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ABSTRACT

Experimental data is subject to data loss, which presents a challenge for representing the data with a
proper time scale.  Additionally, data from separate measurement systems need to be aligned in order to
use the data cooperatively.  Due to the need for accurate time alignment, various practical techniques are
presented along with an illustrative example detailing each step of the time alignment procedure for actual
experimental data from an Unmanned Aerial Vehicle (UAV).  Some example MATLAB code is also
provided.
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1. INTRODUCTION

It is important for experimental data to be properly aligned in time in order to conduct
accurate post-processing analysis.  Measurement systems are subject to data loss with time, which
causes gaps in the data which need to be properly located and filled in order to maintain the
appropriate time scale.  It is also important to identify delays between different measurement
systems in order to align each data set properly, so that the data from each individual system can
be combined and used together for analysis.  This is especially important for information fusion
applications, which thrive on having as many sources of information as possible [1]. For example,
the alignment of measurements from Global Positioning System (GPS) and Inertial Navigation
System (INS) [2] is necessary for applications such as human lower limb kinematics [3],
positioning [4], and attitude estimation [5]. Distributed systems such as sensor networks also
require accurate time synchronization [6,7,8]. Time alignment techniques are also useful for
determining delays in a system, which can be an important consideration for certain problems,
such as acoustic wave propagation [9] and human pilot modeling [10].  This work addresses a few
techniques which are useful for time alignment, and aims to serve as an instructive guide for
using these techniques.  Note that this work is intended only to provide some information about a
few time alignment techniques.  Other more complex time alignment methods can be found e.g.
in [11,12,13].

The rest of this paper is organized as follows.  The time alignment techniques are presented in
Section 2.  In Section 3 the experimental platform is discussed, followed by a time alignment
example in Section 4.  Section 5 provides a brief conclusion.  Some example code using
MATLAB is provided in the Appendix.
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2. TIME ALIGNMENT TECHNIQUES

2.1. Alignment of Two Signals using Correlation Functions

The pure time delay between two measurement signals can be captured using correlation
functions.  These functions include the auto-correlation function Rxx(τ) and the cross-correlation
function Rxy(τ), of two signals x(t) and y(t), given by

 0

1
( ) ( ) ( )
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xxR x t x t dt
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Note that the auto-correlation function is just the cross-correlation function of a given signal with
itself.  Note also that ( ) ( ),xy yxR R = − and the auto-correlation function is always an even

function.  The auto-correlation function represents time properties in the data that are separated
by fixed time delays.  For example, consider the auto-correlation function for a signal

( ) sin( )x t t= of length T, where n is an integer.  For this example, the auto-correlation function is
given by
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Using the trigonometric identity

[ ]1
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2
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and performing the integration, the auto-correlation function becomes
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2 4xxR T
T

   = + − + (5)

If the length of the signal T is a multiple of the period of the signal, i.e., T = 2πn, where n is an
integer, then the equation reduces to

1
( ) cos( )

2xxR  = (6)

Therefore, the auto-correlation function of a sine wave has peaks at any time shift of 2πn, where n
is an integer.  This corresponds to the signal aligning with itself due to its natural periodicity.  An
illustration of this result is given in Figure 1.  The auto-correlation functions for non-periodic
signals such as random noise or impulse noise are much different than that of periodic signals.
Consider, for example, data sampled from a standard normal distribution, i.e., Gaussian random
noise with zero mean and standard deviation one.  The auto-correlation for this signal should only
align with itself when there is no time shift (τ = 0).  When τ is nonzero, the randomness of the
signal forces the value of Rxx(τ) to approximately zero, as shown in Figure 2.

Another interesting type of signal to consider is an impulsive signal.  The auto-correlation for
a signal of this type will have some peaks around τ = 0 due to the alignment of the absolute
maximum with the subsequent local maxima and minima.  To help illustrate this, Figure 3 shows
an example military impulse wave [14].  The cross-correlation function between two signals
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represents their similarity based on a time shift, τ.  This can be useful for various applications,
including detection of time delays, noise source identification, and radar and sonar applications
[15].  In general, unlike the auto-correlation function, the cross-correlation function will not be an
even function.  In fact, one useful feature of this function is measuring the value of τ where the
function is at its absolute maximum.  This value represents a time delay between the two signals.
To help illustrate this concept, using the previous impulse signal from Figure 3, another signal
was created by delaying the original signal by 0.1 seconds. Figure 4 shows the original and
delayed signals together, as well as their cross-correlation function.  The absolute maximum of
the cross-correlation function occurs at a value τ = -0.1 s, which agrees with the time delay
between the signals.  Here the minus sign indicates that there is a lag in time as opposed to a
positive sign which would represent a lead in time.  Notice that the cross-correlation function for
this example is the same as the auto-correlation function in Figure 3 except for the shift in time.
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Figure 1. Plot of Signal and Auto-Correlation for Sine Wave
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Figure 2. Plot of Signal and Auto-Correlation for Random Noise

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-500

0

500

1000

t

Im
pu

ls
e 

S
ig

na
l

Signal and Auto-Correlation for Impulse Signal

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2

0

2

4

6
x 107

τ

A
ut

o-
C

or
re

la
tio

n

Figure 3. Example Military Impulse Wave Signal with Auto-Correlation
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Figure 4.  Plot of Original and Delayed Signals with and Cross-Correlation

The calculation of the auto-correlation and cross-correlation functions can be visualized by a
shifting in time of one signal with respect to one another, while multiplying their corresponding
values.  This process is similar to that of a convolution integral of two functions x(t) and h(t),
given by [16]

 0
( )  ( ) ( )y x t h t dt


 = −∫ (7)

The primary difference between a convolution integral and a cross-correlation is the negative sign
in the convolution integral, which in effect is a reflection of one of the signals about t = 0 before
time shifting.

When dealing with discrete or digital data, the auto-correlation and cross-correlation
functions cannot be calculated exactly.  In this case, the auto-correlation and cross-correlation
functions can be approximated by [17]
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where r = 0, 1, 2, …, m, with m < N.  Here, r represents the lag number, and Δt is the time step,
which is the inverse of the sampling frequency in Hz.  The ^ symbol above the R denotes an
approximation.  Note that these calculations can also be done using the xcorr command in
MATLAB.  Another quantity of interest is the cross-correlation coefficient function ρxy(τ), given
by



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.5, No.2, April 2014

6

( )
( )

(0) (0)

xy
xy

xx yy

R

R R


  = (1)

which can be approximated by
ˆ ( )

ˆ ( )
ˆ ˆ(0) (0)

xy
xy

xx yy

R r t
r t

R R


∆
∆ = (2)

This quantity always satisfies -1 ≤ ρxy(τ) ≤ 1 [17].  Since the cross-correlation coefficient is a
normalized quantity, it is ideal for use in comparing different waveforms.  This value is a
measurement of the agreement between the two signals as a function of the time delay.  For time
alignment, this value can be used to gauge how well the signals are aligned, with 1 indicating
perfect positive correlation, -1 indicating perfect negative correlation (same signal, but reflected
about the x-axis), and 0 indicating no correlation.

2.2. Aligning a Signal with the Proper Time Scale

A problem that can occur with real measurement systems is the loss of information with time.
I.e., the data recording system might miss a packet (or more) of information, either due to delays
in the system or processing constraints.  Typically in this situation, the measurement system
simply skips the missed packet and logs the next data point instead.  For example, if a data stream
is supposed to be (1, 2, 3, 4, 5, …), and the 3rd packet is skipped, the data will be logged as (1, 2,
4, 5, …).  As this occurs over time, the data loss accumulates and therefore compresses the data
along the time scale.  To restore the true time vector, an accurate time reference is needed.
Because of this, it is useful to obtain some information about the timing of the data in each packet
of information, such as from a counter on a microprocessor or an independent timing source, e.g.
in GPS data, the GPS time is encoded in each data packet.  Using this independent timing source,
the locations of skipped data packets can be identified.  These locations can be found easily by
taking the difference in successive time steps of the counter.

Consider the following example of a counter which skips packet 3 and packet 10. Figure 5
shows the true ideal counter (blue) and the recorded counter from the measurement system (red).
Taking the difference between successive time steps gives Figure 6, which shows that 2 steps
occurred in the counter instead of 1 at time steps 2 and 8.  Note that it is time step 2, because data
packet three was skipped, therefore at step 2 it skipped 3 and went to 4.  For time step 8, it is off
by an additional time step because of the previous data loss at time step 2.  These points can be
used to identify the jumps in the data.  Then, the data stream can be “stretched” out in time by the
number of data losses, and then these gaps can be filled in using interpolation.
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Figure 5.  Data Packet Loss Example:  Ideal and Recorded Counter Signals
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Figure 6.  Data Packet Loss Example:  Difference between Time Steps

2.3. Precision Time Alignment using Pulse Per Second (PPS) Signals

When aligning signals from two different data streams, a precision time alignment method
can be used to align these measurements using a Pulse Per Second (PPS) signal.  First a coarse
time alignment method should be applied to align the signals within one second of accuracy.
Then, a fine alignment can be performed using a PPS signal, which is an electrical signal that
precisely indicates the start of a second. This signal takes the shape of a square wave, with period
of 1 second.  A PPS signal should be generated within the first data system and sent to the other
data system for logging.  Then this gives two sources of the same information, which can then be
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aligned in order to obtain precisely aligned measurements.  Any phase shift between the two
signals is eliminated by shifting one of the signals until a perfect time alignment is achieved.  For
this time alignment, the cross-correlation technique can be used.

3. EXPERIMENTAL PLATFORM

The flight data used for this study were collected with the Red Phastball aircraft which was
designed, manufactured, and instrumented by researchers at the Flight Control Systems
Laboratory (FCSL) at West Virginia University (WVU).  The avionic payload includes a custom
designed printed circuit board (PCB) featuring four Analog Devices® Inertial Measurement Units
(IMUs) and a Novatel OEM-V1 GPS receiver, as shown in Figure7.

MicroSD Data Recorders

MOD5213-Microprocessor 1

IMU 1 (ADIS16405)

IMU 2 (ADIS16405)

IMU 3 (ADIS16405)

IMU 4 (ADIS16355)

MOD5213-Microprocessor 2

Figure 7.  WVU Phastball Aircraft and Avionics

The PCB shown in Figure 7 records measurements using two MicroSD data loggers which are
interfaced with the various measurement systems using two MOD-5213 microprocessors.  The
GPS data is recorded on a third MicroSD data logger.  Of the four IMUs implemented in this
system, three are ADIS16405, and one is an ADIS16355.  Although each IMU has an actual
resolution of 14-bit, the resolution is improved by oversampling the signals at 200 Hz, then
averaging down to 50 Hz, thus achieving 16-bit resolution.  A Pulse Per Second (PPS) signal
from the GPS receiver is recorded with the IMU data using an Analog to Digital (A/D) port on
the MOD-5213 microprocessor.  This PPS signal is utilized for precision time alignment between
the IMU and GPS data.  The GPS receiver uses satellite information to calculate Cartesian
position and velocity.  In addition to IMU and GPS data, a high-quality Goodrich® mechanical
vertical gyroscope was used to obtain direct measurements of the roll and pitch of the aircraft,
which are used as ‘truth’ measurements for this study.  These measurements are recorded using a
3.3 V A/D at 16-bit resolution.  All data were recorded at 50 Hz.
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4. TIME ALIGNMENT RESULTS USING EXPERIMENTAL SENSOR DATA

This section goes through an example time alignment procedure using a data set collected with
the measurement system described in Section 3.  The first step in the time alignment procedure is
to align each data stream individually with the proper time scale.  First, the GPS data is
considered.  The GPS time is logged with each GPS packet, and is shown in Figure 8 (left).  The
difference in successive time steps is shown in Figure 8 (right), which shows were data loss
occurred, and how much time was lost.  A zoomed in segment of this data is shown in Figure 9
Figurein order to provide an example of a typical data loss.  Using the method described in
Section 2.2, the GPS data can be reconstructed with the proper time scale.  Note that the data
“stretching” is applied to all of the channels in the GPS data, not just the GPS time.
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Figure 8.  GPS Time (left) and Change in Time (right)
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Figure 9.  Example of GPS Data Loss

Similarly as for the GPS, the microprocessor data is subject to packet loss with time.  The
microprocessor logs a counter at each time step, which is used to identify locations of data loss.
The counter is shown in Figure 10 (left) while the change in counter is in Figure 10 (right).  A
zoomed in segment of this data is shown in Figure 11 in order to provide an example of a typical
data loss. Using the method described in Section II B, the microprocessor data can be
reconstructed with the proper time scale.  Note that the data “stretching” is applied to all of the
channels in the microprocessor data, not just the counter.  See Example Code 1 in the Appendix
for more information about how to perform time alignment using a counter.
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Figure 10.  Microprocessor Counter (left) and Change in Counter (right)
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Figure 11.  Example of Microprocessor Data Loss

Since this data set contains measurements from two different microprocessors, each needs to
be individually aligned in time.  Then, these two measurement systems must be aligned with one
another.  For this application, each measurement system contains an IMU, which measures
equivalent values on each system.  Therefore, the time alignment between these two measurement
systems can be done using cross-correlations between common channels between the two
systems.  An example of this time alignment is shown in Figure 12, where the cross-correlation
function is shown, while the aligned signals are shown in Figure 13 after shifting by the
maximum of the cross-correlation.  See Example Code 2 in the Appendix for more information
about how to align different measurement systems using cross-correlations.
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Figure 12. Cross-Correlation between Redundant Measurements
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Figure 13.  Aligned Redundant Measurement Signals

Now, each individual measurement system has been aligned with a proper time scale, and the two
microprocessors are aligned.  Next, the GPS needs to be aligned with the microprocessors.  In
order to apply the fine time alignment technique of Section 2.3, a PPS signal was programmed on
a GPS receiver to trigger a digital high at the beginning of a second and a digital low at half of a
second. This digital signal was recorded by an Analog to Digital (A/D) converter on a Netburner
microprocessor and was stored with the other data channels. For the fine time alignment, an
artificial PPS signal is constructed for the GPS data based on the time recorded in each packet.
This artificial PPS signal is then compared with the measured PPS signal in the microprocessor
data stream. Figure 14 shows the unmatched PPS signals (left), and the PPS signals after final
alignment (right).
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Figure 14.  PPS Precision Time Alignment

Another problem that is important to consider is the possibility of spikes in the data.  This is
particularly important for GPS data, which is prone to data spikes.  To remove data spikes, an
appropriate threshold can be selected in order to limit the maximum change in the data between
time steps.  Then large data spikes can be identified and eliminated using a zero-order hold, i.e.
when a spike occurs, just use the previous value again.  An example of data spikes and their
removal is shown in Figure 15.
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Figure 15.  Example Spike Removal
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Figure 16.  Example Time Alignment Check

See Example Code 3 in the Appendix for more details about how to remove spikes.  Once the
data has been cleaned of all spikes, and the signals have been aligned, it is useful to verify the
time alignment somehow.  For this particular example, the GPS has measurements of the altitude
of the aircraft, while the microprocessor has measurements from a laser rangefinder which is
pointing directly downward from the aircraft.  While these measurements are not of exactly the
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same quantity, they are correlated in time, and therefore can be used to validate the accuracy of
the time alignment, as shown in Figure 16.

5. CONCLUSIONS

This article developed the use of different techniques for time alignment of experimental sensor
data.  The presented approaches were based on practical experience obtained while working with
flight data from an experimental UAV.  The techniques presented in this article were developed
in an instructive manner in order to provide a practical resource for working with multiple
measurement systems.
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