
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

DOI:10.5121/ijcses.2015.6401 1

OS VERIFICATION- A SURVEY AS A SOURCE OF

FUTURE CHALLENGES

Kushal Anjaria and Arun Mishra

Department of Computer Science &Engineering, DIAT, Pune, India

ABSTRACT

Formal verification of an operating system kernel manifests absence of errors in the kernel and establishes

trust in it. This paper evaluates various projects on operating system kernel verification and presents in-

depth survey of them. The methodologies and contributions of operating system verification projects have

been discussed in the present work. At the end, few unattended and interesting future challenges in

operating system verification area have been discussed and possible directions towards the challenge

solution have been described in brief.

KEYWORDS

Formal verification, operating system, kernel.

1. INTRODUCTION

The security and reliability of computer system is dependent on the underlying operating system

kernel; kernel is the core of operating system. The kernel provide mechanism for user level

applications to access hardware, scheduling and inter-process communication. Therefore, if

anything goes wrong in the kernel while programming or implementation, it will affect the

operation of entire system. To ensure the correct working of a kernel, testing and/or verification

techniques have been used. Testing reduces frequency of failures, while verification detects errors

and eliminates failures. Consider the fragment of C code shown in figure-1

Figure1. Fragment of C code

Here r being an integer, if testing has been performed with p=8, q=4 and p=16, q=32, full

coverage of code can be achieved. Full coverage implies each line of code is executed at least

once and every condition has been tested once. But here still two divide by zero errors are

remaining. To identify these errors, human tester will immediately suggest that p=0, q=-1 and p=-

1, q=0 should be tested. But for bigger and non-trivial program, it is difficult to find these cases

and tester can never be sure that all such cases are covered.

int div(int p, int q)

{

int r;

if (p<q)

r=p/q;

else

r=q/p;

return r;

}

International Journal of Computer Science & Engineering Survey (IJCSES)

From the example similar to above, G. Klein[19] has concluded that humans are good at

creativity, they are not so good at r

system verification is complex and needs many repetitive tasks. That’s why formal verification of

operating system is feasible compared to normal testing. Formal verification of an operating

system kernel produces mathematical proofs of correctness of an operating system. Formal

verification may differ from the user’s view of correctness, this difference is called semantic

gap[51]. Bridging this semantic gap is called formalisation[52]. The figure

entire verification procedure of any system with formalisation. The specification block in the

figure-2 describes the collection of mathematical entities; these entities will be in the form which

can be analysed by mathematical methods later

representation of the system at some chosen level of abstraction. The verification tool will take

mathematical model and mathematical entities as input and it will verify that the model is correct

for all the entities or not. After that it will generate the verification result.

Figure

After brief overview of the verification procedure, some of the formal verification projects of

operating system have been surveyed. Before moving on to the operating system verification

survey, some basic terminologies related to OS verification have been

a. Model checking: Model checking is formal verification method for finite state concurrent

system. Large systems, like OS can reside in many states. That means they have large state space.

Model checking can be applied to abstract model of r

the conclusion which can be drawn from model checking for operating system[27, 55, 56].

b. Proof-carrying code: Proof carrying code is an approach in which the kernel accepts only

those extensions which are accompanied with valid proof for particular security policy. It tackles

the problem of untrusted code execution in kernel mode[27, 57, 58].

c. Static source-code checking:

source code. The static source-

about the absence of errors, while testing runs the system for code analysis. In this way it is

different from testing[27, 59].

d. Functional correctness: The functional correctness in O

implementation always strictly follows high

Functional correctness makes it feasible to prove security properties at the code level. It does not

necessarily imply the security. Functional correctness provides reasons about an implementation

and a specification. Functional correctness proof has been considered as the right first step and

basis for proving high level properties[27, 60, 61] .

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

From the example similar to above, G. Klein[19] has concluded that humans are good at

creativity, they are not so good at repetitive, complex and high detailed task. But operating

system verification is complex and needs many repetitive tasks. That’s why formal verification of

operating system is feasible compared to normal testing. Formal verification of an operating

ernel produces mathematical proofs of correctness of an operating system. Formal

verification may differ from the user’s view of correctness, this difference is called semantic

gap[51]. Bridging this semantic gap is called formalisation[52]. The figure-2 below shows the

entire verification procedure of any system with formalisation. The specification block in the

2 describes the collection of mathematical entities; these entities will be in the form which

can be analysed by mathematical methods later. The model block describes mathematical

representation of the system at some chosen level of abstraction. The verification tool will take

mathematical model and mathematical entities as input and it will verify that the model is correct

es or not. After that it will generate the verification result.

Figure 2. Verification procedure [52]

After brief overview of the verification procedure, some of the formal verification projects of

operating system have been surveyed. Before moving on to the operating system verification

survey, some basic terminologies related to OS verification have been explained:

Model checking is formal verification method for finite state concurrent

system. Large systems, like OS can reside in many states. That means they have large state space.

Model checking can be applied to abstract model of real systems only. This diminution restricts

the conclusion which can be drawn from model checking for operating system[27, 55, 56].

Proof carrying code is an approach in which the kernel accepts only

ompanied with valid proof for particular security policy. It tackles

the problem of untrusted code execution in kernel mode[27, 57, 58].

code checking: Static source-code checking statically performs the analysis of

-code checking analyzes the source code and gives guarantees

about the absence of errors, while testing runs the system for code analysis. In this way it is

The functional correctness in OS kernel verification means that the

implementation always strictly follows high-level abstract specification of kernel behaviour[43].

Functional correctness makes it feasible to prove security properties at the code level. It does not

e security. Functional correctness provides reasons about an implementation

and a specification. Functional correctness proof has been considered as the right first step and

basis for proving high level properties[27, 60, 61] .

Vol.6, No.4, August 2015

2

From the example similar to above, G. Klein[19] has concluded that humans are good at

epetitive, complex and high detailed task. But operating

system verification is complex and needs many repetitive tasks. That’s why formal verification of

operating system is feasible compared to normal testing. Formal verification of an operating

ernel produces mathematical proofs of correctness of an operating system. Formal

verification may differ from the user’s view of correctness, this difference is called semantic

elow shows the

entire verification procedure of any system with formalisation. The specification block in the

2 describes the collection of mathematical entities; these entities will be in the form which

. The model block describes mathematical

representation of the system at some chosen level of abstraction. The verification tool will take

mathematical model and mathematical entities as input and it will verify that the model is correct

After brief overview of the verification procedure, some of the formal verification projects of

operating system have been surveyed. Before moving on to the operating system verification

Model checking is formal verification method for finite state concurrent

system. Large systems, like OS can reside in many states. That means they have large state space.

eal systems only. This diminution restricts

the conclusion which can be drawn from model checking for operating system[27, 55, 56].

Proof carrying code is an approach in which the kernel accepts only

ompanied with valid proof for particular security policy. It tackles

code checking statically performs the analysis of

code checking analyzes the source code and gives guarantees

about the absence of errors, while testing runs the system for code analysis. In this way it is

S kernel verification means that the

level abstract specification of kernel behaviour[43].

Functional correctness makes it feasible to prove security properties at the code level. It does not

e security. Functional correctness provides reasons about an implementation

and a specification. Functional correctness proof has been considered as the right first step and

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

3

2. AN OVERVIEW OF OPERATING SYSTEM VERIFICATION PROJECTS

To capture the wide domain of operating system verification, following projects have been

surveyed. In the present survey UCLA, KIT, PSOS, VFiasco, EROS and seL4 projects have been

discussed. These projects are among the prominent OS verification projects and it has been

believed in the present work that survey of these projects is sufficient to find new challenges in

OS verification field.

2.1. UCLA Project

The verification of UCLA system is based on data security model provided by G. Popek and D.

Farber[1]. The data security model can be used to verify many of those properties in an operating

system which are necessary to ensure reliable security enforcement. They haven’t tried to prove

that an operating system is entirely correct; instead they centralized all the operations which

affect the security into nucleus. This nucleus is called the security kernel. If the operations of this

kernel are correct then this implies that entire system is secure. Besides UCLA, the application of

this approach has been used in other areas also, e.g. to design security model for military message

systems[2] and to decide dependability of trusted bases[3].

UCLA secure unix[4] and Provably secure operating system (PSOS)[15, 16] have been

considered as first serious attempts to verify an OS kernel. These projects were attempted 35

years ago. The UCLA secure unix had been developed as an operating system for the DEC PDP-

11/45 computer. The project tried formal modelling and verification of Unix kernel, which was

written in simplified pascal.

Project Implementation

The project was divided into two parts: first, a four level specification, ranging from Pascal code

at bottom to top level specification was developed. Then in verification, it needs to be proved that

different levels of abstractions were consistent with each other. The UCLA project managed to

finish 90% of their specification and 20% of their proofs in 5 person-year.

Figure-3 shows the detail of implementation of UCLA secure unix project. Left hand side figure

shows the specification layer, used in this project. All the specifications in the specification layers

are called state machine. Here instead of one specification layer, multiple specification layers

were designed because proof consistency can be handled easily with the multiple layers. The

Pascal code block is actual Pascal code of kernel. The low level specification block in figure-3

describes data structures of implementation, in which some of the details are omitted. The

abstract level contains specific objects like process, pages and devices. The top level specification

described in figure-3 actually contains data security notion. This data security notion has been

discussed by G. Popek and D. Farber[1]. The figure in right shows the consistency proofs

between the levels. These proofs show that the specifications are consistent with each other. The

proofs define functions. The function maps program state of concrete level to the program state of

abstract level. The figure in right describes that for each operation in concrete system,

corresponding operation in abstract system transforms the mapped concrete state accordingly [8].

Now the points below show some important findings that can be derived from UCLA project,

which will connect us with the current formal verification scenario:

• Prior efforts to this project, to make operating system secure merely found the flaws in

the system, so it became clear that piecemeal alterations were unlikely ever to succeed

[6]. So, this UCLA project has been seen as a systematic formal approach that control

OS’s design and implementation.

International Journal of Computer Science & Engineering Survey (IJCSES)

• In UCLA they first generate the nucleus using the approach described in [1]. This nucleus

was very close to modern microkernels[27], although at that time microkernels hadn’t

been invented[5].

Figure 3. UCLA specification layers and consistency proofs [8]

• It has been discussed by the authors that the error has been discovered which justifies the

need of formal specification. The error was related to boundary condition of kernel ca

Generally boundary condition of kernel call maps a page into user

been properly handled. Mischievous process can read and read or modify the memory

pages adjacent to its own.

• When the project took place, formal refinement hadn’t ca

technique used in this project is formal refinement, defined by Morgan[7]. In fact, it is

data refinement technique[8].

• At the end of this project, it has been observed that performance of the system was poor,

it was slower than the standard unix in some cases. This was because of the nature of the

pascal compiler and high context switch cost. Modern microkernels have overcome this

limitation. For example SeL4 kernel. The Sel4 project has been described later in this

paper.

• Authors have observed that the approach of program verification and proof development

before or during the software development is not practical. They have also said that if

system needs to be verified then it should be developed with verification in mind.

similar conclusion has been drawn from other projects as well for example

SeL4[43,44,45] project.

2.2. KIT Project

KIT(Kernel for Isolated Task)[9] was the first operating system which had been verified at the

assembly level. Main target of multitasking operating system is to implement the processes. The

purpose of KIT project was to verify whether all these processes

stands for ‘Kernel for Isolated Task’, that means task can communicate only in specified way.

KIT is written in the machine language of uniprocessor von

provides exception handling, access to async

passing. KIT kernel had been implemented in artificial, yet realistic assembly language. Its code

size was 620 lines, which was very small. Out of these 620 lines only 300 lines were of actual

instructions [5].

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

In UCLA they first generate the nucleus using the approach described in [1]. This nucleus

was very close to modern microkernels[27], although at that time microkernels hadn’t

3. UCLA specification layers and consistency proofs [8]

It has been discussed by the authors that the error has been discovered which justifies the

need of formal specification. The error was related to boundary condition of kernel ca

Generally boundary condition of kernel call maps a page into user-address space hadn’t

been properly handled. Mischievous process can read and read or modify the memory

pages adjacent to its own.

When the project took place, formal refinement hadn’t came into existence, though the

technique used in this project is formal refinement, defined by Morgan[7]. In fact, it is

data refinement technique[8].

At the end of this project, it has been observed that performance of the system was poor,

than the standard unix in some cases. This was because of the nature of the

pascal compiler and high context switch cost. Modern microkernels have overcome this

limitation. For example SeL4 kernel. The Sel4 project has been described later in this

uthors have observed that the approach of program verification and proof development

before or during the software development is not practical. They have also said that if

system needs to be verified then it should be developed with verification in mind.

similar conclusion has been drawn from other projects as well for example

SeL4[43,44,45] project.

KIT(Kernel for Isolated Task)[9] was the first operating system which had been verified at the

assembly level. Main target of multitasking operating system is to implement the processes. The

purpose of KIT project was to verify whether all these processes are isolated or not. Name KIT

stands for ‘Kernel for Isolated Task’, that means task can communicate only in specified way.

KIT is written in the machine language of uniprocessor von-Neumann computer. KIT kernel

provides exception handling, access to asynchronous I/O devices and a single word message

passing. KIT kernel had been implemented in artificial, yet realistic assembly language. Its code

size was 620 lines, which was very small. Out of these 620 lines only 300 lines were of actual

Vol.6, No.4, August 2015

4

In UCLA they first generate the nucleus using the approach described in [1]. This nucleus

was very close to modern microkernels[27], although at that time microkernels hadn’t

It has been discussed by the authors that the error has been discovered which justifies the

need of formal specification. The error was related to boundary condition of kernel call.

address space hadn’t

been properly handled. Mischievous process can read and read or modify the memory

me into existence, though the

technique used in this project is formal refinement, defined by Morgan[7]. In fact, it is

At the end of this project, it has been observed that performance of the system was poor,

than the standard unix in some cases. This was because of the nature of the

pascal compiler and high context switch cost. Modern microkernels have overcome this

limitation. For example SeL4 kernel. The Sel4 project has been described later in this

uthors have observed that the approach of program verification and proof development

before or during the software development is not practical. They have also said that if

system needs to be verified then it should be developed with verification in mind. The

similar conclusion has been drawn from other projects as well for example

KIT(Kernel for Isolated Task)[9] was the first operating system which had been verified at the

assembly level. Main target of multitasking operating system is to implement the processes. The

are isolated or not. Name KIT

stands for ‘Kernel for Isolated Task’, that means task can communicate only in specified way.

Neumann computer. KIT kernel

hronous I/O devices and a single word message

passing. KIT kernel had been implemented in artificial, yet realistic assembly language. Its code

size was 620 lines, which was very small. Out of these 620 lines only 300 lines were of actual

International Journal of Computer Science & Engineering Survey (IJCSES)

Project Implementation

The KIT kernel has been formalized in Boyer

checked mechanically by Boyer

proving correspondence between the two finite stat

state machine and target machine finite state machine. To describe finite state machines,

description of the set of machine states and a definition of each transition on a machine state are

required.

Now the points below show some important findings that can be derived from KIT project:

• There is a fiction in KIT OS that each process owns the processor. The processor state

maintains this fiction. The verification of KIT proves that the processor state has bee

saved correctly.

• An interpreter equivalence theorem establishes implementation relation. This relation is

similar to the Milner’s weak simulation

• KIT described process isolation properties down to object code level, but it was simpler

and had less general abstraction than modern

verification, KIT had same order of complexity as modern

• KIT was different from current microkernels because, it doesn’t provide dynamic process

creation, virtual memory in modern sense and no support for shared

2.3. PSOS

PSOS (Provably Secure Operating System)[15,16] project was based on Robinson

paper[14], which had introduced the concept of formal mappings between different level of

functional specifications that represented abstract implementations of each layer as a function of

the lower layers. This layered system architecture can be seen in figure

between each layer serves as a high level functional specification for lower layer and at the same

time it serves as a machine model for the higher layer.

Figure

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

The KIT kernel has been formalized in Boyer-Moore logic[10] and all the proofs have been

checked mechanically by Boyer-Moore theorem prover[10]. KIT verification has been done by

proving correspondence between the two finite state machines’ behaviour: abstract kernel finite

state machine and target machine finite state machine. To describe finite state machines,

description of the set of machine states and a definition of each transition on a machine state are

oints below show some important findings that can be derived from KIT project:

There is a fiction in KIT OS that each process owns the processor. The processor state

maintains this fiction. The verification of KIT proves that the processor state has bee

An interpreter equivalence theorem establishes implementation relation. This relation is

similar to the Milner’s weak simulation relation [11].

KIT described process isolation properties down to object code level, but it was simpler

and had less general abstraction than modern microkernel [12]. But in terms of

verification, KIT had same order of complexity as modern microkernel [13].

rent from current microkernels because, it doesn’t provide dynamic process

creation, virtual memory in modern sense and no support for shared memory [

PSOS (Provably Secure Operating System)[15,16] project was based on Robinson

14], which had introduced the concept of formal mappings between different level of

functional specifications that represented abstract implementations of each layer as a function of

the lower layers. This layered system architecture can be seen in figure-4 below. The interface

between each layer serves as a high level functional specification for lower layer and at the same

time it serves as a machine model for the higher layer.

Figure 4. PSOS layered system architecture [8]

Vol.6, No.4, August 2015

5

Moore logic[10] and all the proofs have been

Moore theorem prover[10]. KIT verification has been done by

e machines’ behaviour: abstract kernel finite

state machine and target machine finite state machine. To describe finite state machines,

description of the set of machine states and a definition of each transition on a machine state are

oints below show some important findings that can be derived from KIT project:

There is a fiction in KIT OS that each process owns the processor. The processor state

maintains this fiction. The verification of KIT proves that the processor state has been

An interpreter equivalence theorem establishes implementation relation. This relation is

KIT described process isolation properties down to object code level, but it was simpler

12]. But in terms of

13].

rent from current microkernels because, it doesn’t provide dynamic process

memory [5].

PSOS (Provably Secure Operating System)[15,16] project was based on Robinson–Levitt

14], which had introduced the concept of formal mappings between different level of

functional specifications that represented abstract implementations of each layer as a function of

4 below. The interface

between each layer serves as a high level functional specification for lower layer and at the same

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

6

Project implementation

As shown in the figure-4, PSOS has 17 layers in its layered system architecture. Out of these 17

layers, bottom six layers are implemented using hardware and layers seven to seventeen are

implemented using software. As shown in the figure, layer 0 is tagged. Tagged means it has

hardware enforced capabilities; hardware supports a bit that indicates whether a word in memory

stores a capability or not. This layered architecture is similar to the TCP/IP network stack, that’s

why in the figure it has been shown that the top layer contains application. Similar to the TCP/IP

network stack, the top layer contains all the applications which have been needed by the layers

below it.

It had been believed in the project that layering would make the formal verification easier. PSOS

was a capability based system in which incorporated hardware implemented capability. Now the

points below show some important findings that can be derived from PSOS project:

• Hardware implemented capability in PSOS had weakened the primitive similar in some

respects to the diminish operator; existing access rights can be selectively retained. It is

unclear from the literature whether the application of this operation was imposed by an

access right or was discretionary [17].

• PSOS also implemented concept named “store permissions”. This mechanism could

selectively control which capabilities can be stored to which capability segments. This

feature can be used to enforce write down permissions [17].

• The properties of application specific object type could enforce with the hardware

assistance provided with the capability based access control. The design allowed

application layers to efficiently execute instructions, with object-oriented capability-

based addressing directly to the hardware, although it appeared at a much higher level of

abstraction in design specification [18].

2.4. VFiasco project

The main challenge in VFiasco project [27] is to entitle high level reasoning in terms of typed

objects during verification, yet assume only low level hardware properties. The VFiasco project

aims at mechanical verification of security relevant properties of Fiasco microkernel. Fiasco

microkernel is L4-compatible Fiasco microkernel [28]. The aim of the project is an OS kernel

which provides security guarantees which has been verified.

Project implementation

Fiasco kernel has been implemented in C++. The language C++ is not the language with precise

semantics. For this purpose, M. Hohmuth et al.[27] developed a language which had precise

semantics called ‘safe C++’. After converting code to safe C++, the verification will be carried

out in the theorem prover Isabelle/HOL [29]. In this project, conversion from safe C++ to HOL

semantics has been done automatically by the logic compiler. For verification, authors have

abstraction level of virtual machine that provides a type-safe object store which is a memory that

supports reading and writing of typed values.

International Journal of Computer Science & Engineering Survey (IJCSES)

Figure 5. The VFiasco project verification overview [40]

In this project the existence of an object store layer with strong properties is a proof not an

assumption. The approach used in this project to a semantics of C++ is

in LOOP project[30] of Java. Figure

First semantic compiler will translate C++ code into semantics, formulated in higher order logic.

Then hardware model and C++ semantic

After that theorem prover verifies the semantic specification against security properties. Finally

verification results in proof.

Now the points below show some important findings that can be derive

which will connect us with the current formal verification scenario:

• The VFiasco project uses coalgebraic[31] methods. It describes coalgebraic class

specification language called CCSL. Coalgebraic proof methods are not only charac

capturing formalism for non

system[32].

• In VFiasco project source code verification has been directly applied to the unmodified

source of Fiasco microkernel operating system written in C+

jump across the function boundaries. So formal reconstruction of goto loop, which has

been described in [33] needs to be applied. For complete C++ semantics one needs the

semantics for data-types that can deal with the type

verification, state transformation approach has been used to get relatively simple semantics

to statements like break, continue and even goto[27]. The state transformation has been

explained by M. Huisman and B.

• The VFiasco project contains single layer, i.e. object store layer. This layer provides

functions for typed objects, in such a way that typed objects can be safely manipulated.

Because of this single layer, The VFiasco project re

category (ShengWen Gong [

categories. These four categories are: (i) the component

approach[36], (iii) the single

• The VFiasco project stopped at the source

map results down to lower systems or language layers. This project doesn’t involve any

compiler verification [38].

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

5. The VFiasco project verification overview [40]

In this project the existence of an object store layer with strong properties is a proof not an

assumption. The approach used in this project to a semantics of C++ is very close to the one used

in LOOP project[30] of Java. Figure-5 below gives an overview of VFiasco verification process.

First semantic compiler will translate C++ code into semantics, formulated in higher order logic.

Then hardware model and C++ semantic library provide functions to express program semantics.

After that theorem prover verifies the semantic specification against security properties. Finally

Now the points below show some important findings that can be derived from VFiasco project,

which will connect us with the current formal verification scenario:

The VFiasco project uses coalgebraic[31] methods. It describes coalgebraic class

specification language called CCSL. Coalgebraic proof methods are not only charac

capturing formalism for non-terminating program, but also used for labelled transition

In VFiasco project source code verification has been directly applied to the unmodified

source of Fiasco microkernel operating system written in C++. In C++ it is not possible to

jump across the function boundaries. So formal reconstruction of goto loop, which has

been described in [33] needs to be applied. For complete C++ semantics one needs the

types that can deal with the type cast of data and of pointers. During

verification, state transformation approach has been used to get relatively simple semantics

to statements like break, continue and even goto[27]. The state transformation has been

explained by M. Huisman and B. Jacob [30].

The VFiasco project contains single layer, i.e. object store layer. This layer provides

functions for typed objects, in such a way that typed objects can be safely manipulated.

Because of this single layer, The VFiasco project resides in ‘single-layer

Gong [34] has classified verification efforts/projects into four

categories. These four categories are: (i) the component approach [35], (ii) the parallel

approach[36], (iii) the single-layer approach[27], (iv) the pervasive approach[37]).

The VFiasco project stopped at the source-code level. That means, there are no attempts to

map results down to lower systems or language layers. This project doesn’t involve any

38].

Vol.6, No.4, August 2015

7

In this project the existence of an object store layer with strong properties is a proof not an

very close to the one used

5 below gives an overview of VFiasco verification process.

First semantic compiler will translate C++ code into semantics, formulated in higher order logic.

library provide functions to express program semantics.

After that theorem prover verifies the semantic specification against security properties. Finally

d from VFiasco project,

The VFiasco project uses coalgebraic[31] methods. It describes coalgebraic class

specification language called CCSL. Coalgebraic proof methods are not only characteristic

terminating program, but also used for labelled transition

In VFiasco project source code verification has been directly applied to the unmodified

+. In C++ it is not possible to

jump across the function boundaries. So formal reconstruction of goto loop, which has

been described in [33] needs to be applied. For complete C++ semantics one needs the

cast of data and of pointers. During

verification, state transformation approach has been used to get relatively simple semantics

to statements like break, continue and even goto[27]. The state transformation has been

The VFiasco project contains single layer, i.e. object store layer. This layer provides

functions for typed objects, in such a way that typed objects can be safely manipulated.

layer approach’

34] has classified verification efforts/projects into four

35], (ii) the parallel

pproach[37]).

code level. That means, there are no attempts to

map results down to lower systems or language layers. This project doesn’t involve any

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

8

2.5. EROS project

The EROS (Extremely Reliable Operating System)[47,48] is a capability based operating system.

It is for commodity processors which uses a single level storage model. J. Shapiro et al. have

formalized and analyzed the security model of EROS using the pen and paper approach. The

security model was implemented based on take-grant model[42] of capability distribution. The

security model of the EROS was not formally connected to the implementation.

 Project implementation

The EROS project actually started by verifying confinement mechanism. J. S. Shapiro and S.

Weber [48] provided formal definition of confinement policy in their work. After that they have

explained operations and security requirements of real operating system. In their work,

methodology and proof structures have been developed for confinement policy in capability

based structure. They have claimed that their methodology can be generalized to solve

information flow problems in many capability based architecture.

Now the points below show some important findings that can be derived from EROS project:

• One thing about EROS is, when machine starts, it loads a fully pre-initialised state. This

task makes it possible to inspect the initialised state offline[49].

• S. Maffeis et al.[50] provide the object capability based model that provides approach for

isolating untrusted components in web applications. Their work is close to EROS

confinement mechanism. While there are some other similarities between their framework

and our general setup, one substantial difference is that instead of defining authority as an

over-approximation of heap actions that can be performed by a single object; they define

authority for the whole system[50].

• The Coyotos kernel[64, 65] was successor to the EROS kernel. From the security model of

EROS kernel, Shapiro et al.[54] concluded that there should be a formal connection

between security model of the kernel and the implementation. They have tried to establish

this formal connection in Coyotos kernel[8].

• The EROS system currently runs on Pentium hardware. Future details about the project can

be obtained from its website[62].

• The CapROS (Capability based Reliable Operating System)[63] project is the continuation

project of EROS. It is using same EROS code base. The CapROS project is being led by

Charles Landau.

2.6. seL4 verification project

The seL4 (Secure Embedded L4) kernel is an evolution of the L4 microkernel. It is third

generation microkernel of L4 provenance. It targets embedded devices. The seL4 implements

capability based protection system, capabilities in seL4 are immutable. Similar to seL4 micro

kernel, seL4 provides address spaces, inter-process communication and threads. In seL4 all

system calls are invocations of capabilities. The seL4 comprises of 8,700 lines of C code and 600

lines of assembler.

Project implementation

The seL4 verification project[43,44,45] was the project which provided the proof of functional

correctness of a complete general purpose operating system for the first time. In this project,

formal machine-checked verification of seL4 microkernel has been performed from an abstract

specification down to the C implementation. In this project, first the access control model has

International Journal of Computer Science & Engineering Survey (IJCSES)

been verified and then the actual functional verification of kernel had been started. Before the

project, correctness of compiler, assembl

has been assumed.

An access control model of seL4 has been verified by D. Elkaduwe et al.[41] in the theorem

prover isabelle/HOL[29]. In their work the take

rule and with more realistic create rule that is explicitly authorized by capability. In their

formalization, remove rule has also been modified. In seL4, remove

capability instead of removing few parts. D. Elkaduwe et al.[4

mechanisms are sufficient to enforce mandatory isolation between subsystems. They have shown

that it is possible to build fully spatially separated system on top of seL4. So here spatial memory

separation has been guaranteed but authors have said that with current stock hardware preventing

all covert timing channels is not possible.

The seL4 kernel design process has been shown in the figure

formal artefacts. These artefacts have direc

figure represent implementation effort; the single arrows represent design influence of artefacts

on other artefacts. The central artefact is the actual Haskell prototype of the kernel. The prototype

requires the design and implementation of algorithms that manage the low

The figure-6 shows that hardware and Haskell prototype has design influence on formal

executable specification.

After the design process, verification process too

interactive, machine assisted and machine checked proof. Figure

which were used in verification of seL4. Abstract specification layer shows the details to specify

outer interface of the kernel. It doesn’t describe in detail how the effects or interfaces are

implemented in kernel; in short it describes what the system does without saying how it is done.

The executable specification layer has been generated from Haskell into the t

contains all data structure and implementation details which have been expected in the final C

implementation. The high performance C implementation layer deals with the formally

semantics.

Fig

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

been verified and then the actual functional verification of kernel had been started. Before the

project, correctness of compiler, assembly code, boot code, management of caches and hardware

An access control model of seL4 has been verified by D. Elkaduwe et al.[41] in the theorem

prover isabelle/HOL[29]. In their work the take-grant[42] model has been used, but with

rule and with more realistic create rule that is explicitly authorized by capability. In their

formalization, remove rule has also been modified. In seL4, remove-rule will remove whole

capability instead of removing few parts. D. Elkaduwe et al.[41] have proved that kernel provided

mechanisms are sufficient to enforce mandatory isolation between subsystems. They have shown

that it is possible to build fully spatially separated system on top of seL4. So here spatial memory

teed but authors have said that with current stock hardware preventing

all covert timing channels is not possible.

The seL4 kernel design process has been shown in the figure-6 below. The square boxes show the

formal artefacts. These artefacts have direct role in the proof. The double arrows shown in the

figure represent implementation effort; the single arrows represent design influence of artefacts

on other artefacts. The central artefact is the actual Haskell prototype of the kernel. The prototype

ires the design and implementation of algorithms that manage the low-level hardware details.

6 shows that hardware and Haskell prototype has design influence on formal

After the design process, verification process took place. In this project, the verification was

interactive, machine assisted and machine checked proof. Figure-7 shows the specification layers

which were used in verification of seL4. Abstract specification layer shows the details to specify

ce of the kernel. It doesn’t describe in detail how the effects or interfaces are

implemented in kernel; in short it describes what the system does without saying how it is done.

The executable specification layer has been generated from Haskell into the theorem Prover. It

contains all data structure and implementation details which have been expected in the final C

implementation. The high performance C implementation layer deals with the formally

Figure 6. The seL4 design process [43]

Vol.6, No.4, August 2015

9

been verified and then the actual functional verification of kernel had been started. Before the

y code, boot code, management of caches and hardware

An access control model of seL4 has been verified by D. Elkaduwe et al.[41] in the theorem

grant[42] model has been used, but without take

rule and with more realistic create rule that is explicitly authorized by capability. In their

rule will remove whole

1] have proved that kernel provided

mechanisms are sufficient to enforce mandatory isolation between subsystems. They have shown

that it is possible to build fully spatially separated system on top of seL4. So here spatial memory

teed but authors have said that with current stock hardware preventing

6 below. The square boxes show the

t role in the proof. The double arrows shown in the

figure represent implementation effort; the single arrows represent design influence of artefacts

on other artefacts. The central artefact is the actual Haskell prototype of the kernel. The prototype

level hardware details.

6 shows that hardware and Haskell prototype has design influence on formal

k place. In this project, the verification was

7 shows the specification layers

which were used in verification of seL4. Abstract specification layer shows the details to specify

ce of the kernel. It doesn’t describe in detail how the effects or interfaces are

implemented in kernel; in short it describes what the system does without saying how it is done.

heorem Prover. It

contains all data structure and implementation details which have been expected in the final C

implementation. The high performance C implementation layer deals with the formally-defined

International Journal of Computer Science & Engineering Survey (IJCSES)

Figure 7. The refinement layers in the verification of seL4 [43]

Now the points below show some important findings that can be derived from seL4 project,

which will connect us with the current formal verification scenario:

• There are many techniques for formal verification like model checking, static analysis or

kernel implementations in type safe language. But in this project it has been believed that

functional correctness is stronger and more precise technique compared to the techniques

mentioned above[43].

• In this project, fusion of traditional operating system and formal method technique had

been used i.e. rapid kernel design and implementation had been used together. Because of

this implementation, the verification focus was improved

with the better performance[43].

• In UCLA it had been observed that simplification of kernel to make verification feasible

made the kernel little bit slower. But in this project it has been shown that with modern

tools and technique, this is not the case these days.

The summary of the aforementioned projects has been shown in the table

column, the question mark in parenthesis shows that the year is not known and year in parenthesis

shows estimated completion date. Further, many verification projects like bias variance

tradeoffs[66], the Xtratum[67], L4Android[68], ORIENTAIS[69], VTOS[70] and CHERI[71]

have been studied. They are evolved from the aforementioned projects and follow same path as

described in above projects for verification of OS.

Project Highest

level

Lowest

level

UCLA Security

model

Pascal

KIT Isolated

task

Assembly

PSOS Applicatio

n level

Secure code

VFiasco Doesn’t

crash

C++

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

7. The refinement layers in the verification of seL4 [43]

Now the points below show some important findings that can be derived from seL4 project,

which will connect us with the current formal verification scenario:

chniques for formal verification like model checking, static analysis or

kernel implementations in type safe language. But in this project it has been believed that

functional correctness is stronger and more precise technique compared to the techniques

In this project, fusion of traditional operating system and formal method technique had

been used i.e. rapid kernel design and implementation had been used together. Because of

this implementation, the verification focus was improved and design was not conflicting

with the better performance[43].

In UCLA it had been observed that simplification of kernel to make verification feasible

made the kernel little bit slower. But in this project it has been shown that with modern

echnique, this is not the case these days.

The summary of the aforementioned projects has been shown in the table-1 below. In the year

column, the question mark in parenthesis shows that the year is not known and year in parenthesis

etion date. Further, many verification projects like bias variance

tradeoffs[66], the Xtratum[67], L4Android[68], ORIENTAIS[69], VTOS[70] and CHERI[71]

have been studied. They are evolved from the aforementioned projects and follow same path as

in above projects for verification of OS.

Table 1. OS verification projects [8]

Lowest Specs Proofs Prover Approach

 90% 20% XIVUS Alphard

Assembly 100% 100% Boyer

Moore

Interpreter

equivalence

Secure code 17

layers

0% SPECI

AL

HDM

70% 0% PVS Semantic

compiler

Vol.6, No.4, August 2015

10

Now the points below show some important findings that can be derived from seL4 project,

chniques for formal verification like model checking, static analysis or

kernel implementations in type safe language. But in this project it has been believed that

functional correctness is stronger and more precise technique compared to the techniques

In this project, fusion of traditional operating system and formal method technique had

been used i.e. rapid kernel design and implementation had been used together. Because of

and design was not conflicting

In UCLA it had been observed that simplification of kernel to make verification feasible

made the kernel little bit slower. But in this project it has been shown that with modern

1 below. In the year

column, the question mark in parenthesis shows that the year is not known and year in parenthesis

etion date. Further, many verification projects like bias variance

tradeoffs[66], the Xtratum[67], L4Android[68], ORIENTAIS[69], VTOS[70] and CHERI[71]

have been studied. They are evolved from the aforementioned projects and follow same path as

Year

(?)-1980

(?)-1987

1973-

1983

2001-

2008

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

11

EROS Security

model

BitC Security

model

0% ACL2(

?)

Language

based

2004-(?)

L4

verified

Security

model

C/assembly 100% 70% Isabell

e

Performance

production

code

2005-

(2008)

3. FUTURE CHALLENGES

Further, challenges out of the above projects and inherited projects have been discussed. In the

present survey it has not been claimed that the challenges described in this section haven’t been

implemented at all. But to the best of our knowledge, the areas described in this section haven’t

been covered in detail in literatures.

From all the above projects, especially from the SeL4 project it can be concluded that functional

correctness is one of the strongest properties that can be proven about the system. The functional

correctness can help to make precise formal prediction of how the kernel behaves in all possible

situations for all possible inputs. G. Klein[19] has suggested that, if any specific property is

needed to be checked then it can be expressed in Hoare’s logic, it is enough to work with this

formal prediction, with the specification. But functional correctness property of any system can’t

prove that the system is secure, it just says that system is functionally correct [19]. The word

‘secure’ in secure system requires formal definition, but this depends on what you want to use the

kernel for. So verification of all security properties or secure system which has been built on top

of the OS kernel is one of the recent challenges in formal verification field.

In SeL4 project specific security properties hadn’t been proven, but G. Klein[19] believed that if

the functional correctness property of the operating system can be proven, then below

assumptions can be made easily about that OS: (1) No code injection attacks (2) No buffer

overflow attack (3) No NULL pointer access (4) No ill-typed pointer access (5) No memory leaks

(6) No non-termination (7) No arithmetic or other exceptions (8) No unchecked user arguments.

He has explained these assumptions with reasons. He has also explained that the functional

correctness can tell following properties about the code: (1) Aligned object (2) Well formed data

structures (3) Algorithmic invariants and (4) Correct book-keeping. So research challenges here

are: can functional correctness property be used to verify other security properties or can

framework be made that covers verification of most of the security properties.

G. Heiser et al.[20] have provided some research challenges in different way, they have told that

the users of the fully verified kernel have trustworthy foundation for the entire system. For

example, the kernel seL4 is fully verified and it can be used as trustworthy foundation. Now the

challenge is how the trustworthy foundation of the system can be used further. They have

suggested three uses of the trustworthy foundation: (1) Secure web browsing (2) Increase the

usefulness of TPM (3) Cost-reduced database. But still there are many challenges related to the

kernel used as trustworthy foundation.

Let’s start with the secure web browsing topic. One security policy of the browser is Same Origin

Policy (SOP). SOP means web pages from different sources cannot observe or alter each other’s

state and behaviour and script running inside the web page must denied unauthorized access to

OS resources. Recent browsers like Chrome[22] address this problem by encapsulating security

policy in separate module, the browser kernel. So, this approach is based on the OS, specifically

dependent on browser’s TCB. So one challenge here is can TCB of the browser be reduced using

microkernel approach. IBOS[21] project has actually shown that TCB of browser can be reduced

by using the microkernel approach. The authors have proposed architecture for secure browsing

International Journal of Computer Science & Engineering Survey (IJCSES)

which contains two trusted parts: microkernel and user level security process which are shown in

figure-8.

Figure 8. Secure web browser architecture. Components that belong to the TCB of the system are

Figure-8 shows that monitor is the only part in the TCB that needs to be verified. The monitor

instantiates browser process with permissions t

stack processes and the monitor itself[20]. Once this security monitor is verified one can have

completely verified TCB for secure browsing. So, research challenge here is can the

aforementioned architecture be extended to include complete OS stack and that too running inside

a VM (Virtual Machine).

Next challenge is to increase usefulness of TPM. Trusted Computing Group[23] has introduced

the Trusted Platform Module (TPM). The TPM provides remote attestation facility which

provides evidence that the trusted software stack has been loaded by the remot

booting time. Now let’s take classical example of bank transaction. The bank can reject the

transaction request from the remote system if the trusted software stack hasn’t been loaded by the

remote machine. Bank clients want to use the sm

smart phones and computers have many apps and software for the bank to manage. Many of these

apps and software are not trusted. So, for successful remote attestation it has become necessary to

kept these out of TCB and therefore the system. To solve this problem, the concept of Dynamic

Root of Trust Measurement (DRTM)[24] has been introduced. DRTM allows user to switch

between trusted and untrusted environment. But to achieve this trusted code should be small a

it can run only for a fraction of seconds. But bank transaction needs more time than few seconds.

So above approach needs user to suspend OS while he is doing the bank transaction. But this is

not a practical solution. So to solve this issue TCB is need

and change in controlled fashion. After concluding this G. Heiser et al. believed that formally

verified kernel do not change or changes very rarely because it won’t require any bug fixes. They

have given example of seL4 kernel also. The challenge here is to minimize TCB and isolate TCB

from rest of the general purpose OS components using the trusted system which contains fully

verified kernel.

Final challenge that G. Heiser et al.[20] have mentioned is about the databa

databases can have disk failures, power failures and OS crash[20]. These days RAID protects

database from disk failure and UPS protects from power failure. This leaves protection against

OS crash as one of the open research problem. Here re

properties of kernel be verified in such a way that it can make kernel crash

be directly implemented on verified kernel and if it is possible then what kind of changes required

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

which contains two trusted parts: microkernel and user level security process which are shown in

web browser architecture. Components that belong to the TCB of the system are

highlighted using grey shading[20]

8 shows that monitor is the only part in the TCB that needs to be verified. The monitor

instantiates browser process with permissions to directly communicate with their private network,

stack processes and the monitor itself[20]. Once this security monitor is verified one can have

completely verified TCB for secure browsing. So, research challenge here is can the

ure be extended to include complete OS stack and that too running inside

Next challenge is to increase usefulness of TPM. Trusted Computing Group[23] has introduced

the Trusted Platform Module (TPM). The TPM provides remote attestation facility which

provides evidence that the trusted software stack has been loaded by the remote system from its

booting time. Now let’s take classical example of bank transaction. The bank can reject the

transaction request from the remote system if the trusted software stack hasn’t been loaded by the

remote machine. Bank clients want to use the smart phone or computer for the transaction. The

smart phones and computers have many apps and software for the bank to manage. Many of these

apps and software are not trusted. So, for successful remote attestation it has become necessary to

f TCB and therefore the system. To solve this problem, the concept of Dynamic

Root of Trust Measurement (DRTM)[24] has been introduced. DRTM allows user to switch

between trusted and untrusted environment. But to achieve this trusted code should be small a

it can run only for a fraction of seconds. But bank transaction needs more time than few seconds.

So above approach needs user to suspend OS while he is doing the bank transaction. But this is

not a practical solution. So to solve this issue TCB is needed that do not change, change rarely

and change in controlled fashion. After concluding this G. Heiser et al. believed that formally

verified kernel do not change or changes very rarely because it won’t require any bug fixes. They

4 kernel also. The challenge here is to minimize TCB and isolate TCB

from rest of the general purpose OS components using the trusted system which contains fully

Final challenge that G. Heiser et al.[20] have mentioned is about the database systems. The

databases can have disk failures, power failures and OS crash[20]. These days RAID protects

database from disk failure and UPS protects from power failure. This leaves protection against

OS crash as one of the open research problem. Here research questions can be formed: can

properties of kernel be verified in such a way that it can make kernel crash-proof, Can database

be directly implemented on verified kernel and if it is possible then what kind of changes required

Vol.6, No.4, August 2015

12

which contains two trusted parts: microkernel and user level security process which are shown in

web browser architecture. Components that belong to the TCB of the system are

8 shows that monitor is the only part in the TCB that needs to be verified. The monitor

o directly communicate with their private network,

stack processes and the monitor itself[20]. Once this security monitor is verified one can have

completely verified TCB for secure browsing. So, research challenge here is can the

ure be extended to include complete OS stack and that too running inside

Next challenge is to increase usefulness of TPM. Trusted Computing Group[23] has introduced

the Trusted Platform Module (TPM). The TPM provides remote attestation facility which

e system from its

booting time. Now let’s take classical example of bank transaction. The bank can reject the

transaction request from the remote system if the trusted software stack hasn’t been loaded by the

art phone or computer for the transaction. The

smart phones and computers have many apps and software for the bank to manage. Many of these

apps and software are not trusted. So, for successful remote attestation it has become necessary to

f TCB and therefore the system. To solve this problem, the concept of Dynamic

Root of Trust Measurement (DRTM)[24] has been introduced. DRTM allows user to switch

between trusted and untrusted environment. But to achieve this trusted code should be small and

it can run only for a fraction of seconds. But bank transaction needs more time than few seconds.

So above approach needs user to suspend OS while he is doing the bank transaction. But this is

ed that do not change, change rarely

and change in controlled fashion. After concluding this G. Heiser et al. believed that formally

verified kernel do not change or changes very rarely because it won’t require any bug fixes. They

4 kernel also. The challenge here is to minimize TCB and isolate TCB

from rest of the general purpose OS components using the trusted system which contains fully

se systems. The

databases can have disk failures, power failures and OS crash[20]. These days RAID protects

database from disk failure and UPS protects from power failure. This leaves protection against

search questions can be formed: can

proof, Can database

be directly implemented on verified kernel and if it is possible then what kind of changes required

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

13

in the lower layers of DBMS. Can database be implemented on verified kernel in such a way that

the changes required in the lower layer of database become minimal and practical to achieve.

J. Andronick et al.[25] have tried to solve a research problem related to scalability of the formal

verification. They have dealt with the large and complex system which uses seL4 for which

security guarantees can be given. They have proposed a framework to build such large and

complex systems. Authors’ vision here is that not all the software in a large system necessarily

contributes to a security property of interest. From the vision, the methodology has been

developed: (1) isolate the software parts which are not critical to a targeted property and prove

that for specific property nothing more is needed to be proven about them (2) formally verify and

prove that remaining part satisfy the targeted security property. In this paper the case study of

Secure Access Controller (SAC) has been taken. Access control-based security policy has been

taken as a property of interest here. Authors have explained that verifying such a property for

large system is far beyond the abilities of current verification methods. To verify this property

large code base has been divided into trusted code and untrusted code. The authors have used here

seL4[26] kernel to get the code isolation in this system which is already verified. So question

arises that if the kernel which hasn’t been verified is used for the large and complex system, can

we get security for such system and get the code separation.

In 2001, during VFiasco project[27] M. Hohmuth et al. Observed that huge bug affected

monolithic kernels are outside the scope of verification technology which were available at that

time. Although the microkernels are smart choice for constructing verified secure system, but is it

possible to have verification technology now which can accommodate verification of monolithic

kernel. Verification of monolithic kernel can be costly in terms of time and efforts, but it can be

taken as a recent research challenge.

The formal verification community has nice security properties, high level formal model and

ways of architecting secure systems, but still no signs of implementation level proofs. Even

recently implemented seL4 microkernel doesn’t have these implementation level proofs. G. Klein

et al.[39] believes that this needs to be changed. It is obvious that if the system is large then it can

be secured by reducing the Trusted Computing Base (TCB). For large systems, microkernels

provide good foundation, though with reduced TCB of large systems, nobody has proved security

down to the implementation level. With type 1 hypervisors, it has been assumed that they will

perform the role of separation kernel, but there are no implementation level proofs for these

hypervisors either[39]. For a moment let’s assume that in next few years, kernels are available

with fully formally verified functional correctness down to the implementation level. But then

what next? Such kernels do not automatically imply security [19].

After the completion of sel4 verification, G. Klein et al.[39] have mentioned in their work that the

mandatory access control can be implemented on OSes for example in Linux, but it is not

possible to get provable or assurable security for such OSes at least for next few years. Assume

that all security properties of kernel have been proved in next few years (Sorry, this will never

happen), still we as a formal verification community are not done yet. Our ultimate goal should

be to achieve proof that whole systems enforce their security goals; we can get much stronger

assurance for much larger systems than what is thought feasible today. It should be remembered

that proofs say that the code will follow specification; it doesn’t say that specification enforces

specific security property.

From the projects like VFiasco and seL4, it can be observed that there is a gap between idealized

security properties and properties that hold real kernels. G. Klein et al.[39] have mentioned in

their work that there is no good formal handle available on timing and time based covert channels

for practical implementations, so it is a research challenge. The authors are not expecting that the

same level formal proofs will be obtained in near future as it is available for storage channel.

International Journal of Computer Science & Engineering Survey (IJCSES)

K Elphinstone[46] has described challenge that takes place while using verified microkernel like

seL4 in Digital Rights Management (DRM), and based on this he has provided some new issues

which can be addressed by research communities. One can think solutions of this problem

direction, not necessarily in formal verification point of view. The DRM is the concept of

specifying, enforcing and limiting rights associated with digital content. Before identifying issues,

the architecture of DRM has been explained. The DRM arc

9[46]. First user posses the device upon which he wishes to view content. Then the user must be

authenticated by the content provider.

Figure

The content must be securely transferred to user device, for this encryption has been used. The

user player should be able to decrypt the content when user wishes to view it.

Here the content-use policy can be violated by end

engineering, modifying players or running the player on modified operating system. This is the

research challenge. One solution is to provide assurance that a trusted player on a trusted

operating system is the only software that has access to the content, other solutions

of in the context of hardware or networking.

Next, the challenge is about the gap between formal model of OS and hardware implementation.

A. Cohn[51] has described that the physical hardware is a realisation of a model, and correct

hardware operations are beyond the scope of the formal verification. One example of this is:

manufacturers can’t prove absence of manufacturing defects. So, even if the verified processor or

kernel is available, the gap between formal model of such kernel or proc

will always exist[51]. The research challenge is how to minimize this gap.

Tuch H. et al.[52] observed UCLA, KIT and VFiasco closely. They have described in their work

that in kernel verification, challenges related to performance

still available. They have mentioned that features like direct hardware access, pointer arithmetic

and embedded assembly code haven’t been the subjects of mainstream verification research, so

research scope is available in these areas.

The KIT was multitasking OS, which gave direction to the present survey to find verification

challenges in concurrent OS. S. Rajamani et al.[53] have discussed challenges of an OS which

support concurrent execution of the program. Sup

execution of program has normal page size. This OS supports third party plug

OS, there are many research challenges: (1) Is it possible to guarantee isolation in this OS where

third party plug-ins can be ill-behaved[53]? (2) With the isolation guarantee in OS, is it possible

to manage properties like safety and permissiveness? (3) Is it possible to achieve isolation without

the problems like deadlocks, livelocks[53], memory fragmentation and conditio

handling? (4) Various operating systems provide various types of memory protections. How to

handle these variations if memory protection is used for isolation?

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

s described challenge that takes place while using verified microkernel like

seL4 in Digital Rights Management (DRM), and based on this he has provided some new issues

which can be addressed by research communities. One can think solutions of this problem

direction, not necessarily in formal verification point of view. The DRM is the concept of

specifying, enforcing and limiting rights associated with digital content. Before identifying issues,

the architecture of DRM has been explained. The DRM architecture has been shown in the figure

9[46]. First user posses the device upon which he wishes to view content. Then the user must be

provider.

Figure 9. General DRM architecture [46]

transferred to user device, for this encryption has been used. The

user player should be able to decrypt the content when user wishes to view it.

use policy can be violated by end-users in many ways, ranging from reverse

fying players or running the player on modified operating system. This is the

research challenge. One solution is to provide assurance that a trusted player on a trusted

operating system is the only software that has access to the content, other solutions can be thought

of in the context of hardware or networking.

Next, the challenge is about the gap between formal model of OS and hardware implementation.

A. Cohn[51] has described that the physical hardware is a realisation of a model, and correct

e operations are beyond the scope of the formal verification. One example of this is:

manufacturers can’t prove absence of manufacturing defects. So, even if the verified processor or

kernel is available, the gap between formal model of such kernel or processor and implementation

will always exist[51]. The research challenge is how to minimize this gap.

Tuch H. et al.[52] observed UCLA, KIT and VFiasco closely. They have described in their work

that in kernel verification, challenges related to performance, size and the level of abstraction is

still available. They have mentioned that features like direct hardware access, pointer arithmetic

and embedded assembly code haven’t been the subjects of mainstream verification research, so

le in these areas.

The KIT was multitasking OS, which gave direction to the present survey to find verification

challenges in concurrent OS. S. Rajamani et al.[53] have discussed challenges of an OS which

support concurrent execution of the program. Suppose an OS which supports concurrent

execution of program has normal page size. This OS supports third party plug-ins. In this type of

OS, there are many research challenges: (1) Is it possible to guarantee isolation in this OS where

behaved[53]? (2) With the isolation guarantee in OS, is it possible

to manage properties like safety and permissiveness? (3) Is it possible to achieve isolation without

the problems like deadlocks, livelocks[53], memory fragmentation and conditio

handling? (4) Various operating systems provide various types of memory protections. How to

handle these variations if memory protection is used for isolation?

Vol.6, No.4, August 2015

14

s described challenge that takes place while using verified microkernel like

seL4 in Digital Rights Management (DRM), and based on this he has provided some new issues

which can be addressed by research communities. One can think solutions of this problem in any

direction, not necessarily in formal verification point of view. The DRM is the concept of

specifying, enforcing and limiting rights associated with digital content. Before identifying issues,

hitecture has been shown in the figure-

9[46]. First user posses the device upon which he wishes to view content. Then the user must be

transferred to user device, for this encryption has been used. The

users in many ways, ranging from reverse

fying players or running the player on modified operating system. This is the

research challenge. One solution is to provide assurance that a trusted player on a trusted

can be thought

Next, the challenge is about the gap between formal model of OS and hardware implementation.

A. Cohn[51] has described that the physical hardware is a realisation of a model, and correct

e operations are beyond the scope of the formal verification. One example of this is:

manufacturers can’t prove absence of manufacturing defects. So, even if the verified processor or

essor and implementation

Tuch H. et al.[52] observed UCLA, KIT and VFiasco closely. They have described in their work

, size and the level of abstraction is

still available. They have mentioned that features like direct hardware access, pointer arithmetic

and embedded assembly code haven’t been the subjects of mainstream verification research, so

The KIT was multitasking OS, which gave direction to the present survey to find verification

challenges in concurrent OS. S. Rajamani et al.[53] have discussed challenges of an OS which

pose an OS which supports concurrent

ins. In this type of

OS, there are many research challenges: (1) Is it possible to guarantee isolation in this OS where

behaved[53]? (2) With the isolation guarantee in OS, is it possible

to manage properties like safety and permissiveness? (3) Is it possible to achieve isolation without

the problems like deadlocks, livelocks[53], memory fragmentation and condition variable

handling? (4) Various operating systems provide various types of memory protections. How to

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

15

The challenges are summarized in a table below:

Table 2. Challenges in formal verification

Challenge Explanation Source Suggestion

Functional

correctness

Although functional

correctness is strong

property, it can’t prove that

system is secure. To verify

more number of security

properties together with or

without the functional

correctness is a challenge.

seL4 project R. Akella and Bruce M.[72]

have verified security

properties like information

flow and non deducibility of

cyber-physical system. They

have described that

information flow security

can’t be checked using

functional correctness. So,

they have provided different

framework for verification

using process algebra. Same

methodologies can be

applied to OS verification

also.

Kernel as a

trustworthy

foundation

Three uses of the

trustworthy foundation: (1)

Secure web browsing (2)

Increase the usefulness of

TPM (3) Cost-reduced

database. The challenge is

how the usage of

trustworthy foundation in

different areas can be

increased.

seL4 project G. Heiser et al.[73] have

provided prototype system

RapiLog which is based on

verified seL4 hypervisors.

This system is used to

reduce system complexity by

leveraging verification

instead of using special

hardware. Similarly more

ways can be found where

kernel can be used as

trustworthy foundation.

Security in large

system

Not all software on the large

system contributes to the

security of system. So to

verify the large system,

system should be divided in

trusted and untrusted code.

The division of large system

in trusted and untrusted

code is a challenge.

VFiasco, seL4 Stefan et al[79]. have

verified cyber-physical

system. Their work provides

hint to verify larger and

more complex systems.

Implementation

level proof

No implementation level

proofs so far for any kernel

verification. This is a

challenge.

Recent

projects like

seL4, VFiasco

Nana S. et al.[74] have

provided framework to

verify hardware and software

co-verification. IEEE

802.11ac WLAN system has

been selected by them for

case study. Their work might

provide a hint to solve this

research challenge.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

16

Time-based

covert channel

To create formal handle for

time-based covert channel is

a challenge.

Recent

projects like

seL4, VFiasco

The problem with covert

channel is it is difficult to

verify it on case-by-case

bases. So, first unique model

to unified approach is

needed and then verification

can be done. So P. L.

Shrestha et al[78] have

provided this unique model

which can be used to verify

time-based covert channel.

Monolithic

kernel

Huge, bug affected

monolithic kernel

verification is a challenge.

VFiasco

project

M. Lange et al[77]. have

provided hint to solve this

research challenge. Their

work focuses on L4Android

which is monolithic

architecture. Although the

project is not entirely on the

monolithic kernel

verification, but it can

provide help to solve this

research problem.

Challenges

related to

unexplored

areas

Pointer arithmetic and

embedded assembly code

haven’t been the subjects of

mainstream verification

research so far. These fields

can be explored more.

UCLA,

PSOS, KIT,

VFiasco,

EROS

The work of Thomas S. et

al[75]. gives hint in the

direction of pointer

arithmetic. J Kobashi et

al[76] have provided

directions to verify

embedded assembly code.

Their work can be explored

further to solve these

challenges.

Challenges

related to

Concurrency

(1) To achieve and verify

isolation when third party

plug-ins are ill-behaved. (2)

With isolation, manage the

properties like safety and

permissiveness (3) Avoid

problems like deadlocks,

livelocks, memory

fragmentation and condition

variable handling (4)

Handle variations in

memory protection if it has

been used to achieve

isolation.

KIT is

multitasking

kernel. It has

provided base

to explore

concurrency

related areas.

Solutions of some of the

problem have been discussed

by S. Rajamani et al[53].

They have tried to solve this

challenge for concurrent

programs. These solutions

can be expanded for the

large, concurrent operating

system kernel and the

isolation properties can be

verified.

4. CONCLUSIONS

In the present paper, an overview of kernel verification projects has been provided, in specific

UCLA, KIT, PSOS, VFiasco, EROS and seL4 projects have been surveyed. In the present survey,

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

17

highest level specification, lowest level of specification, model checker and approach of

verification have been described for each project. During the survey it has been observed that

proofs of automation, memory models, proof libraries, and program logics have been developed

significantly, that’s why OS verification is not as hard as it was before 35 years.

The present article also describes challenges in kernel verification area. They are related to

monolithic kernel verification, functional correctness, implementation level proof, time-based

covert channel, direct hardware access, pointer arithmetic, concurrency and use of kernel as

trustworthy foundation areas. Future efforts in the direction of solving these challenges will make

verification faster and precise.

REFERENCES

[1] G. Popek and D. Farber, (1978) “A model for verification of data security in operating systems,”

Communications of the ACM, vol. 21,(9), pp. 737–749.

[2] Landwehr, C. E., Heitmeyer, C. L., and Mc Lean, J., (1984) “A security model for military message”

systems. ACM Trans. Comput. Syst, 2, 3, 198–222.

[3] E. Kang and D. Jackson, (2010) Dependability arguments with trusted bases. In RE, pages 262-271.

IEEE Computer Society.

[4] Walker, B. J., Kemmere, R. A., and Popek, G. J., (1979) “Specification and Verification of the UCLA

Unix Security Kernel”. In Proceedings of the 7th ACM Symposium on Operating Systems Principles

(SOSP), pp. 64–65.

[5] T. In der Rieden, (2009) “Verified Linking for Modular Kernel Verification”. PhD thesis, Saarland

University, Computer Science Department.

[6] Popek, G.J., (1974) Protection Structures. Computer, 7(6), 22-33.

[7] C. C.Morgan, (1990) Programming from specifications. Prentice-Hall.

[8] G. Klein, (2009) “Operating system verification — an overview”. Sadhana, 34(1):27–69.

[9] Bevier,W.R., (1989) “Kit: a study in operating system verification” IEEE Trans. Softw. Eng., 15(11),

1382–1396

[10] R. S. Boyer and J. S. Moore, (1988) A Computational Logic Handbook. New York: Academic.

[11] R. Milner, (1971) “An algebraic definition of simulation between programs”, Stanford AI Project.

Tech. Rep., AIM-142,.

[12] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters, (2007) “Towards trustworthy

computing systems: Taking microkernels to the next level” ACM Operating Systems Review, 41(3).

[13] J. S. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and M. Miller (2004) “Towards a Verified,

General-Purpose Operating System Kernel” In Proceedings of the 1st NICTA Workshop on Operating

System Verification, pages 1–18.

[14] L. Robinson and K.N. Levitt, (1977) “Proof techniques for hierarchically structured programs”,

Communications of the ACM, 20(4):271–283.

[15] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, and L. Robinson, (1980) “A Provably Secure

Operating System: The system, its applications, and proofs” Technical report, Computer Science

Laboratory, SRI International, Menlo Park, California, 2nd edition, Report CSL-116.

[16] P.G. Neumann and R.J. Feiertag, (2003) “PSOS revisited”, In Proceedings of the 19th Annual

Computer Security Applications Conference, Classic Papers section, pages 208–216,

[17] Jonathan S. Shapiro, (2003) “The practical application of a decidable access model” Technical

Report SRL, November, Baltimore, MD 21218.

[18] R. N. Watson, P. G. Neumann, J. Woodruff, J. Anderson, D. Chisnall, B. Davis, B. Laurie, S. W.

Moore, S. J. Murdoch, and M. Roe, (2014) “Capability Hardware Enhanced RISC Instructions:

CHERI Instruction-set architecture”, Technical Report UCAM-CL-TR-850, University of Cambridge,

Computer Laboratory, Apr. URL

[19] G. Klein (2009) “Correct OS kernel? proof? done!”, USENIX, 34(6):28–34.

[20] G. Heiser, L. Ryzhyk, M. von Tessin, and A. Budzynowski, (2011) “What if you could actually Trust

your kernel?” In 13th HotOS, Napa, CA, USA,

[21] Tang, S., Mai, H., And King, S. T., (2010) “Trust and protection in the Illinois Browser Operating

System”, In 9th OSDI, Vancouver, Canada, pp. 1–15.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

18

[22] Barth, A., Jackson, C., Reis, C., And The Google Chrome team, (2008) “The security architecture of

the Chromium browser”. Technical report, Stanford Security Laboratory.

[23] Trusted Computing Group. Trusted Platform Module.

http://www.trustedcomputinggroup.org/developers/trustedplatform_module.

[24] McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., AND Isozaki, H. (2008) “Flicker: An execution

infrastructure for TCB minimization”, In 3rd EuroSys Conf.

[25] June Andronick, David Greenaway, and Kevin Elphinstone, (2010) “Towards proving security in the

presence of large untrusted components”, In Gerwin Klein, Ralf Huuck, and Bastian Schlich, editors,

Proceedings of the 5th Workshop on Systems Software Verification, Vancouver, Canada, USENIX.

[26] seL4Website. http://ertos.nicta.com.au/research/sel4/, Jun 2010.

[27] M. Hohmuth, H. Tews, and S. G. Stephens, (2002) “Applying source-code verification to a

microkernel — the VFiasco project” (extended abstract) In Proceedings of the Tenth ACM SIGOPS

European Workshop, September.

[28] M. Hohmuth and H. Härtig, (2001) “Pragmatic nonblocking synchronization for real-time systems” In

USENIX Annual Technical Conference, Boston, MA.

[29] L. C. Paulson, (1994) Isabelle: A Generic Theorem Prover. Number 828 in LNCS. Springer, Berlin.

[30] M. Huisman and B. Jacobs, (2000) “Java program verification via a Hoare logic with abrupt

termination”, In T.Maibaum, editor, Fundamental Approaches to Software Engineering, number 1783

in LNCS.

[31] Jan Rothe, Hendrik Tews, and Bart Jacobs. (2001) “The Coalgebraic Class Specification Language

CCSL”, J. Univ. Comp. Sc., 7(2):175–193.

[32] Glesner, S., Leitner, J., Blech, J.O. (2006) “Coinductive verification of program optimizations using

similarity relations”, In Knoop, J., Necula, G. C., Zimmermann, W. (Eds.): Proc. of 5th Int. Wksh. on

Compiler Optimization Meets Compiler Verification, COCV ’06 Vienna,. Electron. Notes in Theor.

Comput. Sci., Vol. 176(3), Elsevier pp. 61–77.

[33] Tews, Hendrik, (2004) “Verifying Duff’s device”.

[34] Gong, Sheng Wen, (2013) “Formal Model of Classic Operating System Kernel”, Advanced Materials

Research, pp. 1020- 1023.

[35] William R. Bevier, Richard Cohen, and Jeff Turner, (2013) “A specification for the Synergy file

system”, Technical Report 120. Computational Logic Inc.

[36] Hermann Hartig, Michael Hohmuth, Norman Feske, Christian Helmuth, Adam Lackorzynski, Frank

Mehnert, and Michael Peter, (2005) “The Nizza secure-system architecture”, Proc. of the 1st

International Conference on Collaborative Computing: Networking, Applications and Worksharing.

[37] J. Strother Moore, (2002) “A grand challenge proposal for formal methods: A verified stack”, Proc. of

the 10th Anniversary Colloquium of UNU/IIST. pp. 161-172.

[38] Leinenbach, D., (2008) “Compiler Verification in the Context of Pervasive System Verification”, PhD

thesis, , Saarland University, Saarbrücken .

[39] G. Klein, T. Murray, P. Gammie, T. Sewell, and S. Winwood, (2011) “Provable security: How

feasible is it?” In 13th HotOS, Napa, CA, USA, pp. 28–32.

[40] Matthias Daum, (2003) “Develoment of a Semantics Compiler for C++”, Diploma thesis, TU

Dresden.

[41] D. Elkaduwe, G. Klein, and K. Elphinstone, (2008) “Verified protection model of the seL4

microkernel”, In J. Woodcock and N. Shankar, editors, VSTTE 2008 — Verified Softw.: Theories,

Tools & Experiments, volume 5295 of LNCS, Springer , pp. 99–114.

[42] R. J. Lipton and L. Snyder, (1977) A linear time algorithm for deciding subject security, ACM,

24(3):455–464.

[43] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood (2009) “seL4: Formal verification of

an OS kernel” In Proceedings of the 22nd ACM Symposium on Operating Systems Principles.

[44] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin,

Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey

Tuch, and Simon Winwood, (2010) “seL4: formal verification of an operating-system kernel”, 53(6),

pp.107–115.

[45] G. Klein, P. Derrin, and K. Elphinstone, (2009) “Experience report: seL4 — formally verifying a

high-performance microkernel”. In 14th ICFP.

[46] Kevin Elphinstone, (2004) “Future directions in the evolution of the L4 microkernel”, In Proceedings

of the NICTA workshop on OS verification.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

19

[47] Shapiro J S, Smith JM, Farber D J., (1999) “EROS: a fast capability system”, In: SOSP 99:

Proceedings of the seventeenth ACM symposium on Operating systems principles, New York, NY,

USA: ACM pp. 170–185.

[48] Shapiro J S, Weber S, (2000) “Verifying the EROS confinement mechanism”, In: Proceedings of the

IEEE Symposium on Security and Privacy, IEEE Computer Society, Washington, DC, USA pp. 166–

176.

[49] Andrew Boyton, June Andronick, Callum Bannister, Matthew Fernandez, Xin Gao, David

Greenaway, Gerwin Klein, Corey Lewis, and Thomas Sewell, (2013) “Formally verified system

initialisation”, In Lindsay Groves and Jing Sun, editors, Proceedings of the 15th International

Conference on Formal Engineering Methods, Queenstown, New Zealand, Springer pp. 70–85.

[50] S. Maffeis, J. C. Mitchell, and A. Taly, (2010) “Object Capabilities and Isolation of Untrusted Web

Applications”, In Proceedings of the IEEE Symposium on Security and Privacy, pp. 125–140.

[51] Cohn, (1989) “The notion of proof in hardware verification” Journal of Automated Reasoning, 5(2)

pp. 127-139.

[52] Tuch H, Klein G, Heiser G. OS verification—now!. In: Proceedings of the 10th Workshop on Hot

Topics in Operating Systems, 2005,USENIX, Santa Fe, NM, USA , pp. 7–12

[53] Sriram K. Rajamani, G. Ramalingam, Venkatesh Prasad Ranganath, and Kapil Vaswani, (2009)

“Isolator: dynamically ensuring isolation in comcurrent programs” In ASPLOS 09: Architectural

Support for Programming Languages and Operating Systems, pp. 181–192.

[54] Shapiro J S, Doerrie M S, Northup E, Sridhar S, Miller M (2004) “Towards a verified, general-

purpose operating system kernel” In: G Klein, ed., Proceedings of the NICTA Formal Methods

Workshop on Operating Systems Verification, Technical Report 0401005T-1, NICTA, Sydney,

Australia

[55] McMillan, Kenneth L. (1993) “Symbolic model checking”, Springer US.

[56] Clarke, Edmund M., Orna Grumberg, and Doron Peled, (1999) “Model checking”, MIT press.

[57] Necula, George C. (2002) “Proof-carrying code design and implementation”, Springer, Netherlands.

[58] Appel, Andrew W., (2001) "Foundational proof-carrying code" Logic in Computer Science, 2001

Proceedings 16th Annual IEEE Symposium on. IEEE.

[59] Holzmann, Gerard J. (2002) "Static source code checking for user-defined properties."Proc. IDPT,

Vol. 2.

[60] Leino, K. Rustan M. Dafny, (2010) “An automatic program verifier for functional correctness. Logic

for Programming”, Artificial Intelligence, and Reasoning, Springer Berlin Heidelberg.

[61] Budd, Timothy A., et al., (1980) "Theoretical and empirical studies on using program mutation to test

the functional correctness of programs." Proceedings of the 7th ACM SIGPLAN SIGACT symposium

on Principles of programming languages. ACM.

[62] J. S. Shapiro. The EROS Web Site. http://www.eros-os.org. (Link visited March 2015)

[63] Charles Landau The CapROS Web Site. http://www.capros.org (Link visited March 2015)

[64] Shapiro J S Coytos web site, http://www.coyotos.org/ (Link visited March, 2015)

[65] Shapiro, J. S., Northup, E., Doerrie, M. S., Sridhar, S., Walfield, N. H., & Brinkmann, M. Coyotos

(2007) “microkernel specification”, The EROS Group, LLC, 0.5 edition.

[66] Sharma, Rahul, Aditya V. Nori, and Alex Aiken, (2014) “Bias-variance tradeoffs in program

analysis”, ACM SIGPLAN Notices, Vol. 49(1). ACM.

[67] Sanán, David, Andrew Butterfield, and Mike Hinchey, (2014) “Separation Kernel Verification: The

Xtratum Case Study” Verified Software: Theories, Tools and Experiments. Springer International

Publishing, pp. 133-149.

[68] Lange, Matthias, et al., (2011) "L4Android: a generic operating system framework for secure

smartphones." Proceedings of the 1st ACM workshop on Security and privacy in smartphones and

mobile devices. ACM.

[69] Shi, Jianqi, et al., (2012) "ORIENTAIS: Formal verified OSEK/VDX real-time operating system."

Engineering of Complex Computer Systems (ICECCS), 17th International Conference on. IEEE.

[70] Qian, Zhenjiang, Hao Huang, and Fangmin Song, (2013) "VTOS: Research on Methodology of

“Light-Weight” Formal Design and Verification for Microkernel OS." Information and

Communications Security. Springer International Publishing, pp. 17-32.

[71] Woodruff, Jonathan D., (2014) “ CHERI: A RISC capability machine for practical memory safety”

University of Cambridge, Computer Laboratory, Technical Report, UCAM-CL-TR-858.

[72] Akella, Ravi, and Bruce M. McMillin, (2013) “Modeling and verification of security properties for

critical infrastructure protection”, Proceedings of the Eighth Annual Cyber Security and Information

Intelligence Research Workshop. ACM.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015

20

[73] Heiser, Gernot, et al., (2013) "RapiLog: reducing system complexity through

verification." Proceedings of the 8th ACM European Conference on Computer Systems, ACM.

[74] Sutisna Nana, et al., (2014) “Live demonstration: Hardware-software co-verification for very large

scale SoC using synopsys HAPS platform, Circuits and Systems” (APCCAS), IEEE Asia Pacific

Conference, IEEE.

[75] Ströder, Thomas, et al., (2014) “Proving termination and memory safety for programs with pointer

arithmetic, Automated Reasoning”, Springer International Publishing, pp.208-223.

[76] Kobashi, Jumpei, Satoshi Yamane, and Atsushi Takeshita, (2014) “Development of SMT-Based

Bounded Model Checker for embedded assembly program” Consumer Electronics (GCCE), IEEE 3rd

Global Conference.

[77] Lange, Matthias, et al. (2011) "L4Android: a generic operating system framework for secure

smartphones." Proceedings of the 1st ACM workshop on Security and privacy in smartphones and

mobile devices. ACM.

[78] Shrestha Pradhumna Lai, Michael Hempel, and Hamid Sharif, (2014) "Towards a unified model for

the analysis of timing-based covert channels."Communications (ICC), 2014 IEEE International

Conference, IEEE.

[79] Mitsch Stefan, Sarah M. Loos, and André Platzer, (2012) "Towards formal verification of freeway

traffic control." Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference.

Authors

Kushal Anjaria is a PhD scholar at the department of computer science and engineering

of Defence Institute of Advanced Technology, Pune-India. He received M Tech in

computer science and engineering from Manipal Institute of Technology, Manipal in

2012. His work is currently focused on operating system security and formal verification.

Arun Mishra is an assistant professor at the department of computer science and

engineering of Defence Institute of Advanced Technology, Pune-India. He got his PhD

in computer science from Motilal Nehru National Institute of Technology, Allahabad

(India). His research activity is based on Automated Systems, Trusted Computing,

Secure Software Engineering, Formal Modelling and Component based Software

Engineering. More information is available at:

http://www.diat.ac.in/index.php?option=com_content&view=article&id=206&Itemid=3

59&Itemid=267

