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ABSTRACT 

This paper introduces a new interconnection network topology called Balanced Varietal Hypercube 

(BVH), suitable for massively parallel systems. The proposed topology being a hybrid structure retains 

almost all the attractive properties of Balanced Hypercube and Varietal Hypercube.  The topology, 

various parameters, routing and broadcasting of Balanced Varietal Hypercube are presented. The 

performance   of the Balanced Varietal Hypercube is compared with other networks. In terms of 

diameter, cost and average distance and reliability the proposed network is found to be better than the 

Hypercube, Balanced Hypercube and Varietal Hypercube. Also it is more reliable and cost-effective than 

Hypercube and Balanced Hypercube. 

KEYWORDS 

 Interconnection Network, Routing, Broadcasting, Performance analysis, Reliability 

1.  INTRODUCTION 

Parallel processing has assumed a crucial role in the field of supercomputing. It has overcome 

the various technological barriers and achieved high levels of performance. The most efficient 

way to achieve parallelism is to employ multicomputer system. The success of the 

multicomputer system completely relies on the underlying interconnection network which 

provides a communication medium among the various processors [9,18,29]. It also determines 

the overall performance of the system in terms of speed of execution and efficiency. The 

suitability of a network is judged in terms of cost, bandwidth, reliability, routing ,broadcasting, 

throughput and ease of implementation. Among the recent developments of various 

multicomputing networks, the Hypercube (HC) has enjoyed the highest popularity due to many 

of its attractive properties [11,19,31]. These properties include regularity, symmetry, small 

diameter, strong connectivity, recursive construction, partitionability and relatively small link 

complexity. In the literature variations of Hypercube topology has been proposed to further 

enhance some of its features. They include the Twisted cube [16] having less diameter than that 

of Hypercube, the  Banyan Hypercube [2] and the Cube Connected Cycles [10]. In the  Folded 

hypercube some complementary links are added .Thus it has still reduced diameter that is   

with degree (n+1) [3]. The Crossed cube is another improved variation of the Hypercube. It has  

smaller diameter   than Hypercube with complex routing [15]. Another high performance 

–low cost architecture called the Incomplete crossed hypercube 
n

mnCI
−

 is constructed by 
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combining two crossed hypercube nCQ and mnCQ
−

for 1 nm ≤≤  [32]. It has shorter mean 

internode distance for large n. It is more useful than other incomplete networks. 

 The performance of Varietal hypercube has been compared with that of Hypercube, Folded 

hypercube, Twisted cube and Crossed cube in [6, 24].  The degree, average distance, and cost 

of Varietal cube is found to be the lowest among all these topologies.  The Extended Hypercube 

is a hierarchical, expansive recursive structure with hypercube as the basic building blocks [17]. 

It has reduced diameter and average distance. With the use of Network controllers it has better 

routing properties than the hypercubes. Extended Varietal hypercube (EVH) is a recursive 

hierarchical structure and has still reduced diameter, average distance and constant degree of 

nodes[5,6]. Another variation of EVH is Extended varietal hypercube with crossed connections 

(EVHC) [27]. It overcomes the fault tolerant properties of EVH. Extended crossed cube is 

another similar type recursive, hierarchical network with well defined basic modules that is a 

crossed cube. It is having better features than the Extended varietal hypercube network.  

One of the important class of Cayley graph, called the Star graph has been popular as an 

alternative to Hypercube [25,26].  It is a node symmetric and edge symmetric graph consisting 

of  number of nodes and  number of edges. Some of the important features of 

Star graph are fault tolerance, partitionability, node disjoint paths and easy routing and 

broadcasting. Inspite of these attractive features, the Star network has a major disadvantage. It 

grows to its next higher dimension by a large value. Another alternative of Star called the 

Incomplete star has been introduced to eliminate this problem [28]. But the Incomplete star is a 

non symmetric and irregular graph. So it is not suitable to use in many practical systems. 

Recently Star-cube(n,m) network a variation of Star graph is introduced in [7]. The Star-cube 

also known as Cube-star is a hybrid network. The Star-cube is regular, vertex, edge-symmetric, 

maximally fault tolerant and cost effective. When compared with Star, the growth of Star-cube 

is comparatively small.  The smallest possible structure contains 24 nodes with node degree 4. 

Another variation of the Star graph called the Hierarchical star network, HS(n,n) is introduced 

as a two level interconnection network in [30]. The HS(n,n) network consists of n!  number of 

modules where each module is a Star graph. So the HS network contains  nodes with node 

degree n.  The modules are interconnected with additional edges. The size of the network grows 

at a very high rate. When n is 3 the network size is 36 but when n is 4, the network contains 576 

nodes. This significant gap in the two consecutive sizes of Hierarchical Star becomes a major 

disadvantage.  Another disadvantage of Hierarchical star is that the dimension cannot take any 

values of n like Starcube. It only takes values like (3,3), (4,4), (5,5) etc. 

Irrespective of the network type with increasing number of processors, the system reliability is 

also expected to decrease. For this reason alternate fault tolerant features are to be introduced in 

the network. The fault tolerance aspect of the Balanced hypercube (BH) is proved to be better 

than that of the Hypercube [12,14,20,21]. Each processor in BHn has a backup processor that is 

having the same set of neighbouring nodes. The Balanced hypercube is beneficial for parallel 

processing in terms of reduced diameter only when the dimension is odd.  

However the performance parameters such as reliability, fault tolerance, cost effectiveness and 

the time-cost effectiveness are some of the important aspects that need to be addressed while 

designing any large scale parallel system [1,4,5,6,8].    

For this reason there has always been raising demands for design of a versatile interconnection 

network with efficient communication, better reliability, improved fault tolerance and reduced 

cost. The present paper attempts to meet the above demands and proposes a new network 

topology called the Balanced Varietal Hypercube (BVH). The proposed topology is a hybrid 

structure of the Balanced Hypercube (BHn) and the Varietal Hypercube (VQn).  The BVH is 

built on the basic structure of the Varietal hypercube and BH. It inherits the merits of fault-
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tolerance from BH. In addition, the BVH has got a reduced diameter, optimal average distance 

with less cost. It is also a load balanced graph.  

The current paper is organized as follows. Section 2 presents the architectural details. 

Topological properties of the proposed Balanced Varietal hypercube are presented and 

discussed in Section 3. The   routing and broadcasting aspects are discussed in Section 4. 

Performance comparison is carried out in Section 5. The Section 6 concludes the paper. 

2. ARCHITECTURAL  DETAILS 

This section describes the topological features of the Varietal Hypercube and the Balanced 

Hypercube The above said interconnection network topologies are described using graph 

theoretical terminologies and notations.  

2.1 Varietal Hypercube 

The Varietal Hypercube is a variation of Hypercube with reduced diameter and average 

distance [24]. An n-dimensional Varietal Hypercube (VQn) is constructed from two numbers of 

(n-1) dimensional Varietal Hypercubes in a way similar to that of the Hypercube with some 

modifications in connections.  The connections are as follows: VQ1is a complete graph of two 

vertices with address 0 and 1. For n>1, VQn is constructed from and  according to 

the rule: a vertex u with node address (0,  from and a vertex v 

with node address (  from   are adjacent in  if and only if  

 1) =  if n=3k or 

 2) =  and ( , ) 

{(00,00),(01,01),(10,11),(11,10), if n=3k.  The Varietal Hypercube of dimension  3 is shown 

in Fig. 1. 

 
Figure 1: Varietal Hypercube of dimension 1,2 and 3 

 

2.2. Balanced Hypercube 

The Balanced Hypercube network of dimension n (BHn) is a load balanced graph having  

nodes [14,21]. Each vertex of BHn has a unique n-component vector on {0, 1, 2, and 3} for its 

label such as (  .  A vertex u having label (  is adjacent to the 

following 2n vertices for 1 , 

(( ), (( ), 

(( ) and 

(( ). The Balanced Hypercubes 

of dimension  3 is shown in Fig.2. The BHn can be constructed from four copies of BHn-1 by 

adding  a new edge in the nth  dimension of every vertex in BHn. 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.4, July 2011 

165 

 

 

 
                                                      

Figure 2: Balanced Hypercube  of dimension  3 

3.PROPOSED TOPOLOGY 

The  present section is devoted towards providing the topological details of the proposed topology. 

3.1 Balanced Varietal Hypercube  

Let G={V,E} be a finite, undirected graph with set  of nodes V and set of edges E . A node in V 

represents a processor and an edge in E represents a communication link between two 

processors. If an edge e= ( )  E, then the nodes   and  are adjacent. For each node  

there exists another node  
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Figure 3: Balanced Varietal Hypercube of dimension 1 
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(b) 

Figure 4: Balanced Varietal Hypercube of dimension 2 and 3,(a)BVH2 (b) BVH3 

 

 such that  and  have same adjacent nodes. The pair  and  are called matching pair. A 

task can be scheduled to both  and  in such a way that one copy is active and the other one is 

passive. If node  fails, its task can simply be shifted to node  by activating copies of these 

tasks in . All the other tasks running on other nodes need not be reassigned to keep the 

adjacency property, that is two tasks those are adjacent are still adjacent after the 
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reconfiguration. It is possible to have an active task running on node     with its backup in , 

while having another active task on and its backup on node  . The degree d( ) of node   is 

equal to the number of edges in G which are incident on . The diameter of G is the maximum 

distance between two nodes in G over all pairs of nodes. The Balanced varietal hypercube of 

different dimensions are shown in Fig. 3 and 4.  

Definition 3.1 

An n-dimensional Balanced Varietal Hypercube (BVHn) consists of  nodes each of which is 

represented by the address (a0,a1,a2,a3,.....ai,...an-1) where ai  {0,1,2,3} and 0 . Every 

node  (a0,a1,a2,a3,.....ai,...an-1) connects the following 2n nodes, which are divided into two 

categories: a) inner nodes and b) outer nodes. In an n dimensional Balanced Varietal hypercube 

BVHn each unit is connected to others through hyperlinks. 

a) Inner node: 

Case I: When a0 is even, 

(i) <(a0+1)mod 4, a1,a2..... an-1> 

  (ii)< (a0-2)mod 4, a1,a2..... an-1> 

Case II: When a0 is odd, 

   (i) <(a0-1)mod 4, a1,a2..... an-1> 

(ii)< (a0+2)mod 4 ,a1,a2..... an-1> 

b) Outer node: 

Case I: When a0=0,3; 

(i) For  ‘ai’ = 0 

<(a0+1) mod 4 , a1,....,(ai+1)mod 4 a2,....,an-1> 

<(a0-1) mod 4 , a1,....,(ai+1)mod 4 a2,....,an-1> 

(ii) For  ‘ai’ = 3 

<(a0+1) mod 4 , a1,....,(ai-1)mod 4 ,....,an-1> 

<(a0-1) mod 4 , a1,....,(ai-1)mod 4 ,....,an-1> 

Case II: when a0=1,2  and ai= 0,3 

<(a0+1) mod 4 , a1,....,(ai+2)mod 4 ,....,an-1> 

<(a0-1) mod 4 , a1,....,(ai+2)mod 4 ,....,an-1> 

Case III: when a0=0,1 

(i) For ai=1 

<(a0+1) mod 4 , a1,....,(ai+2)mod 4 ,....,an-1> 

        <(a0-1) mod 4 , a1,....,(ai-1)mod 4 ,....,an-1> 

(ii) For ai=2 

<(a0+1) mod 4 , a1,....,(ai+2)mod 4 ,....,an-1> 

       <(a0+1) mod 4 , a1,....,(ai+2)mod 4 ,....,an-1> 

Case IV: when a0=2,3 

(i) For ai=1 

<(a0+1) mod 4 , a1,....,(ai-1)mod 4 ,....,an-1> 

    <(a0-1) mod 4 , a1,....,(ai+2)mod 4 ,....,an-1> 

(ii) For ai=2 

<(a0+1) mod 4 , a1,....,(ai+1)mod 4 ,....,an-1> 

<(a0-1) mod 4 , a1,....,(ai+2)mod 4,....,an-1> 

 

3.2  Degree 

The degree of a node in a graph is defined as the total number of edges connected to that node. 

Similarly the degree of a network is defined as the largest degree of all the vertices in its graph 

representation. 
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Theorem3.1: The degree of any node in the Balanced varietal hypercube of dimension n is 

equal to 2n. 

Proof:  From the Definition 3.1 it is clear that BVH1 is constructed from four nodes and the 

number of edges connected to each node is 2. A balanced varietal hypercube of any dimension 

BVHn is constructed from four BVHn-1 with each node having two extra connections as shown 

in Fig.4.  So when the dimension is increased by one, the number of extra connections made to 

each node is increased by 2. Hence, the theorem is proved. 

3.3 Number of Nodes 

In a finite undirected graph   G=(V,E),V represents the node set and E represents the edge set. 

Normally a node in V represents a processor and an edge in E corresponds to a communication 

link connecting two processors.  

Theorem3.2:      An n-dimensional  Balanced varietal hypercube has nodes. 

Proof: A Balanced varietal hypercube is a load balanced graph, that is for every node there 

exist another node such that these two nodes are having same adjacent nodes.  Hence an n-

dimensional Balanced varietal hypercube is very much similar to a varietal hypercube of 

dimension 2n, and the number of nodes is same as that of n-cube [23]. 

Lemma1: A graph G=(V,E) is an n-cube  if and only if  

a) V has 2n vertices. 

b) Every vertex has degree n. 

c) G is connected. 

d) Any two adjacent nodes A and B are such that the nodes adjacent to A and those 

adjacent to B are linked in a one-to-one fashion. 

For a one dimensional Balanced varietal hypercube, shown in Fig. 3, the number of nodes is 

equal to =4 nodes. For a two dimensional Balanced varietal hypercube shown in Fig.4, the 

total number of nodes are equal to = 16. Similarly, for a three dimensional balanced 

varietal hypercube the total number of nodes is equal to .  

Hence, by induction it can be proved that the n-dimensional BVHn   has  nodes. 

3.4  Number of Edges 

An edge represents a communication link between two processors in a network. If an edge 

e=(u,v)  E , then the nodes u and v are adjacent. 

Theorem3.3 :  An n-dimensional Balanced varietal hypercube has n*  edges. 

Proof: From Theorem 3.2, an n-dimensional Balanced varietal hypercube  has  nodes. 

According to Theorem 3.1 the degree of any node in an n-dimensional BVH is 2n. But a link is 

shared by two nodes as shown in Fig. 3 . Therefore the total number of links or edges for BVHn 

is    2n * /2 =n  
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3.5 Diameter 

 The diameter is considered to be the most important parameter of any network. The distance 

d(u,v) between two distinct vertices is the length of the shortest path between these vertices. 

The diameter of G, denoted as D(G) is defined to be the maximum of these distances. Since the 

diameter is the worst case distance in a graph, it reflects how long it would take for a node to 

broadcast message to all other nodes. 

Theorem 3.4 : The diameter of an n-dimensional Balanced varietal hypercube is  

i. 2n for n=1 

ii.  for n> 1.   

Proof: The theorem is proved by induction. 

For n=1, using  Fig 3. It is clear that the diameter of BVH1 is 2. For n=2, as shown in Fig. 4(a) , 

the maximum of the shortest distance between two nodes is =3. The distance of each 

node is calculated from every other node. For BVH3, the distance is =4. 

Let u=(a0,a1,a2,....an-1) and v=(b0,b1,b2,...bn-1) be two nodes in an n-dimensional balanced varietal 

hypercube.  When an-1  bn-1 it can be considered that u and v are on two adjacent BVHs of 

dimension n-1. Hence, the distance between them is  as n>1. Hence the result is true for 

n. 

When an-1= bn-1, then the nodes are on the same BVHn-1. Hence the distance between them is less 

than  and equal to . 

3.6 Average Distance 

In a loosely coupled distributed system, while executing any parallel algorithm message traffic 

between processors takes on a distribution fairly close to uniform distribution. The average 

distance conveys the actual performance of the network better in practice. The summation of 

distance of all nodes from a given node over the total number of nodes determines the average 

distance of the network [19,31 ]. 

Theorem 3.5 :  In the Balanced varietal hypercube the average distance   is given by  

=  ; all node in BVHn 

Proof:  The total number of nodes in BVHn is 2
2n

. The average distance is the ratio of sum of 

distances of all nodes from a given node to the total number of nodes. 

3.7 Message Traffic Density 

The performance of a network in handling the message traffic can be analysed by assuming that 

each node is sending a message to a node at distance on the average. An efficient network 

should have a wide enough bandwidth to handle the resulting traffic so that the message traffic 

density is  the minimum. 

Theorem3.6: The message traffic density for an n-dimensional Balanced varietal hypercube is 
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Proof: As discussed earlier, the message traffic density can be calculated if we know the 

average distance, the total number of nodes and the total number of edges. From Theorem 3.2, 

the number of nodes in a BVH of dimension n is 22n. From Theorem 3.3, the number of edges 

in BHVn is n*2
2n

.  Using  the average distance of a n-dimensional BVH can be calculated. 

Hence  

Message traffic density =  

=  

 3.8 Cost 

Cost is an important factor as far as an interconnection network is concerned. The topology 

which possesses minimum cost is treated as the best candidate. Cost factor of a network is the 

product of degree and diameter. 

Theorem 3.7: The cost of an n-dimensional balanced varietal hypercube is given by  

2n*  . 

Proof: The degree of an n-dimensional BVH is 2n. The diameter is . Since the cost is 

product of degree and diameter, hence for a BVHn 

Cost= degree* diameter= 2n*  for n>1. 

3.9 Node-disjoint Path 

The Node-disjoint path defines in how many ways two nodes can be linked without any 

common node. The   Node-disjoint paths are to be considered quite important while designing 

an interconnection network. 

Theorem3.8:  For any pair of nodes in an n-dimensional Balanced varietal hypercube, there 

exists 2n disjoint paths between them.  

Proof:   For one dimensional BVH, the Node-disjoint paths between any two nodes are equal to 

2*1=2. From Fig. 3, considering nodes 0 and 3  

 Path 1: 0-1-3 

 Path 2: 0-2-3 

In two dimensional BVH, the Node-disjoint paths will be 2*2=4. For example, from node (0,0) 

and (3,3) the different paths are 

 Path1: 0,0-1,1-2,3-3,3 

 Path 2: 0,0-1,0-2,2-3,3 

 Path3 :0,0-3,1-2,1-3,3 

 Path 4:0,0-2,0-1,2-0,2-3,3 

Similarly from Fig.4, the Node-disjoint paths between (0,0,0) and (3,3,0) are 

Path 1: (0,0,0)-- (1,0,0)-- (0,2,0)-- (3,3,0) 

Path 2: (0,0,0)-- (3,1,0)-- (2,3,0)-- (3,3,0) 

Path3:(0,0,0)--(2,0,0)--(1,2,0)--(3,2,0)--(2,2,0)-- (3,3,0) 

Path 4: (0,0,0)--(1,1,0)--(0,1,0)--(2,1,0)-- (1,3,0)-- (3,3,0) 
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Path5: (0,0,0)--(1,0,1)-- (0,2,1)-- (1,2,1)-- (0,3,1) 

Path 6: (0,0,0)--(3,0,1)--(0,1,1)-- (2,3,1)-- (3,3,0) 

So there are 2*3=6 different paths for a 3-dimensional BVH. By induction it can be proved that 

for an n-dimensional BVH there will be 2n paths. 

4. MESSAGE ROUTING  

In multicomputer networks, communication is an important issue regarding how the processor 

can exchange message efficiently and reliably. An optimal routing algorithm aims to find the 

shortest path between two nodes communicating with each other. 

4.1 Routing 

In routing process, each processor along the path considers itself as the source and forwards the 

message to a neighbouring node one step closer to the destination. The algorithm consists of a 

left to right scan of source and destination address. Let r be the right most differing bit 

(quarternary) position. The numbers to the right of ur  is not to be considered as they lie on the 

same BVHr . Since the diameter of BVH1 is 2 there is atleast one vertex which is a common 

neighbour of ur and vr. If d is an element such that d neighbour of ur  is also a neighbour of vr. 

Then d is choosen such that ur=vr. Then in the next step d1 is choosen such that ur-1=vr-1. This 

process continues until u=v. 

Algorithm:Procedure Route(u,v) 

{r: right most differing bit position 

d:choice such that dur=vr 

route to d-neighbour else  

route to r-neighbour (k and v are adjacent) 

if (u and v are not adjacent) then  

d1=choice that dur-1=dvr-1 

route to d1 neighbour 

} 

 

this  process continues till  u0,u1,u2,...ur-1,ur=v0,v1,v2,...vr-1,vr.  

Finally, u=v that is source = destination. 

4.2 Broadcasting 

Broadcasting is the process of information dissemination in a communication network by which 

a message originated at a node is transmitted to all other nodes in the network.  The broadcast 

primitive finds wide application in the control of distributed systems and in parallel computing. 

For instance, in computer networks, there are many tasks, such as scheduling and updating 

other processors in order to continue the processing. 

 

 

 

 

 

(a)  

0 

1 2 

3 
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An optimal one-to-all broadcast algorithm is presented for BVHn assuming that concurrent 

communication through all ports of each processor is possible. It consists of (n+1) steps. 

 

 

 

 

 

 

Lemma 1:  

The oriented versions of the trees STi obtained by directing arcs from parent to child for i=0,1,... d-1 are 

pair wise arc disjoint. 

Procedure   Broadcast(u,n): 

Step1: send message to 2n neighbours of u 

Step 2: one of 2n nodes sends message to its 2n-1 neighbours. Then n nodes from the rest nodes 

send message to their (2n-2) neighbours. 

Step 3: continue step 2 till all the nodes get the message. 

Step 4: end 

 

This has been illustrated in Fig.5 (a) and (b) for one dimensional and two dimensional BHV 

respectively. 

5. PERFORMANCE ANALYSIS 

All interconnection topologies may not be suitable for each task. Therefore, before selecting a 

particular topology, it is important to compare its performance with its predecessors. The 

present section is a systematic attempt to compare the various performance parameters of the 

proposed BVH with that of VH, BH and HC. The various performance parameters analysed 

below are: degree, diameter, cost, average distance, cost effectiveness, time cost effectiveness 

and reliability. 

5.1 Comparison of Topological Parameters 

In this subsection, the various topological parameters of the BVH is compared with Hypercube, 

Varietal hypercube and Balanced hypercube. 

The Fig. 6 provides a comparative illustration of the diameter of the BVH. The diameter of 

BVH is observed to lie between that of the Varietal hypercube and the Balanced hypercube. In 

case of BVH, the diameter is slightly more than that of the Varietal hypercube, however, it is 

very less than that of Balanced hypercube there by reducing worst case delay in 

communication.  

 

      0 0 

 

  10                 20            11                 31 

 

02        30 12 32   01     23     21 

33   03     13 

Figure 5 : Broadcasting (a) in BVH1  (b):  in 

BVH2 
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Figure 6: Comparison of Diameter 

 

Since the BVH provides a lower diameter with the degree remaining the same as compared to 

BH and HC, the cost factor of the BVH is much less than that of BH and hypercube. The Fig. 7 

compares the cost versus the dimension for hypercube, varietal hypercube, balanced hypercube 

and balanced varietal hypercube. 

 
 

 

Figure 7: Comparison of cost of BVH 

The average distance of a network reflects the actual performance of a network in a better way.  

The Table 1 and Fig. 8 show the superiority of BVH over its counterpart BH in terms of the 

average distance. 

 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.2, No.4, July 2011 

174 

 

 

 
 

Table 1 : Comparison of Average Distance of BVH with other Networks 

 
Size n 

  (BHn)  

1 1 1 1 

2 1 2.25 1.93 

3 1.5 3.156 2.83 

4 2 4.14 3.82 

5 2.5 5.12 4.81 

6 3 6.11 5.79 

 

5.2 .Cost  Effectiveness Factor 

 
The total cost of a multicomputer system comprises of the cost of the processors as well as the 

cost of the communication links. Usually, the number of links is a function of the number of 

processors. Thus, the earlier methods of performance evaluation by speedup and efficiency are 

inadequate. The cost effectiveness factor gives more insight to the performance of parallel 

systems that uses parallel algorithms [8].  
 

Cost effectiveness of the BVH is a product of two terms, one characterises the architecture and 

the other corresponds to the efficiency of the algorithm. Therefore, the Cost effectiveness 

factor, CEF(p) for the  proposed system is the ratio of cost effectiveness CE(p) to the efficiency 

E(p) where p is the total number of processors in the system. Here the number of links is a 

function of the number of nodes in the system. 

The CEF of BVH is given by 

CEF(p)=  =      (1) 

 

where                                                    ρ= =  

and                                                              

Figure 8 : Comparison of  Average Distance of BVH 
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 gives the number of links as a function of p, the total number of nodes and n, the diameter 

of the network. 

For BVHn, . The total number of links  is given by 

. 

Hence   ,            (2) 

Now using Eq. (2) in (1), we can have  

                      CEF(p)=                               (3) 

CEF enables the comparison of different parallel algorithms in different multicomputer 

architectures to determine the most cost effective combination of algorithm and architecture. 

 

Table 2 : Cost Effectiveness Factor for BVH 

 
Dimension Nodes    

1 4 0.909 0.833 0.769 

2 16 0.833 0.714 0.625 

3 64 0.769 0.625 0.526 

4 256 0.714 0.555 0.454 

5 1024 0.666 0.500 0.400 

6 4096 0.625 0.454 0.357 

 

 

 

Figure 9: Comparison of Cost Effectiveness Factor of BVH 

The Table 2 presents the computed values of CEF for the BVH. Figure 9 shows variations of 

CEF with the dimension of the proposed parallel system. It is a monotonically decreasing 

function of p like the hypercube [8]. Thus, when the network size grows, it becomes less and 

less cost effective. 

5.3 Time Cost Effectiveness Factor 

The consideration of time factor is essential in evaluation of performance of a parallel system. 

The Time cost effectiveness factor (TCEF) takes into account the time factor in addition to the 

cost effectiveness factor considered in the above paragraph. It considers the situation where a 

faster solution to a problem is more rewarding than a slower solution [8]. 
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TCEF(p,Tp)=                                                                         (4)                        

where T1 is the time required to solve the problem by a single processor using the fastest 

sequential algorithm, Tp is the time required to solve the  problem by a parallel algorithm using 

a multicomputer system having p processors and  is the ratio of cost of penalty with the cost 

of processors. For linear time penalty  in Tp,  is choosen as 1. 

Now using Eq. (2) in  Eq.(4) the TCEF for BVHn is  given by 

TCEF(p,Tp)=                              (5)                            

Table 3 : TCEF for  The BVH network 

 
Dimension Nodes    

1 4 1.48148 1.37931 1.29032 

2 16 1.58415 1.36752 1.20300 

3 64 1.52019 1.23791 1.04404 

4 256 1.42459 1.1087 0.90748 

5 1024 1.33246 0.9995 0.79968 

6 4096 1.249809 0.90899 0.71422 

 

The computed values of TCEF for BVHn is shown in Table 3 keeping the value of   costant 

and   value varied. The TCEF for the   networks of varying sizes is shown in Fig. 10.  

 
 

Figure 10: Comparison of TCEF 

 
From the figure it is clear that the network is most suitable when the number of processor lies between 16  

to 64.   

 

5.4  Reliabilty Analysis 

The assessment of reliability is very important for critical systems like the parallel systems. 

Reliability is the conditional probability that a system will survive in an interval (0,  , given 

that it was operational at time t=0. The reliability of an electronic component (Rt) of the system  

is given by 

Rt=            (6) 
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where  is the failure rate of the component and t is  the mission time.  

Reliability of a network is dependent on the reliability of its components at the hardware level.  

It decreases in an exponential manner with time. Hence, the reliability is not only dependent on 

the topology but also on time. From the topological point of view, reliability issues have been 

addressed by different researchers [4,5,22]. For simplicity, two terminal reliability or simply 

terminal reliability is considered here. 

The terminal reliability is defined as the reliability between any two specified nodes termed as 

source and destination. The total number of node disjoint paths, as well as number of links and 

nodes involved in a particular path are important for evaluation of reliability. The reliability 

analysis has been carried out following a method called sum of disjoint products (SDP) [21,22]. 

Using the said method the probability of each term is found out separately which is then added 

together to get the exact two-terminal reliability. For calculating the terminal reliability  (TR) 

between two given nodes of a network, the reliability of each node as well as edge are also 

considered.    

Terminal reliability between a pair of nodes is given by 

 
where, Rl =Reliability of each link 

            Rp=Reliability of each processor (node) where there are paths with    number of 

links and number of processors in each path. 

   

5.4.1.Reliability of BVH2 

From Theorem 3.8, for BVH2, considering node (0,0) as the source node and (3,3) as 

destination node  there are four node disjoint paths. Two of them include three processors with 

four links and the rest two with two processors with three links. So for BVH2, using Eq. (7), we 

can the terminal reliability, 

TR(BVH2)=             (8) 

  Now putting Rl=0.9; and Rp=0.8, Eq. (8) becomes 

TR(BVH2)=  

                 =0.8745 

5.4.3 Reliability  of BVH3 

As stated earlier in Theorem 3.8, for BVH3 considering node (000) as the source and (330) as destination 

there are six parallel paths. Four of them have four processors with five links and the rest two have two 

processors and three links. So the terminal reliability for BVH3 is given by 

TR(BVH3)=  

                 =   

                 =0.9059 

 

5.4.4 Reliability Analysis With Respect To Time 

The reliability of a processor is calculated  by 

,                                                                         (9) 

where  is the processor failure rate and t is the  mission time. 

Similarly the link reliability is given by                         

,                                                                        (10) 

 where   is the link failure rate. 
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For the current work the link failure rate is assumed to be 0.0001 failures per hour and 

processor  failure rate  is assumed to be 0.001 failures per hour [4]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fig. 11 shows the comparative results of terminal reliability of Hypercube, Balanced 

Hypercube and Balanced varietal hypercube for a system having 64 numbers of processors. It is 

exponential in nature. It is clear from the Fig. 11 that the BVH is more reliable among all the 

three candidate networks. 

6. CONCLUSION 

This paper presented a new interconnection network topology called Balanced Varietal 

Hypercube for parallel systems. The new network is recursive and extensively hierarchical in 

structure. It retains most of the properties of both the balanced hypercube and varietal 

hypercube. Its properties are compared with that of hypercube, varietal hypercube, and balance 

hypercube. In terms of degree, diameter, cost, average distance and reliability, in general the 

proposed structure is shown to perform better than Hypercube, Varietal hypercube and 

Balanced hypercube. 
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