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ABSTRACT 

 
In biological research, scientists often need to use the information of the species to infer the evolutionary 

relationship among them. The evolutionary relationships are generally represented by a labeled binary 

tree, called the evolutionary tree (or phylogenetic tree). The phylogeny problem is computationally 

intensive, and thus it is suitable for parallel computing environment. In this paper, a fast algorithm for 

constructing Neighbor-Joining phylogenetic trees has been developed. The CPU time is drastically 

reduced as compared with sequential algorithms. The new algorithm includes three techniques: Firstly, a 

linear array A[N] is introduced to store the sum of every row of the distance matrix (the same as SK), 

which can eliminate many repeated (redundancy) computations, and the value of A[i] are computed only 

once at the beginning of the algorithm, and are updated by three elements in the iteration. Secondly, a 

very compact formula for the sum of all the branch lengths of OTUs (Operational Taxonomic Units) i and 

j has been designed. Thirdly, multiple parallel threads are used for computation of nearest neighboring 

pair. 

 

INDEX TERM 

 

Pair wise alignment, operational taxonomic unit, phylogenetic tree, multiple sequence alignment. 

 

1. INTRODUCTION 
 
An understanding of evolutionary relationships is at the heart of modern pharmaceutical research 

for drug discovery, and is also the basis for the design of genetically enhanced organisms. 

Evolutionary history is typically represented by an evolutionary tree [13-15]. An evolutionary 

tree is a leaf-labeled binary tree which tracks the genetic similarities of a set of closely related 

species. 

 
The task of constructing the evolutionary tree for a set of species is known as the phylogeny 

problem. The difficulty of such problem is that the number of possible evolutionary trees is very 

large. Construction of an evolutionary history for a set of contemporary taxa based on their 

pairwise distance is computationally intractable (i.e., NP-complete) for various optimality 
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criteria [2, 3]. Existing methods for solving the phylogeny problem include parsimony, 

maximum likelihood, and distance matrix methods [15-17].Various heuristics have been 

proposed to search for solutions of desired quality, and the majority of these methods are greedy. 

Among the greedy approaches, the Neighbor-Joining (NJ) method [4, 5] is widely used by 

molecular biologists due to its efficiency and simplicity.  

 
In recent years, NJ method is very popular especially in multiple sequence alignment (MSA) 

because it is applicable to any type of evolutionary distance data. The output of NJ method is 

used to direct the grouping of sequences during the multiple alignment process [8]. The most 

popular MSA tool CLUSTALW [7] uses NJ algorithm for constructing phylogenetic trees and 

the progressive alignment. Most recent famous MSA software such as T-COFFEE [8], MAFFT 

[9], MUSCLE [10] et al also use NJ method as main alternative option. But the big-O time 

complexity of the original NJ algorithm is O(N
5
), where N is the number of OTUs (Operational 

Taxonomic Units), which limits the application of NJ algorithm when N is very big. For a part of 

this reason, MUSCLE and MAFFT use UPGMA [11] to construct phylogenetic tree since 

UPGMA reduces the time complexity to O(N
3
). However, UPGMA does not build the true 

evolutionary tree to guide a progressive alignment in line with biological expectations though it 

may get higher SP score than NJ method sometimes. If the time complexity of NJ method is 

reduced, we believe that it will be more welcome by molecular biologists. 

 
Studier and Kepler [5] have succeeded to reduce the time complexity of NJ from O(N

5
) to O(N

3
). 

But there is still a scope to reduce the execution time for NJ algorithm. In this paper, we propose 

a parallel algorithm which is verified to be much faster than the original one, and about 2, 2.2, 

and 2.3 times faster than Studier and Kepler's algorithm on a single thread, dual thread, and quad 

thread respectively by implementing with sufficient experimental data. We also reduce the time 

complexity from O(N
5
) to O(N

3
) by an extra O(N) space in comparison to original NJ algorithm. 

 
In the rest of this paper, sections 2 and 3 describe the sequential NJ algorithm and its time 

complexity respectively. In section 4, we propose a fine grain parallel fast algorithm. 

Experimental results are given in section 5. Section 6 contains the conclusion of the paper. 

 

2.  SEQUENTIAL NJ ALGORITHM 

The NJ method was initially proposed by Saitou and Nei [4], and later modified by Studier and 

Kepler [5]. Neighbor-Joining seeks to build a tree which minimizes the sum of all branch 

lengths, i.e., it adopts the minimum-evolution (ME) criterion. Many studies have corroborated 

NJ's performance in reconstructing correct evolutionary trees. For small numbers of taxa, NJ 

solutions are likely to be identical to the optimal ME tree [6]. Neighbor-Joining begins with a 

star tree, then iteratively finds the nearest neighboring pair (i.e. the pair that induces a tree of 

minimum sum of branch lengths) among all possible pairs of nodes (both internal and external). 

The nearest pair is then clustered into a new internal node, and the distances of this node to the 

rest of the nodes in the tree are computed and used in later iterations. The algorithm terminates 

when N-2 internal nodes have been inserted into the tree (i.e., when the star tree is fully resolved 

into a binary tree). The framework of NJ is defined by three components: the criterion used to 

select pairs of nodes; the formula used to reduce the distance matrix; and the branch length 

estimation formula.  
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Fig.1 shows an example of NJ tree, which indicates the evolutionary relationships of 8 OTUs 

and which is an un-rooted tree. The rectangles denote the terminal nodes or OTUs and the 

rectangles denote the internal node. The characters beside the triangle denote OTUs, numbers 

and the rectangle denote the orders that OTUs are inserted into the tree and the data above the 

lines are the branch lengths of two neighbors. It is obvious that OTUs 1 and 2 are clustered first, 

generating a new combined OTU. The branch lengths between 1 and the new OTU and 2 and the 

new OTU are 5 and 2 respectively. After OTUs 7 and 8 are clustered, there are only two OTUs, 

and they are clustered. The tree is built now.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The NJ algorithm is described briefly as follows. Sij is the sum of the least-squares estimates of 

branch lengths [4] and is defined by 
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where i=0 ∼ N – 2, j=i+1 ∼ N – 1, k,m,n ≠ i, j. 

 

At every iterative step, the minimum Sij indicates that nodes i and j are the nearest evolutionary 

neighbors. Suppose that OTUs i and j are the neighbors to be joined in the tree. They are 

clustered as a new one, denoted by X. Define the symbol Dij as the edit distance between OTUs i 

and j. 

 

The distance between this combined OTU (X) and another OTU k is defined by 

 

DXk = (Dik +Djk )/2, k = 0 ∼ N -1, k ≠ i,j                         (2) 

 

Lab is defined as the branch length between nodes a and b. LiX and LjX are estimated by 

 

LiX =(Dij+DiZ -DjZ )/2                     (3) 

LjX = (Dij +DjZ -DiZ )/2 

 

Figure 1. Neighbor-Joining tree 
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where 
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Here, Z represents a group of OTUs including all but i and j, and Diz and Djz are the distances 

between i and Z and j and Z, respectively. At last OTUs i and j are deleted from the current 

OTUs lists and X is added to the list, then the number of current OTUs reduces by one and a new 

iteration starts. The pseudo code of NJ algorithm is described as follows: 

 
/*Input: N (the number of OTUs) and Dij (the edit distance between pair OTUs i and j),  

Distance Matrix, D */ 

/* Output:    NJ tree */ 

 
1.   While N > 2 do 

1.1 For i=0 to N-1 do 

1.2       For j=i+1 to N do 

1.2.1    Compute Sij according to formula (l). 

EndFor 

      EndFor 

1.3 Search the minimum Sij to get neighbors i and j. 

1.4 OTUs i and j are clustered as a new OTU X. 

1.5 Compute DXk according to formula (2). 

1.6 Compute branch lengths LiX and LjX according to formula (3). 

1.7 Delete OTUs i and j, and add X to current OTU lists. 

1.8 N=N-1. 

1.9 End while 

2 Cluster the last two OTUs. 

 

3. TIME COMPLEXITY ANALYSIS OF NJ ALGORITHM 

 
According to the pseudo code of NJ algorithm, the time complexity of the outermost loop is 

O(N), lines 1.1 and 1.2 are O(N
2
), line 1.3 is O(N

2
), line 1.4 is O(1), line 1.5 is O(N), line 1.6 is 

O(N), line 1.7 is O(1) and line 2 is O(N). As for line 1.2.1, because formula (1) includes three 

parts, we will analyze the time complexity of which separately. The first part contributes the 

time O(N), the second is O(1) and the third is O(N
2
) because we should consider all the m and n 

but i and j. So the most expensive step is formula (1), which induces that the total time of NJ is 

O(N
5
) if we compute it directly. So the key point to optimize NJ algorithm is to optimize the 

computation of formula (1). 

 
For the three parts of formula (1), in fact there are many repeated computations of the same data 

in part 1 and 3. For example, in part 1, when computing S12, D13 is added; when computing S14, 

D13 is added too. In part 3, when computing S12, D34 is added; when computing S15, D34 is added 

too. In other words, there are close relations between the computations of Sij. In other words, NJ 
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algorithm should compute the triangular matrix (Sij) iteratively to search the nearest neighbors. 

But it is fortunate that the computations of Sij only need the distance matrix (Dij), which 

motivates us to design fast parallel algorithm to avoid the repeated computations of Dij. 

 

4. PARALLEL FAST ALGORITHM FOR CONSTRUCTING NJ TREE 

Our motivation is very simple, we try to reduce the number of computations in the inner most 

loop (1.2.1), which is the most expensive of the computations for the time complexity of the 

whole algorithm. Pre-processing outside the double loops of lines 1.1 to 1.2 of the pseudo code 

has been done, the results of which are used for the computations of Sij (line 1.2.1).  

1
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Define a linear array A[N] and a buffer total the former is used to store the sum of every row of 

Dij and the later to store all the sum of Dij .Note that (Dij) is a symmetric square matrix but not a 

triangular matrix as (Sij). Then the first and third part of Sij sum1 and sum3 can be written 

respectively as 

 

( ) ( )1 2 / 2  2
def

i j ij
sum A A D N= + − −     (6) 

 

3 ( 2( ) 2 ) /2( 2)
def

i j ijsum total A A D N= − + + −    (7) 

 

and 

1
1  3

2
ij ijS sum D sum= + +      (8) 

1
(  ) / 2( –  2)  

2
i j ijtotal A A N D= − − +  

Compared with formula (1), this modified formula (8) is simpler and efficient. To compute Ai 

and total, the time complexity is O(N
2
) and O(N) respectively. And the time complexity of 

formula (8) is only O(1). 

 

Proof of equations (6), (7), and (8) 
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(Ai – Dij) + (Aj – Dij) = Ai + Aj – 2Dij 
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(2) For sum3, 

 

(Ai + Aj) denotes the sums of rows and cols of i and j respectively. (total – 2 (Ai + Aj )+2Dij) 

denotes the sums of the remaining elements of (Dij) except those elements related to i and j. 2Dij 

is added because Dij and Dji are deleted twice from rows and cols of i and j. Then 
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Consider formula (8) again, total and N are constants for every Sij at each iteration, so they need 

not be computed to search the minimum Sij, and the constant factor 1/2 and 1/(N – 2) are ignored 

too, then we can get a more simple form of Sij (formula (9)) compared with formula (8). We can 

search minimum Sij using S′ij where  

 

S′ij =Dij(N – 2) – ( Ai+Aj)                             (9) 

 
Formula (9) does not include total, which implies that we need not compute the sum of Ai any 

more as formula (5) iteratively. This saves O(N) time computation.  

 
Consider the distance matrix (Dij), suppose that OTUs i* and j* are the neighbors to be joined in 

the tree, then the two rows and cols of i* and j* are deleted from Dij , and a new row and column 

(denoted by X) are added. Then DXk is computed according to formula (2). In fact, we need not 

compute Ai again as formula (4), because most values of the remaining Ai are unchanged 

between every two successive iteration step. Ax can be computed in O(N) time. For the remaining 

Ai' only Dii* and Dij* are deleted, and DiX is added. So 

 
Ai =Ai – Dit* -Dij* +DiX                                            (10) 

 
Which saves O(N) time for each iteration. 

And the formulas for DiZ and DjZ in formula (3) are computed as 

 
DiZ =(Ai - Dij)/(N - 2)                    (11) 

DjZ = (Aj -Dij)/(N -2) 

 
Which saves O(N) time compared with formula (3).  

 
Computing Sij for all pair of protein/DNA sequences have been parallelized. As formula (9) for 

Sij is a simple one, fine grain parallelism is suitable. The elements of the upper triangular matrix 

(Sij) are mapped onto a one dimensional array for equal load distribution among the threads. The 

indexes i and j of the matrix (Sij) can be mapped onto the index r of the one dimensional array 

where 

 
r = (i – 1) (2n – i) / 2 + j – i 
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Step 1.2 of our algorithm uses master-slave parallelization method to compute minimum Sij. In 

each iteration, master thread creates multiple slave threads. Each thread calculates minimum Sij 

independently. Then master thread waits till all slaves complete finding their respective local 

minimum. The number of Sijs’ computed by each thread (both master and slaves) are evenly 

distributed among them. Finally, master declares the global minimum Sij and continues 

computation of Dkx, Lix, Ljx, Ai and Ax. The master thread repeats the above steps till N–2 number 

of internal nodes are inserted. 

 
Now the new algorithm is described as follows: Compute Ai according to formula (4). 

 
1 While N > 2 do 

1.0  For i=1 to N – 1 do  

1.1    For j=i+1 to N   do  

            r = (i – 1) (2n – i) / 2 + j – i 

            /*map the indexes i and j of upper triangular matrix (Sij) to a linear array index r*/ 

         EndFor; 

      EndFor; 

      /* Step 1.2: Find minimum Sij by parallel threads (both master and slave) */ 

1.2  For i=1 to (N × (N – 1)) / (2p) do parallel 

           /* p is the number of processes */ 

Compute Sij according to formula (9). 

           Find local minimum Sij 

         EndFor; 

1.3    Search the global minimum Sij from all local minimum to get neighbors i* and j* 

          by the master thread 

          /* Step 2: Update Dkx, Lix, Ljx, Ai and Ax by master thread*/ 

1.4  OTUs i* and j* are clustered as a new OTU X 

1.5  Compute DXk according to formula (2). 

1.6  Compute branch lengths LiX and LjX according to formulas (3, 11). 

1.7  Delete OTUs i* and j*, and add X to current OTU lists. 

1.8  Update the remaining Ai according to formula (10) and compute Ax. 

1.9  N=N-1. 

       EndWhile 

2 Cluster the last two OTUs. 

 
The time complexity of the new algorithm is O(N

3
). 

 
The implementation of multithreaded fine grain parallel algorithm can combine with either 

OpenMP, Pthreads or thread libraries. We implemented the fine grain parallel portion using 

Pthread. In our parallel algorithm, a scheduling strategy called fixed-size chunking [18] where 

tasks of one fixed size are to be allocated to available cores. 

 

5. EXPERIMENT RESULTS: 

We implement our algorithm in C programming language and utilize the Pthread library of 

Linux Operating System. The experiment was conducted in a computer system having 2.0 GHz 

Quad core Xeon CPU with 16 GB of primary memory and 12 MB cache memory. This computer 

runs Linux OS with no other applications installed. All measured times include the times that 
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Figure 2. Elapsed time for SK sequential(SK), our single(1T), dual(2T), and quad(4T) threads 

implementation of Neighbor Joining algorithm as a function of number of sequences. 

were taken to read the input data from a file and write the solution into a file. Furthermore, all 

measured times were measured when there is no one using the system except this experiment. 

The distance matrix (Dij) is generated by three methods: (1) Global pairwise alignments by 

dynamic programming, which is slowest but the most accurate. (2) K-mer distance [10, 12], 

which is linear time complexity for pairwise distance estimation. (3) Random generation by 

computer pseudo number, which is just to provide a fast method to generate data. 

Experiments measured the elapsed times for SK and our proposed single (1T), dual (2T), and 

quad (4T) thread implementation of NJ algorithm as a function of the number of sequences as 

shown in the Table 1. Number of sequences varies from 300 to 900 in our experience. All 

measured times are in millisecond.  

Table 1 

Elapsed times of our NJ phylogenetic trees construction algorithm running in single(1T) 

dual(2T), quad(4T) threads and SK algorithm implementation with respect to no. of sequences.  

Times are in millisecond. 

 

 
300 400 500 600 700 800 900 

SK 202 368 710 1190 1805 2590 3610 

IT 130 230 390 620 930 1330 1840 

2T 120 205 350 550 820 1150 1610 

4T 110 170 330 510 770 1105 1535 
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Figure 3. Speedup of our Neighbor Joining algorithms running in single(1T), dual(2T), and 

quad(4T) threads comparison to SK as a function of number of sequences. 

Figure 2 shows the elapsed times for the sequential SK and our threaded (single, dual and quad) 

Neighbor joining phylogenetic tree algorithm as a function of number of sequences. All those 

threaded algorithms successfully reduce the execution time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the speedup for the single, dual, and quad thread execution of the proposed 

algorithm as a function of number of sequences as compared to SK algorithm. It can be observed 

that higher speedup can be achieved with more number of sequences. This happens due to the 

overhead of thread creation, which is fixed for any number of sequences. 

 

Now, we focus on the speedup as a function of number of threads. In Figure 4, the speedup 

increases from single thread to dual threads and from dual threads to quad threads. However, 

speedup may fall if both the numbers of sequences and number of thread do not increase 

proportionately. This is because of the overhead incurred in creating threads. The speedup seems 

to be lower than steady state when executed using large number of threads. 

 
The proposed method fully utilizes the multithreading feature along with reducing redundant 

computation in comparison to sequential SK algorithm. This achieves better speedup especially 

when the number of sequences is large. This is compatible with the massive work for the tree 

construction and gains more throughput. 
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Figure 4. Speedup of our Neighbor Joining results for different number of 

sequences in comparison to SK as a function of number of threads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSIONS 
 
In this paper, a fast parallel algorithm for constructing Neighbor – Joining phylogenetic trees has 

been developed. The new algorithm has O(N
3
) time complexity compared with O(N

5
) of SN, the 

same as SK. Further a fine grain parallelism is incorporated using multiple threads in the inner 

most loop. The experimental results show that running time of our algorithm using a single 

thread is from tens to hundreds times faster than SN and about two times faster than SK for large 

N. It is also verified that Speedup of our algorithm using dual threads is 2.2 times faster and that 

using quad threads is 2.3 times faster than SK algorithm on a desktop computer. The key point of 

our algorithm is to reduce the repeated computations and to parallelize the computation. We tried 

the above computation in the inner most loop. 
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