200
resources available initially. The results of two tests on the R+RS+UWI platform are displayed.
In both tests a Rowan server was dropped after about 50 transactions. In the test labeled “more”
the distribution of transactions was such that the remote UWI server (about 2000 miles away from
the generator) got 50% more transactions than in the test labeled “less”. In each case 91
transactions are done optimistically and 0 is undone. The difference in the distribution of
transactions does not affect the numbers completed.

0

20

40

60

80

100

120

r+rs+uwi
(less)

r+rs+uwi
(more)

All Trans

Opt

Undone

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

14

Figure 5. The results of two tests on the R+RS+UWI platform are displayed. In both tests a
Rowan server was dropped after about 50 transactions. In the test labeled “more” the distribution
of transactions was such that the remote UWI server got 50% more transactions than in the test
labeled “less”. In each case 91 transactions are done optimistically and 0 is undone.

During these tests on the “less” platform, pessimistic processing times (PT) range from 2.8
seconds to 4 minutes, optimistic processing times (OT) range from 1 millisecond to 835
milliseconds. The average PT to RT ratio is 47389. On the “more” platform the PT times range
from 4.4 seconds to 6 minutes, OT times range from 2 millisecond to 1.4 seconds. The average
PT to RT ratio is 45674 (see Table 8). On the “more” platform the far-distant UWI server
performed the coordinator role more often than on the “less” platform. Therefore the nature of the
two-phase commit would generate a longer max PT time. However to the satisfaction of the users
of the system the maximum optimistic processing time is 1.4 seconds with 0 undone.

Table 8. Pessimistic (PT) and Optimistic (OT) times from tests in Fig. 5

 Min Max Ave PT/OT
ratio

Less
PT

2.8
sec

4
min

47389

Less
OT

1
msec

835
msec

More
PT

4.4
sec

6
min

45674

More
OT

2
msec

1.4
sec

7. CONCLUSION

We feel that we have met the main objectives that we had set for COPAR. It targets applications
where there is need for very fast receipt and distribution of resources over possibly wide
geographical areas, e.g. a very wide disaster zone. COPAR provides a high level of availability.
There is very fast turnaround time on the processing of transactions. The validation is quick thus
minimizing the need to undo an optimistic result. There is a simple failure handling scheme
which permits all reachable nodes to continue optimistic processing and a “distinguished
partition” to continue pessimistic processing.

There is wide geographical distribution of replicas covering a range of approximately 2000 miles.
Data integrity is preserved through the pessimistic two-phase commit and the choice of an initial
cost bound. It is our view that the design embodies simple but workable concepts. All nodes
handle their child queues optimistically (independently) and their parent queues pessimistically
(two-phase commit).

However there is further work to be done. Three main tasks are (1) improving the handling of
failure, (2) separating the system manager from the transaction manager and (3) implementing
multiple transaction generators with interfaces that run on mobile devices.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013

15

REFERENCES

[1] Crichlow, J.M., Hartley, S. and Hosein, M., 2012. A High-Availability Distributed System for

Countable Objects like Disaster Relief, The Computing Science and Technology International
Journal, Vol. 2, No. 2, June, 29-32.

[2] Francis, M.F. and Crichlow, J.M., 1995. A mechanism for combining optimism and pessimism in
distributed processing, Proceedings of the IASTED/ISMM International Conference on Intelligent
Information Management Systems, Washington, D.C., June, 103-106.

[3] Hosein, M. and Crichlow, J.M., 1998. Fault-tolerant Optimistic Concurrency control in a Distributed
System, Proceedings of the IASTED International Conference on Software Engineering, Las Vegas,
October 28-31, 319-322.

[4] Innis, C., Crichlow, J., Hosein, M. and Hartley, S., 2002, A Java System that combines Optimism and
Pessimism in updating Replicas, Proceedings of the IASTED International Conference on Software
Engineering and Applications, Cambridge, MA, November 4-6.

[5] Bernstein, P.A., Hadzilacos, V. and Goodman, N., 1987. Concurrency Control and Recovery in
Database Systems, Addison-Wesley Pub. Co., Reading, Ma.

[6] Birman, K.P., 1996. Building Secure and Reliable Network Applications, Manning Pub. Co.
[7] Birman, K.P., 2012. Guide to Reliable Distributed Systems, Springer.
[8] Crichlow, J.M., 2000. The Essence of Distributed Systems, Prentice Hall/Pearson Education, U.K.
[9] Jajodia, S. and Mutchler, D., 1990. Dynamic voting algorithms for maintaining the consistency of a

replicated database, ACM Transactions on Database Systems, 15, 2(Jun), 230-280.
[10] Krishnakumar, N & Bernstein, A.J., 1991. Bounded Ignorance in Replicated Systems, Tenth ACM

Symp. On Principles of Database Systems.
[11] Wolfson, O., Jajodia, S. and Huang, Y., 1997. An adaptive data replication algorithm. ACM

Transactions on Database Systems, 22(2), 255-314.
[12] Saito, Y. and Shapiro, M., 2005. Optimistic Replication, ACM Computing Surveys, 37(1), March, 42-

81.
[13] Yu, H. & Vahdat, A., 2001. The Costs and Limits of Availability for Replicated Services, Proceedings

of the 18th ACM Symposium on Operating systems Principles, Alberta, Canada, October 21-24, 29-
42.

[14] Brewer, E., 2000. Towards Robust Distributed Systems, ACM Symposium on Principles of
Distributed Computing (PODC), Keynote address, July 19.

[15] Lynch, N.A. and Gilbert, S., 2002. Brewer’s Conjecture and the feasibility of consistent, available,
partition tolerant Web Services, ACM SIGACT News, Vol. 33, Issue 2, 51-59.

[16] Pritchett, D., 2008. An ACID Alternative, ACM Queue, Vol. 6, No. 3, May/June, 48-55.
[17] Lynch, N.A., Blaustein, B.T. and Siegel, M., 1986. Correctness conditions for highly available

replicated databases, Proceedings of the fifth annual ACM Symposium on Principles of Distributed
Computing, Aug., 11-28.

[18] Crichlow, J.M., 1994. Combining optimism and pessimism to produce high availability in distributed
transaction processing, ACM SIGOPS Operating Systems Review, 28, 3(July), 43-64.

[19] Crichlow, J.M., 2009. Distributed Systems – Computing over Networks, Prentice Hall India.
[20] Tanenbaum, A. S., van Steen, M., 2002. Distributed Systems, Principles and Paradigms, Prentice

Hall, NJ.
[21] Gifford, D.K., 1979. Weighted Voting for Replicated Data, Proceedings of the Seventh ACM

Symposium on Operating Systems Principles, Dec., 150-162.

