
International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

DOI : 10.5121/ijdps.2010.1211 129

FINE GRAIN PARALLEL CONSTRUCTION

OF NEIGHBOUR-JOINING PHYLOGENETIC
TREES WITH REDUCED REDUNDANCY

USING MULTITHREADING

Biswajit Sahoo

1
, Ashutosh Behura

2
, and Sudarsan Padhy

3

1
KIIT University, Department of CSE, Bhubaneswar, India

sh_biswajit@yahoo.co.in
2
KIIT University, Department of CSE, Bhubaneswar, India

ashutoshbehura_2006@yahoo.com
3
Utkal University, Department of Mathematics, Bhubaneswar, India

spadhy04@yahoo.co.in

ABSTRACT

In biological research, scientists often need to use the information of the species to infer the evolutionary

relationship among them. The evolutionary relationships are generally represented by a labeled binary

tree, called the evolutionary tree (or phylogenetic tree). The phylogeny problem is computationally

intensive, and thus it is suitable for parallel computing environment. In this paper, a fast algorithm for

constructing Neighbor-Joining phylogenetic trees has been developed. The CPU time is drastically

reduced as compared with sequential algorithms. The new algorithm includes three techniques: Firstly, a

linear array A[N] is introduced to store the sum of every row of the distance matrix (the same as SK),

which can eliminate many repeated (redundancy) computations, and the value of A[i] are computed only

once at the beginning of the algorithm, and are updated by three elements in the iteration. Secondly, a

very compact formula for the sum of all the branch lengths of OTUs (Operational Taxonomic Units) i and

j has been designed. Thirdly, multiple parallel threads are used for computation of nearest neighboring

pair.

INDEX TERM

Pair wise alignment, operational taxonomic unit, phylogenetic tree, multiple sequence alignment.

1. INTRODUCTION

An understanding of evolutionary relationships is at the heart of modern pharmaceutical research

for drug discovery, and is also the basis for the design of genetically enhanced organisms.

Evolutionary history is typically represented by an evolutionary tree [13-15]. An evolutionary

tree is a leaf-labeled binary tree which tracks the genetic similarities of a set of closely related

species.

The task of constructing the evolutionary tree for a set of species is known as the phylogeny

problem. The difficulty of such problem is that the number of possible evolutionary trees is very

large. Construction of an evolutionary history for a set of contemporary taxa based on their

pairwise distance is computationally intractable (i.e., NP-complete) for various optimality

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

130

criteria [2, 3]. Existing methods for solving the phylogeny problem include parsimony,

maximum likelihood, and distance matrix methods [15-17].Various heuristics have been

proposed to search for solutions of desired quality, and the majority of these methods are greedy.

Among the greedy approaches, the Neighbor-Joining (NJ) method [4, 5] is widely used by

molecular biologists due to its efficiency and simplicity.

In recent years, NJ method is very popular especially in multiple sequence alignment (MSA)

because it is applicable to any type of evolutionary distance data. The output of NJ method is

used to direct the grouping of sequences during the multiple alignment process [8]. The most

popular MSA tool CLUSTALW [7] uses NJ algorithm for constructing phylogenetic trees and

the progressive alignment. Most recent famous MSA software such as T-COFFEE [8], MAFFT

[9], MUSCLE [10] et al also use NJ method as main alternative option. But the big-O time

complexity of the original NJ algorithm is O(N
5
), where N is the number of OTUs (Operational

Taxonomic Units), which limits the application of NJ algorithm when N is very big. For a part of

this reason, MUSCLE and MAFFT use UPGMA [11] to construct phylogenetic tree since

UPGMA reduces the time complexity to O(N
3
). However, UPGMA does not build the true

evolutionary tree to guide a progressive alignment in line with biological expectations though it

may get higher SP score than NJ method sometimes. If the time complexity of NJ method is

reduced, we believe that it will be more welcome by molecular biologists.

Studier and Kepler [5] have succeeded to reduce the time complexity of NJ from O(N

5
) to O(N

3
).

But there is still a scope to reduce the execution time for NJ algorithm. In this paper, we propose

a parallel algorithm which is verified to be much faster than the original one, and about 2, 2.2,

and 2.3 times faster than Studier and Kepler's algorithm on a single thread, dual thread, and quad

thread respectively by implementing with sufficient experimental data. We also reduce the time

complexity from O(N
5
) to O(N

3
) by an extra O(N) space in comparison to original NJ algorithm.

In the rest of this paper, sections 2 and 3 describe the sequential NJ algorithm and its time

complexity respectively. In section 4, we propose a fine grain parallel fast algorithm.

Experimental results are given in section 5. Section 6 contains the conclusion of the paper.

2. SEQUENTIAL NJ ALGORITHM

The NJ method was initially proposed by Saitou and Nei [4], and later modified by Studier and

Kepler [5]. Neighbor-Joining seeks to build a tree which minimizes the sum of all branch

lengths, i.e., it adopts the minimum-evolution (ME) criterion. Many studies have corroborated

NJ's performance in reconstructing correct evolutionary trees. For small numbers of taxa, NJ

solutions are likely to be identical to the optimal ME tree [6]. Neighbor-Joining begins with a

star tree, then iteratively finds the nearest neighboring pair (i.e. the pair that induces a tree of

minimum sum of branch lengths) among all possible pairs of nodes (both internal and external).

The nearest pair is then clustered into a new internal node, and the distances of this node to the

rest of the nodes in the tree are computed and used in later iterations. The algorithm terminates

when N-2 internal nodes have been inserted into the tree (i.e., when the star tree is fully resolved

into a binary tree). The framework of NJ is defined by three components: the criterion used to

select pairs of nodes; the formula used to reduce the distance matrix; and the branch length

estimation formula.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

131

Fig.1 shows an example of NJ tree, which indicates the evolutionary relationships of 8 OTUs

and which is an un-rooted tree. The rectangles denote the terminal nodes or OTUs and the

rectangles denote the internal node. The characters beside the triangle denote OTUs, numbers

and the rectangle denote the orders that OTUs are inserted into the tree and the data above the

lines are the branch lengths of two neighbors. It is obvious that OTUs 1 and 2 are clustered first,

generating a new combined OTU. The branch lengths between 1 and the new OTU and 2 and the

new OTU are 5 and 2 respectively. After OTUs 7 and 8 are clustered, there are only two OTUs,

and they are clustered. The tree is built now.

The NJ algorithm is described briefly as follows. Sij is the sum of the least-squares estimates of

branch lengths [4] and is defined by

1

0

1 1 1
()

2(2) 2 2

N

ij ik jk ij mn

k m n

S D D D D
N N

−

= <

= + + +
− −
∑ ∑

 (1)

where i=0 ∼ N – 2, j=i+1 ∼ N – 1, k,m,n ≠ i, j.

At every iterative step, the minimum Sij indicates that nodes i and j are the nearest evolutionary

neighbors. Suppose that OTUs i and j are the neighbors to be joined in the tree. They are

clustered as a new one, denoted by X. Define the symbol Dij as the edit distance between OTUs i

and j.

The distance between this combined OTU (X) and another OTU k is defined by

DXk = (Dik +Djk)/2, k = 0 ∼ N -1, k ≠ i,j (2)

Lab is defined as the branch length between nodes a and b. LiX and LjX are estimated by

LiX =(Dij+DiZ -DjZ)/2 (3)

LjX = (Dij +DjZ -DiZ)/2

Figure 1. Neighbor-Joining tree

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

132

where

1

0

1

0

/ (2),

/ (2), , .

N

iZ ik jZ

k

N

jk

k

D D N D

D N k i j

−

=

−

=

= −

= − ≠

∑

∑

Here, Z represents a group of OTUs including all but i and j, and Diz and Djz are the distances

between i and Z and j and Z, respectively. At last OTUs i and j are deleted from the current

OTUs lists and X is added to the list, then the number of current OTUs reduces by one and a new

iteration starts. The pseudo code of NJ algorithm is described as follows:

/*Input: N (the number of OTUs) and Dij (the edit distance between pair OTUs i and j),

Distance Matrix, D */

/* Output: NJ tree */

1. While N > 2 do

1.1 For i=0 to N-1 do

1.2 For j=i+1 to N do

1.2.1 Compute Sij according to formula (l).

EndFor

 EndFor

1.3 Search the minimum Sij to get neighbors i and j.

1.4 OTUs i and j are clustered as a new OTU X.

1.5 Compute DXk according to formula (2).

1.6 Compute branch lengths LiX and LjX according to formula (3).

1.7 Delete OTUs i and j, and add X to current OTU lists.

1.8 N=N-1.

1.9 End while

2 Cluster the last two OTUs.

3. TIME COMPLEXITY ANALYSIS OF NJ ALGORITHM

According to the pseudo code of NJ algorithm, the time complexity of the outermost loop is

O(N), lines 1.1 and 1.2 are O(N
2
), line 1.3 is O(N

2
), line 1.4 is O(1), line 1.5 is O(N), line 1.6 is

O(N), line 1.7 is O(1) and line 2 is O(N). As for line 1.2.1, because formula (1) includes three

parts, we will analyze the time complexity of which separately. The first part contributes the

time O(N), the second is O(1) and the third is O(N
2
) because we should consider all the m and n

but i and j. So the most expensive step is formula (1), which induces that the total time of NJ is

O(N
5
) if we compute it directly. So the key point to optimize NJ algorithm is to optimize the

computation of formula (1).

For the three parts of formula (1), in fact there are many repeated computations of the same data

in part 1 and 3. For example, in part 1, when computing S12, D13 is added; when computing S14,

D13 is added too. In part 3, when computing S12, D34 is added; when computing S15, D34 is added

too. In other words, there are close relations between the computations of Sij. In other words, NJ

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

133

algorithm should compute the triangular matrix (Sij) iteratively to search the nearest neighbors.

But it is fortunate that the computations of Sij only need the distance matrix (Dij), which

motivates us to design fast parallel algorithm to avoid the repeated computations of Dij.

4. PARALLEL FAST ALGORITHM FOR CONSTRUCTING NJ TREE

Our motivation is very simple, we try to reduce the number of computations in the inner most

loop (1.2.1), which is the most expensive of the computations for the time complexity of the

whole algorithm. Pre-processing outside the double loops of lines 1.1 to 1.2 of the pseudo code

has been done, the results of which are used for the computations of Sij (line 1.2.1).

1

0

()
N

i ij

j

A D j i
−

=

= ≠∑ (4)

1

0

N

i

i

total A
−

=

=∑ (5)

Define a linear array A[N] and a buffer total the former is used to store the sum of every row of

Dij and the later to store all the sum of Dij .Note that (Dij) is a symmetric square matrix but not a

triangular matrix as (Sij). Then the first and third part of Sij sum1 and sum3 can be written

respectively as

() ()1 2 / 2 2
def

i j ij
sum A A D N= + − − (6)

3 (2() 2) /2(2)
def

i j ijsum total A A D N= − + + − (7)

and

1
1 3

2
ij ijS sum D sum= + + (8)

1
() / 2(– 2)

2
i j ijtotal A A N D= − − +

Compared with formula (1), this modified formula (8) is simpler and efficient. To compute Ai

and total, the time complexity is O(N
2
) and O(N) respectively. And the time complexity of

formula (8) is only O(1).

Proof of equations (6), (7), and (8)

1 1

0 0

() (,)
N N

i ij ik ij ik

k k

A D D k i D D k i j
− −

= =

− = ≠ − = ≠∑ ∑

1 1

0 0

() (,)
N N

j ij jk ij jk

k k

A D D k j D D k i j
− −

= =

− = ≠ − = ≠∑ ∑

(Ai – Dij) + (Aj – Dij) = Ai + Aj – 2Dij

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

134

1

0

()(,)
N

ik jk

k

D D k i j
−

=

= + ≠∑

(2) For sum3,

(Ai + Aj) denotes the sums of rows and cols of i and j respectively. (total – 2 (Ai + Aj)+2Dij)

denotes the sums of the remaining elements of (Dij) except those elements related to i and j. 2Dij

is added because Dij and Dji are deleted twice from rows and cols of i and j. Then

2() 2 (, ,).
i j ij mn

m n

total A A D D m n i j
<

− + + = ≠∑

Consider formula (8) again, total and N are constants for every Sij at each iteration, so they need

not be computed to search the minimum Sij, and the constant factor 1/2 and 1/(N – 2) are ignored

too, then we can get a more simple form of Sij (formula (9)) compared with formula (8). We can

search minimum Sij using S′ij where

S′ij =Dij(N – 2) – (Ai+Aj) (9)

Formula (9) does not include total, which implies that we need not compute the sum of Ai any

more as formula (5) iteratively. This saves O(N) time computation.

Consider the distance matrix (Dij), suppose that OTUs i* and j* are the neighbors to be joined in

the tree, then the two rows and cols of i* and j* are deleted from Dij , and a new row and column

(denoted by X) are added. Then DXk is computed according to formula (2). In fact, we need not

compute Ai again as formula (4), because most values of the remaining Ai are unchanged

between every two successive iteration step. Ax can be computed in O(N) time. For the remaining

Ai' only Dii* and Dij* are deleted, and DiX is added. So

Ai =Ai – Dit* -Dij* +DiX (10)

Which saves O(N) time for each iteration.

And the formulas for DiZ and DjZ in formula (3) are computed as

DiZ =(Ai - Dij)/(N - 2) (11)

DjZ = (Aj -Dij)/(N -2)

Which saves O(N) time compared with formula (3).

Computing Sij for all pair of protein/DNA sequences have been parallelized. As formula (9) for

Sij is a simple one, fine grain parallelism is suitable. The elements of the upper triangular matrix

(Sij) are mapped onto a one dimensional array for equal load distribution among the threads. The

indexes i and j of the matrix (Sij) can be mapped onto the index r of the one dimensional array

where

r = (i – 1) (2n – i) / 2 + j – i

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

135

Step 1.2 of our algorithm uses master-slave parallelization method to compute minimum Sij. In

each iteration, master thread creates multiple slave threads. Each thread calculates minimum Sij

independently. Then master thread waits till all slaves complete finding their respective local

minimum. The number of Sijs’ computed by each thread (both master and slaves) are evenly

distributed among them. Finally, master declares the global minimum Sij and continues

computation of Dkx, Lix, Ljx, Ai and Ax. The master thread repeats the above steps till N–2 number

of internal nodes are inserted.

Now the new algorithm is described as follows: Compute Ai according to formula (4).

1 While N > 2 do

1.0 For i=1 to N – 1 do

1.1 For j=i+1 to N do

 r = (i – 1) (2n – i) / 2 + j – i

 /*map the indexes i and j of upper triangular matrix (Sij) to a linear array index r*/

 EndFor;

 EndFor;

 /* Step 1.2: Find minimum Sij by parallel threads (both master and slave) */

1.2 For i=1 to (N × (N – 1)) / (2p) do parallel

 /* p is the number of processes */

Compute Sij according to formula (9).

 Find local minimum Sij

 EndFor;

1.3 Search the global minimum Sij from all local minimum to get neighbors i* and j*

 by the master thread

 /* Step 2: Update Dkx, Lix, Ljx, Ai and Ax by master thread*/

1.4 OTUs i* and j* are clustered as a new OTU X

1.5 Compute DXk according to formula (2).

1.6 Compute branch lengths LiX and LjX according to formulas (3, 11).

1.7 Delete OTUs i* and j*, and add X to current OTU lists.

1.8 Update the remaining Ai according to formula (10) and compute Ax.

1.9 N=N-1.

 EndWhile

2 Cluster the last two OTUs.

The time complexity of the new algorithm is O(N

3
).

The implementation of multithreaded fine grain parallel algorithm can combine with either

OpenMP, Pthreads or thread libraries. We implemented the fine grain parallel portion using

Pthread. In our parallel algorithm, a scheduling strategy called fixed-size chunking [18] where

tasks of one fixed size are to be allocated to available cores.

5. EXPERIMENT RESULTS:

We implement our algorithm in C programming language and utilize the Pthread library of

Linux Operating System. The experiment was conducted in a computer system having 2.0 GHz

Quad core Xeon CPU with 16 GB of primary memory and 12 MB cache memory. This computer

runs Linux OS with no other applications installed. All measured times include the times that

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

136

Figure 2. Elapsed time for SK sequential(SK), our single(1T), dual(2T), and quad(4T) threads

implementation of Neighbor Joining algorithm as a function of number of sequences.

were taken to read the input data from a file and write the solution into a file. Furthermore, all

measured times were measured when there is no one using the system except this experiment.

The distance matrix (Dij) is generated by three methods: (1) Global pairwise alignments by

dynamic programming, which is slowest but the most accurate. (2) K-mer distance [10, 12],

which is linear time complexity for pairwise distance estimation. (3) Random generation by

computer pseudo number, which is just to provide a fast method to generate data.

Experiments measured the elapsed times for SK and our proposed single (1T), dual (2T), and

quad (4T) thread implementation of NJ algorithm as a function of the number of sequences as

shown in the Table 1. Number of sequences varies from 300 to 900 in our experience. All

measured times are in millisecond.

Table 1

Elapsed times of our NJ phylogenetic trees construction algorithm running in single(1T)

dual(2T), quad(4T) threads and SK algorithm implementation with respect to no. of sequences.

Times are in millisecond.

300 400 500 600 700 800 900

SK 202 368 710 1190 1805 2590 3610

IT 130 230 390 620 930 1330 1840

2T 120 205 350 550 820 1150 1610

4T 110 170 330 510 770 1105 1535

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

137

Figure 3. Speedup of our Neighbor Joining algorithms running in single(1T), dual(2T), and

quad(4T) threads comparison to SK as a function of number of sequences.

Figure 2 shows the elapsed times for the sequential SK and our threaded (single, dual and quad)

Neighbor joining phylogenetic tree algorithm as a function of number of sequences. All those

threaded algorithms successfully reduce the execution time.

Figure 3 shows the speedup for the single, dual, and quad thread execution of the proposed

algorithm as a function of number of sequences as compared to SK algorithm. It can be observed

that higher speedup can be achieved with more number of sequences. This happens due to the

overhead of thread creation, which is fixed for any number of sequences.

Now, we focus on the speedup as a function of number of threads. In Figure 4, the speedup

increases from single thread to dual threads and from dual threads to quad threads. However,

speedup may fall if both the numbers of sequences and number of thread do not increase

proportionately. This is because of the overhead incurred in creating threads. The speedup seems

to be lower than steady state when executed using large number of threads.

The proposed method fully utilizes the multithreading feature along with reducing redundant

computation in comparison to sequential SK algorithm. This achieves better speedup especially

when the number of sequences is large. This is compatible with the massive work for the tree

construction and gains more throughput.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

138

Figure 4. Speedup of our Neighbor Joining results for different number of

sequences in comparison to SK as a function of number of threads.

6. CONCLUSIONS

In this paper, a fast parallel algorithm for constructing Neighbor – Joining phylogenetic trees has

been developed. The new algorithm has O(N
3
) time complexity compared with O(N

5
) of SN, the

same as SK. Further a fine grain parallelism is incorporated using multiple threads in the inner

most loop. The experimental results show that running time of our algorithm using a single

thread is from tens to hundreds times faster than SN and about two times faster than SK for large

N. It is also verified that Speedup of our algorithm using dual threads is 2.2 times faster and that

using quad threads is 2.3 times faster than SK algorithm on a desktop computer. The key point of

our algorithm is to reduce the repeated computations and to parallelize the computation. We tried

the above computation in the inner most loop.

REFERENCES

[1] C. Yang and S. Khuri, "PTC: An interactive tool for phylogenetic tree construction," in IEEE Proc.

of the Computational Systems Bioinformatics, Stanford University, 2003,8, pp. 476-477.

[2] L. R. Foulds and R. L. Graham, "The steiner problem in phylogeny is NP-complete," Advances

Appl. Math. vol. 3, 1982, pp. 43-49.

[3] W. Day, "Computational complexity of inferring phylogenies from dissimilarity matrices," Bull.

Math. BioI., voI.49,no.4, 1987, pp.461-467.

[4] N. Saitou, and M. Nei, "The n.eighbor-joining method: a new method for reconstructing

phylogenetic trees," Mol. BioI. Evol., vol. 4, no. 4, 1987, pp. 406-425.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

139

[5] J. Studier and K. Keppler, "A note on the neighbor-joining algorithm of Saitou and Nei," Mol. BioI.

Evol., vol. 5, no. 6, 1988, pp. 729-731.

[6] N. Saitou and T. Imanishi, "Relative efficiencies of the Fitch-Margoliash, maximum-parsimony,

Maximum likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree

construction in obtaining the correct tree," Mol. BioI. Evol., vol. 6, no. 5, 1989, pp. 514-525.

[7] J.D. Thompson, D.G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice," Nucleic Acids Res., vol. 22, no. 22, 1994, pp. 4673-4680.

[8] C. Notredame, D.G. Higgins, and J. Heringa, "T-Coffee: a novel method for fast and accurate

multiple sequence alignment," J. Mol. BioI., vol. 302, 2000, pp. 205-217.

[9] K. Katoh, K. Misawa, K. Kuma and T. Miyata, "MAFFT: a novel method for rapid multiple

sequence alignment based on fast Fourier transform," Nucleic Acids Res., vol. 30, no. 14, 2002,

pp.3059-3066.

[10] R.C. Edgar, "MUSCLE: multiple sequence alignment with high accuracy and high throughput,"

Nucleic Acids Res., vol. 32, no. 5, Mar. 2004, pp. 1792-1797.

[11] P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy. Freeman, San Francisco, 1973.

[12] R.C. Edgar, "Local homology recognition-, Jan. and distance measures in linear time using

compressed amino acid alphabets," Nucleic Acids Res., vol. 32, no. 1, Jan. 2004, pp.380-385.

[13] H. O. Andrzej Lingas and A. Ostlin. Efficient merging and construction of evolutionary trees.

Journal of Algorithms, volume 41, 2001, pages 41–51.

[14] M. Csuros. Fast recovery of evolutionary trees with thousands of nodes. In the proceeding of the

International Conference on Research in Computational Molecular Biology, number 01, page 2001,

1997.

[15] R. C. T. Lee. Computational biology. Department of Computer Science and Information

Engineering, National Chi-Nan University, 2001.

[16] L. A. Salter. Algorithms for phylogenetic tree reconstruction. In Proceeding of the International

Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences,

volume 2, 2000, pages 459–465.

[17] K. Strimmer and A. von Haeseler. Quartet puzzling: A quartet maximum-likelihood method for

reconstructing tree topologies. In Molecular Biology and Evolution, volume 13(7), 1996, pages

964–969.

[18] T. Hagerup. Allocating independent tasks to parallel processors: an experimental strudy. Journal of

Parallel and Distributed Computing, 1997, Vol. 47, pp. 185-197.

Authors :

Biswajit Sahoo received Bachelor Degree in Electronics & Communication Engineering

from NIT Durgapur, India, M.Tech Degree in Computer Engineering from B.E College,

Shibpur & pursuing Ph.D. in Computer Science under Utkal University, India. He is

presently working as Associate Professor Department of Computer Science &

Engineering, KIIT University, Bhubaneswar, India. He has published papers in the areas

relating to Parallel Algorithms and Bio Informatics.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.1, No.2, November 2010

140

Ashutosh Behura received Bachelor degree in Computer Science and Engineering from

KIIT University, Bhubaneswar, India. He is presently working as Research Associate in

the Department of Computer Science & Engineering, KIIT University, Bhubaneswar,

India. His area of interest is Parallel Algorithms and Bio Informatics.

Sudarsan Padhy is a Professor of Mathematics at Utkal University, India. He obtained

his Ph.D. degree in Mathematics from Utkal University in 1979 and Postdoctoral

research at University of Freiburg, Germany during 1980-81. He has over fifty published

research papers and five books to his credit extending over Fluid dynamics, Finite

difference and Finite element method for solving partial differential equations,

Operation research, Parallel algorithms, Computational finance and Computational

biology.

