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ABSTRACT 

The vision of super computer at every desk can be realized by powerful and highly parallel CPUs or 

GPUs or APUs.  Graphics processors once specialized for the graphics applications only, are now used 

for the highly computational intensive general purpose applications. Very expensive GFLOPs and 

TFLOP performance has become very cheap with the GPGPUs. 

Current work focuses mainly on the highly parallel implementation of Matrix Exponentiation. Matrix 

Exponentiation is widely used in many areas of scientific community ranging from highly critical flight, 

CAD simulations to financial, statistical applications. Proposed solution for Matrix Exponentiation uses 

OpenCL for exploiting the hyper parallelism offered by the many core GPGPUs. It employs many general 

GPU optimizations and architectural specific optimizations. This experimentation covers the 

optimizations targeted specific to the Scientific Graphics cards (Tesla–C2050). Heterogeneous Highly 

Parallel Matrix Exponentiation method has been tested for matrices of different sizes and with different 

powers.  The devised Kernel has shown 1000X speedup and 44 fold speedup with the naive GPU Kernel. 
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1. INTRODUCTION 

Power consumption and speed of light limitation have become the limiting factors for the 

moorely’s law. These factors have opened doors for the dawn of the multi core processors. All 

processors manufacturing companies are moving towards multi core processors development. 

The problem with the multi core processors is that despite we have multiple cores of some GHz 

processing frequency we if run a single thread applications we get only one core processing 

power. In order to increase the processing speed and thereby increasing the throughput of our 

applications, we have to write applications by keeping the multi core architecture in mind. 

Heterogeneous computing and specialized computing units have started a new age of high speed 

computation. The processing power of every workstation continues to grow at an exponential 

rate. Exploitation of the processing power made available by the parallel computing revolution 

is essential to enhance the user experience. 

 

Specialized processors like the GPU have now made their computational power available to 

their computational power available to the common man. GPGPU has drastically changed the 

landscape of heterogeneous computing. OpenCL is a much favoured language for 

heterogeneous computing and is soon emerging as an industrial standard. Matrix exponentiation 

has wide variety of applications in the scientific community.  
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We look into the task of parallelizing this task for efficient execution on the Tesla 2050C 

graphics card using OpenCL. We use a lesser number of kernel execution to boost up the 

performance. This method not only increases the throughput significantly as the power of the 

matrix increases. 

 

2. RELATED WORK 

Many matrix operations have been the basic operations in all of walks the scientific community. 

Matrix – matrix multiplication, Matrix power computations are very pivotal and require more 

amount of time as the size of the matrix increases. In order to boost up the performance of these 

time consuming operations many have proposed GPU based implementations. CUDA BLAS 

library is one such basic implementation. The problem with the CUDA BLAS library is that 

CUDA works only with the NVIDIA graphic cards and it will not work with other computing 

devices. Many optimizations to the Matrix operations have been proposed. [6] Volkov and 

Demmel present an experimental study of GPU memory subsystem and an efficient 

implementation of dense matrix-matrix multiplication. The implementation is shown to be 

nearly optimal under the constraints of hardware implementations. Yinghong Sun and Yuanman 

Tong [7] proposed several optimizations to the highly fine grained matrix multiplication and 

matrix vector multiplications. This implementation is again based on CUDA, hence is not 

heterogeneous. This implementation also lacks the some other improvements like TILING and 

architecture specific optimization. Our method exploits all the optimizations and architecture 

specific optimizations. Our solution was tested thoroughly for the precision problem and high 

matrix sizes up to 512 by 512.  

The rest of the paper is organized in the following way. Section 3 presents GPU architecture and 

OpenCL programming model. Section 4 presents our methodology and optimizations 

incorporated in detail. In Section 5, Experimental setup and results were presented. Finally, 

conclusion is presented in Section 6. 

 

 3. GPU ARCHITECTURE AND OPENCL PROGRAMMING MODEL 

3.1 GPU Architecture: 

 
As in Central Processing Units (CPUs), Graphics processing Units (GPUs) also come with wide 

verities of architectures and options.  Here we discuss a formal and widely accepted 

fundamental architecture. 

GPU parallel computing architecture comprises massively multi threaded capable sophisticated 

hardware and also sophisticated hardware task management because early GPUs are designed to 

processes high end graphic workloads. GPUs comprise of set of parallel multi processors which 

are also called as Streaming multi processors. Each Streaming multi processor intern contains a 

set of processor cores as shown in Figure 1.  

Thread scheduler shown in the Figure 1 is a hardware based thread scheduler. This thread 

scheduler is responsible for the thread scheduling across the thread processing clusters. This 

achieves nearly 100 % utilization. If a thread is waiting for a memory access, a scheduler can 

perform the zero cost immediate context switches to another thread. Since the thread creation 

management are taken care by a dedicated hardware not only many threads can be created also 

can be easily maintained and scheduled efficiently. 
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Figure 1. GPU Architecture 

 

3.1.1 GPU Memory Model: 

GPUs also contain different levels of memory model. The hierarchy goes like this, 1) Private 

memory/Registers, 2) Local memory or On-chip scratch pad memory, 3) Shared Global 

/constant memory data cache, 4) Global memory, 5) Host memory. These memories are shown 

in the Figure 3. 

All the above mentioned memories operate at different clock rates; usually the memories which 

are much closer to the processor or core are faster similar to CPUs. In the above mentioned 

memory order, as we move from 1) Registers to 5) Host memory, time cycles for accessing data 

in that memory increases hence memory latency increases. GPU Registers are similar to CPU 

registers and operate with very few clock cycles usually 1-2 clock cycles. Local memory or On-

chip scratchpad memory can be used by all the work items with in the work group. This local 

memory is also a fast accessible memory. The scratch pad memory is software managed unlike 

the cache. So the scratch pad memory can be optimally programmed by the developer to get the 

best performance. Shared Global memory data cache, this a hardware managed cache for global 

and constant memory. The constant memory is also a part of global memory. Global memory 

contains a very large memory size with very high latency. Global memory can be used my all 

the compute units in the Device. 

3.2 OpenCL programming model: 

Open Computing Library (OpenCL) is an open source, royalty free, heterogeneous computing 

parallel programming language. Heterogeneity means applications written in OpenCL can run 

on any hardware including CPUs, GPUs, APUs or any other accelerators. OpenCL allows both 

task and data parallelisms.  

OpenCL platform model is shown in the Figure 2. The Host can be Personal computer, Super 

computer or even embedded system, which provides OpenCL API and run time compiler. 

Compute device can be CPU, GPU, APU, DSP, Cell Processor or any other accelerator which 

can execute the OpenCL kernel written in C99 programming language. 
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Figure 2. OpenCL Platfrom model 

 

OpenCL’s APIs include functionality for 1) Finding available target devices (CPUs, GPUs, and 

various accelerators) 2) managing the target devices’ contexts; 3) Managing memory 

allocations; 4) Performing host-device memory transfers; 5) Compiling the OpenCL programs 

and kernel functions that the devices will execute; 6) launching kernels on the target devices; 7)  

querying execution progress; and 8) checking for errors.  The above functionality allows the 

OpenCL programming model to treat the host device and accelerated device to be programmed, 

as heterogeneous.  Figure 4 summarizes OpenCL programming steps with the above specified 

OpenCL API functionality. 

 

3.2.1 OpenCL Memory Model: 

All the data transfers between the Host and accelerating device are done explicitly by the 

developer. 

OpenCL Supports On-chip scratchpad memory as discussed in the previous GPU architecture. 

Since the scratch pad memory is software managed, developer has to fully manage this memory 

explicitly. 

 
Figure 3. OpenCL Memory model 

 
OpenCL allows developer to write code to run on a compute device in a special way called as 

kernel code. The kernel is written in OpenCL C99 language. The kernel code can be compiled, 

linked and run on compute device on the fly or it can allow it to have offline compiled code to 

be run on the compute device. The former way of run time compilation is recommended, since 

features specific to the under lying hardware can be easily employed. Runtime compilation 
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eliminates dependencies on the hardware and its instruction set hence hardware vendors can 

easily change their instruction set, drivers and supporting libraries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: OpenCL Programming Steps 

4. IMPLEMENTATION DETAILS 

In this section we compare the naive way of matrix multiplication with our methodology. 

4.1 Naive CPU method: 

Algorithm: Matrix Exponentiation 

Module: Matrix Multiplication (Matrix, Size) 

for i = 1 to n do 

 do 

   for j = 1 to n do   

    do 

      for k = 1 to n do   

       do 

  c[i,j] = c[i,j] + a[i,k] * b[k,j];  

       done 

    done 

  done 

Call the above function to the power times. This step essentially adds one more loop. 

4.2 Naïve GPU mechanism: 

Call the GPU kernel N times from the host code to multiply the given matrix N times. 

 

Query Platform 

Query Devices 

Command Queue 

Create Buffers 

Compile program 

Compile kernel 

C
o
m

p
iler 

Set arguments 

Execute Kernel 

 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.2, March 2012 

110 

 

 

 

4.3 Our Approach: 

Our methodology doesn’t multiply the matrix N (given power) times. Instead it multiplies the 

given matrix log(N) times. This reduces the number of multiplications drastically. Our method 

uses the highly optimized GPU kernel for the matrix multiplication. Since the matrix 

multiplication is highly data parallel application it gives the maximum speed up in a fine 

grained parallelism supported devices like GPUs. Matrix multiplication is a well suited 

algorithm for SIMD nature stream processors.  

In addition to mathematically optimized kernel matrix multiplication it also uses optimizations 

specific to the GPUs. 

• Effective usage of Work Groups 

• Cache optimization and local memory 

• Coalesced memory reads / writes 

• Loop unrolling 

• Architecture aware register utilization 

• Effective utilization of barriers 

• Usage of TILING concept 

• Less amount of data transfer between Host and GPU 

4.3.1 Effective usage of Work Groups: 

OpenCL enables us to group the work items with in the same work group. All the work items with in the 

same work group can share the data. This decreases amount of global data transfer and increases the 

performance. Within the same work group the synchronizations is not implicitly done it has to be done by 

the developer. Among different work groups synchronizations is implicitly done. This solution uses the 

(ROW / 4 * COL / 4) global Work items and 32 by 32 local work items with in each work group.  

4.3.2 Cache optimizations and local memory: 

In our approach to matrix exponentiation we use the less capacity local memory 16KB very efficiently. 

Usage of local memory increases the performance because each local memory access takes a very less 

magnitude of clock cycles in the range of (2 – 10). 

4.3.3 Coalesced global memory reads / writes: 

Our method has been written to exploit the Coalesced memory optimized reads and writes. Since the 

matrix elements are stored in the Row Major Order, data required for each thread are implemented in a 

coalesced reads fashion and data written after computations are of coalesced writes. This reduces the high 

cost of reading from and writing to the global memory. 

4.3.4 Loop Unrolling: 

Loop unrolling is one another optimization technique employed with the factor of 4, 8, 16 with 

respect to the matrix size. 

 

4.3.5 Architecture aware register utilization: 

GPU is SIMD in nature hence usage of vector data types gives better performance. We used 

vectors of size 4. This has improved the performance up to 3%. 
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4.3.6 Effective utilization of barriers: 

Barriers are used for synchronization of memories in local and global levels. If barriers are not 

properly used performance comes down some times our GPU computation performance may go 

down than the sequential code, and if not used at all, may lead to the inconsistence of data. In 

this project we used the local memory synchronization barriers to make sure the data is 

consistent with in each work group. 

4.3.7 TILED Matrix Multiplication:  

It uses TILED matrix multiplication method to decrease the high global data transfers and 

increase the utilization of local memory. This project comprises different kernel having different 

TILES of size 4 * 4, 4 * 8, 8 * 8, 16 * 8, 8 * 16 and 16 * 16. An appropriate TILE size is used 

based on the problem and local memory available. In our solution on Tesla C 2050 graphics 

card we evaluated using 16 * 16 TILE size. 

4.3.8 Less amount of data transfer between Host and GPU: 

The amount of data transfer between the Host and GPUs gets reduces drastically because the 

data is offloaded only log(N) times. 

5. EXPERIMENTAL RESULTS 

5.1 Experimental Setup: 

For this experimental set up Intel Xeon process was used having 16 cores, each having 2.40 

GHz clock frequencies. Host system having primary memory of 8 GB is used. The graphics 

card used is Tesla C2050 having 448 each having clock frequency of 1150 MHz.  Detailed 

Technical description is given in Table 1. The code was compiled using OpenCL 1.1 NVIDIA 

CUDA version. 

 

TABLE 1.  NVIDIA TESLA C2050 SPECIFICATIONS 

Model of GPU NVIDIA Tesla C 2050 

Number of Processors 14 

Number of cores 448 

Number of cores per Processor 32 

Clock Frequency 1150 (in MHz) 

Core clock Frequency 575 (in MHz) 

Bandwidth 144 (GBs/Sec) 

Bus Type GDDR5 

Processing Power max in GFLOPs 1288 

 

5.2 Results 

Results obtained for the above methodology of number of matrix multiplication showed very 

higher performance improvement. In the following section presents comparison of Naive GPU 

matrix exponentiation method with Our methodology. We compare both the methods with 

matrices of various sizes and increasing powers. 
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Table 2. Exponentiation of Matrix of Size 64 by 64 

 64 128 256 512 1024 

Naïve  GPU (In Sec) 0.05 0.14 0.43 0.99 2.69 

Sequential CPU (In Sec) 0.23 0.68 1.74 4.31 10.83 

Naïve Speed UP  4.6 4.86 4.05 4.35 4.03 

Our Approach (In Sec) 0.01 0.01 0.02 0.02 0.03 

Our Approach vs Naïve GPU 5 13.99 21.48 49.54 89.58 

 

The above results can be graphically represented in the following graphs. 

 

 

 
 

X axis: Matrix Power        Y axis: Time in seconds 

Figure 5. Performance comparison of Naïve GPU Kernel, Sequential CPU and Our approach for 

the matrix of size 64 by 64 

 

 

From Figure 5, it is evident that that Naive GPU is having very good performance speed up of 

almost 4 times. Even though the power of matrix is increasing exponentially the Naive method 

speedup remained constant. Our methodology of the matrix multiplication has not only showed 

the high performance improvement over the Naive GPU method but also speeded up 

accordingly with the exponential increase of matrix power. 

 

Figure 6 shows the comparison of speedups with Naive kernel vs. Our approach for the matrix 

of Size of 64 by 64 with respect to Sequential CPU matrix exponentiation implementation.  It is 

clear from the above bar chart that our methodology has not only improved from the Sequential 

CPU matrix multiplication but also improved significantly than the Naive GPU implementation. 
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X axis: Matrix Power        Y axis: Time in seconds 

Figure 6. Comparison of Speedup achieved Naïve kernel vs. our approach for the matrix of size 

64 by 64 

 

Table 1 Exponentiation of Matrix of Size 128 by 128 

 64 128 256 512 

Naïve  GPU (In Sec) 0.1 0.25 0.62 1.38 

Sequential CPU (In Sec) 1.83 5.72 13.18 27.53 

Naïve Speed UP  18.3 22.88 21.26 19.95 

Our Approach (In Sec) 0.02 0.02 0.02 0.02 

Our Approach vs. Naïve GPU 5 12.5 31 69 

 
The above results can be graphically represented in the following chart.  

 
X axis: Matrix Power        Y axis: Time in seconds 

Figure 7. Performance comparison of Naïve GPU Kernel, Sequential CPU and Our approach for 

the matrix of size 128 by 128 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.2, March 2012 

114 

 

 

 

Figure 7, shows Naive GPU is having very good performance speed up of almost 18 fold for the 

matrix of size 128 by 128. Despite the power of matrix increasing exponentially the Naive 

method speedup remained constant i.e., 18. Our methodology of the matrix multiplication has 

not only showed the higher performance improvement over the Naive GPU method but also 

speeded up accordingly with the exponential increase of matrix power. 

 

 
 

 

 
X axis: Matrix Power        Y axis: Time in seconds 

Figure 8. Comparison of Speed UP achieved Naïve kernel vs. our approach for the matrix of 

size 128 by 128 

Figure 8 depicts the comparison of speedups with Naive kernel vs. our approach for the matrix 

of Size of 128 by 128 with respect to Sequential CPU matrix exponentiation implementation.  It 

is clear from the above bar chart that our methodology has not only improved from the 

Sequential CPU matrix multiplication but also improved significantly than the Naive GPU 

implementation. 

 

Table 2 Exponentiation of Matrix of Size 256 by 256 

 64 128 256 512 

Naïve  GPU (In Sec) 0.21 0.43 0.87 1.76 

Sequential CPU (In Sec) 16 32.19 64.61 129.38 

Naïve Speed UP  76.19 74.86 74.26 73.51 

Our Approach (In Sec) 0.03 0.03 0.04 0.04 

Our Approach vs. Naïve GPU 7 14.33 21.75 44 

 
The above results can be graphically represented in the following graphs 
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X axis: Matrix Power        Y axis: Time in seconds 

Figure 9. Performance comparison of Naïve GPU Kernel, Sequential CPU and Our approach for 

the matrix of size 256 by 256 

 

Figure 9 shows Naive GPU is having very good performance speed up of almost 73 fold for the 

matrix of higher size 256 by 256. Despite the power of matrix increasing exponentially the 

Naive method speedup remained constant i.e., 73. Our methodology of the matrix multiplication 

has not only showed the higher performance improvement over the Naive GPU method but also 

speeded up accordingly with the exponential increase of matrix power. The dense matrix of size 

256 by 256 with the matrix high exponentiation i.e., power 512 has shown a tremendous power 

improvement of 44 times speedup for our method than the Naive GPU kernel code. 

 

 
X axis: Matrix Power        Y axis: Time in seconds 

Figure 10.  Comparison of Speed UP achieved Naïve kernel vs. our approach for the matrix of 

size 256 by 256 

Figure 10 depicts the comparison of speedups with Naive kernel vs. Our approach for the matrix 

of Size of 256 by 256 with respect to Sequential CPU matrix exponentiation implementation.  It 

is clear from the above bar chart that Our methodology has not only improved from the 
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Sequential CPU matrix multiplication but also improved significantly than the Naive GPU 

implementation. 

 

Table 3 Exponentiation of Matrix of Size 512 by 512 

 64 128 256 

Naïve  GPU (In Sec) 0.26 0.43 0.87 

Sequential CPU (In Sec) 78.49 157.62 315.74 

Naïve Speed UP  301.88 366.56 362.92 

Our Approach (In Sec) 0.12 0.13 0.14 

Our Approach vs. Naïve GPU 2.16 3.31 6.21 

 

The above results can be graphically represented in the following graphs 

 
X axis: Matrix Power        Y axis: Time in seconds 

 

Figure 11. Performance comparison of Naïve GPU Kernel, Sequential CPU and Our approach 

for the matrix of size 512 by 512 

 

Figure 11 shows Naive GPU methodology having performance speed up of almost 300 fold for 

the matrix of bigger size 512 by 512. Our methodology of the matrix multiplication has not only 

showed the higher performance improvement over the Naive GPU method but also speeded up 

accordingly with the exponential increase of matrix power. The dense matrix of size 512 by 512 

with the matrix high exponentiation i.e., power 256 has shown a tremendous performance 

improvement of 6 times speedup for our method than the Naive GPU kernel code. 

 

Figure 12 depicts the comparison of speedups with Naive kernel vs. our approach for the matrix 

of Size of 512 by 512 with respect to Sequential CPU matrix exponentiation implementation.  It 

is clear from the above bar chart that our methodology has not only improved from the 

Sequential CPU matrix multiplication but also improved significantly than the Naive GPU 

implementation. 
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X axis: Matrix Power        Y axis: Time in seconds 

 

Figure 12. Comparison of Speed UP achieved Naïve kernel vs. our approach for the matrix of 

size 512 by 512 

6. CONCLUSION 

Current methodology is implemented in heterogeneous language OpenCL we can run on any 

compute device on any architecture. In this experiment we have tested our algorithm on dense 

matrices of size up to 512 by 512 against higher powers up to 256 and evaluated the results. All 

the results are strictly compared with the sequential code results for any precision problems. Our 

methodology preserves the high precision and enables the supercomputing capability with the 

relatively cheaper GPUs. 

Our solution gives more than thousand fold performance on the high end scientific graphic card 

Tesla C 2050 for the higher power of matrices of bigger sizes. This approach includes several 

architectural performance benefits specific to Tesla C 2050 and also some general optimization 

techniques supported by all multi core processors including GPUs. In Fig 5 to Fig 12, our 

approach is compared with the Naïve GPU method and our method always outperforms the 

Naïve GPU approach.  
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