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ABSTRACT 
 

The complexity of implementing the Boolean functions by digital logic gates is directly related to the 

complexity of the Boolean algebraic expression. Although the truth table is used to represent a function, 

when it is expressed algebraically it appeared in many different, but equivalent, forms. Boolean expressions 

may be simplified by Boolean algebra. However, this procedure of minimization is awkward because it 

lacks specific rules to predict each succeeding step in the manipulative process. Other methods like Map 

methods (Karnaugh map (K-map), and map Entered Variables) are useful to implement the Boolean 

expression with minimal prime implicants. Or the Boolean function can be represents and design by used 

type N’s Multiplexers by partitioned variable(s) from the function. An adaptive map is a combined method 

of Boolean algebra and K-map to reduce and minimize Boolean functions involving more than three 

Boolean variables. 
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1. INTRODUCTION 

 
Because binary logic is used in all digital computers and digital devices, the cost of the circuits is 

an important factor addressed by designers [1]. Finding simpler and cheaper, but equivalent, 

realizations of a circuit can reap huge payoffs in reducing the overall cost of the design. 

Mathematical method, map methods, tabular methods, and, other methods are used to simplify 

and implements Boolean functions. 

 

 2. MATHEMATICAL METHOD 

 
In mathematical method, the Boolean algebra, like any other mathematical system, is defined 

with set of elements, set of operators, and number of unproved axioms or postulates. All Boolean 

expressions, regardless of their form, can be writes in two standard forms: the (SOP) Sum-Of-

Products form or the (POS) Product-Of-Sums form. Standardization makes evaluates, simplified, 

and implements the Boolean expressions more systematic and easier [2]. 

 

Boolean algebra is formal to express a digital logic equations, and represents a logical design in 

an alpha-numeric way. The Boolean algebra format, and many of logic manipulates rules and 

techniques were formalized around 1850 by George Boole, an Irish mathematician. It was used a 

systematic approach to solving problems in logic and reasoning. With the advent of modern 

electronics, and digital systems in particular, Boolean algebra found a natural home. In addition to 

being used as a tool for deductive reasoning, it is now an almost indispensable tool to design the 

digital logic circuits and machines. 
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3. MAP METHOD 

 
However, the map method presented here provides a simple, straightforward procedure for 

minimize Boolean functions. This method regarded as a pictorial form of a truth table. The map 

method is also known as Karnaugh map or K-map. 

 

The Karnaugh map, like Boolean algebra, is a simplification tool applicable to digital logic. The 

Karnaugh map is simplified logic expression faster and more easily in most cases. Boolean 

simplification is faster than the Karnaugh map for a task involving two or fewer Boolean 

variables. It is still quite usable at three variables, but a bit slower. At four input variables, 

Boolean algebra becomes tedious. Karnaugh maps are both, faster and easier, work well for up to 

six input variables. For more than six to eight variables, simplification should be by CAD 

(Computer Automated Design) [3], or use other methods. 

 

4. TABULAR METHOD 

 
In tabular methods for function minimization have been devised that can be implemented by a 

computer and can therefore be used to minimize functions having a large number of input 

variables. One such method has become known as the Quine-McClusky (Q-M) algorithm. 

Typical of these methods, the Q-M algorithms first finds the prime implicants and then generates 

the minimum cover [4]. 

 

5. ENTERED VARIABLE K-MAP METHOD 

 
The K-maps are only useful up to and including functions with six variables, but in the case of a 

function having a larger number of variables and providing the function does not contain too 

many terms it can be useful to plot it on a reduced dimension map. Such a map is one in which 

the individual cells can now contain variables, so that a map for m variables can be used to 

represent functions having (m+1) or even (m+2) variables [5]. The entered variable mapping, 

which is a logical and very useful extension of conventional (1’s and 0’s) mapping methods 

developed previously. Entered variable K-maps are the most common form of graphical 

representation, two types of variables shown in K-map, the map variable which represent the 

index of K-map, and the entered variables (1’s, 0’s, don’t care, and variable). 

 

6. SHANNON’S EXPANSION THEOREM 

 
Designing with Multiplexers resolves around applying a theorem called Shannon’s Expansion 

Theorem. The theorem can be stated as follows: 

 

� = � ��. ��       … … … … … … … … … … … … … … … … …                   (�)
���

���
 

 

Where mi is a minterm consisting of n select signals that are applied to the select inputs and Ii is 

the input data (used for applying 2
n
 input data signals) [6], the input signals (1’s, 0’s, don’t care, 

and variable). 

 

Boolean functions with a large number of inputs can be accommodate by constructing 

Multiplexer trees (cascade Multiplexers) to implement functions, but it is not easily reduced or 
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implement functions with a larger than normal number of inputs. It is not necessary to write every 

binary entry for every signal in the truth table, since we can reduce the output column by simply 

listing the binary values of the partitioned-off signal (or signals). The type of Multiplexers design 

simply agrees with the number of input signals partitioned off in the truth table of the function. 

For example, we called type 2 Multiplexer when implement the function when partitioned off two 

signals. 

 

7. ADAPTIVE MAP 

 
To implement the Boolean function with large number of input signal, it is suitable to use entered 

variable method, or use type n Multiplexer. The complexity of these methods is how to find the 

input data of Multiplexer, or find the entered variables in K-map.  

 

In this paper, make a combination between Boolean algebra, K-map, Entered variables, and 

Shanno’s theorem methods that suggest how to find the variables to implements function by 

different types of multiplexers, or by Map Entered variable method.    

 

An adaptive map is build with a variable location of sub-cubes in K-map. The sub-cubes locations 

are adaptive with the partitioned off variables or with entered variables. 

 

7.1. The Partitioning off One Variable 

 
Assume a function with four variables, 

 

�(�, �, �, �) = � �� .  ��
���

���
              … … … … . . () 

n=4 number of variables. 

 

The variable D is a less significant bit (2
0
 = 1), while variable C is (2

1
 = 2), and variable A is (2

3
 = 

8). These values used to implements function with new location of sub-cubes when any of these 

variables is partitioned off.  

 

The flowing Adaptive map represents the case when partitioned off one variable. 

 

Partitioned off variable D (2
0
=1) 

The difference of location between each two  

sub-cubes in the same column = 20 = 1 

 ABC 

D 000 001 010 011 100 101 110 111 

0 
I0 

m0 

I2 

m2 

I4 

m4 

I6 

m6 

I8 

m8 

I10 

m10 

I12 

m12 

I14 

m14 

1 
I1 

m1 

I3 

m3 

I5 

m5 

I7 

m7 

I9 

m9 

I11 

m11 

I13 

m13 

I15 

m15 

  

 

 

 

 

 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013 

 

4 
 

Partitioned off variable B (2
2
=4) 

The difference of location between each two  

sub-cubes in the same column = 22 = 4 

 ACD 

B 000 001 010 011 100 101 110 111 

0 
I0 

m0 

I1 

m2 

I2 

m4 

I3 

m6 

I8 

m8 

I9 

m9 

I10 

m10 

I11 

m11 

1 
I4 

m4 

I5 

m5 

I6 

m6 

I7 

m7 

I12 

m12 

I13 

m13 

I14 

m14 

I15 

m15 

 

In the adaptive map shown in (a), the equivalent prime implicants of each column (from column 0 

to column 7) can be found using direct Boolean algebra. 

 

P0 = I0.m0 + I1.m1, P1 = I2.m2 + I3.m3, , , P7 =  I14.m14 + I15.m15. 

 

The Po, P1, , , P7 are inputs data to the (8X1) Multiplexer with (A,B,C) are the select signals, or  

an entered variable in map entered variable method that shown below: 

 

The same way in map show in (b), the equivalent prime implicants can find by: 

 

P0 =  I0.m0 + I4.m4 , P1 =  I1.m1 + I5.m5, , , P7 =  I11.m11 + I15.m15  

 

The P0 , P1 , , P7 are the inputs data to the (8X1) Multiplexer with (A,C,D) are select Signals 
 

 BC   CD 

A 00 01 11 10  A 00 01 11 10 

0 P0 P1 P3 P2  0 P0 P1 P3 P2 

1 P4 P5 P7 P6  1 P4 P5 P7 P6 

 

7.2. Partitioned off Two Variables 

 
Here we assume a function with five variables, 

 

�(�, �, �, �, �) = � �� .  ��
���

���
              … … … … . . (�) 

The variable E is less significant bit (20 = 1), while variable B is (23 = 8), and variable A is (24 = 

16). These values used to implement the function with new location of sub-cubes when two of 

these variables are partitioned off.  

 

The flowing Adaptive map is represent the case of partitioning two variables 
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Partitioned off variables E (2
0
=1), and D (2

1
=2)  

The difference between sub-cubes in same column is 20 and 21
 

 ABC  

DE 000 001 010 011 100 101 110 111  

00 
I0 

m0 

I4 

m4 

I8 

m8 

I12 

m12 

I16 

m16 

I20 

m20 

I24 

m24 

I28 

m28 
 

01 
I1 

m1 

I5 

m5 

I9 

m9 

I13 

m13 

I17 

m17 

I21 

m21 

I25 

m25 

I29 

m29 
 

10 
I2 

m2 

I6 

m6 

I10 

m10 

I14 

m14 

I18 

m18 

I22 

m22 

I26 

m26 

I30 

m30 
 

11 
I3 

m3 

I7 

m7 

I11 

m11 

I15 

m15 

I19 

m19 

I23 

m23 

I27 

m27 

I31 

m31 

 

Partitioned off variables B (23=8), and C (22=4) 

The difference between sub-cubes in same column is 22 and 23  

 ADE  

BC 000 001 010 011 100 101 110 111  

00 
I0 

m0 

I1 

m2 

I2 

m4 

I3 

m6 

I16 

m16 

I17 

m17 

I18 

m18 

I19 

m19 

 

01 
I4 

m4 

I5 

m5 

I6 

m6 

I7 

m7 

I20 

m20 

I21 

m21 

I22 

m22 

I23 

m23 

 

10 
I8 

m8 

I9 

m9 

I10 

m10 

I11 

m11 

I24 

m24 

I25 

m25 

I26 

m26 

I27 

m27 

 

11 
I12 

m12 

I13 

m13 

I14 

m14 

I15 

m15 

I28 

m28 

I29 

m29 

I30 

m30 

I31 

m31 

 

 

In the adaptive map shown in (a), the equivalent prime implicants of each column (from column 0 

to column 7) can be found using direct Boolean algebra. 

 

P0 =  I0.m0 + I1.m1 + I2.m2 + I3.m3, , , P7 =  I28.m28 + I29.m29 + I30.m30 + I31.m31 

 

The P0 , P1 , , P7 are the inputs data to the (8X1) Multiplexer with (A,B,C) are select signals, or 

use an entered variable in the map shown below 

 

The same way in map (b), the equivalent prime implicants can find by: 

 

P0 = I0.m0 + I4.m4 + I8.m8 + I12.m12, , , P7 =  I19.m19 + I23.m23 + I27.m27 + I31.m31 

 

The P0 , P1 , , P7 are the inputs data to the (8X1) Multiplexer with (A,D,E) are select signals 

 

 BC   DE 

A 00 01 11 10  A 00 01 11 10 

0 P0 P1 P3 P2  0 P0 P1 P3 P2 

1 P4 P5 P7 P6  1 P4 P5 P7 P6 
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7.3. Partitioned off Three Variables 

 
A function with five variables can be represent as, 
 

�(�, �, �, �, �) = � �� .  ��
���

���
              … … … … . . (�) 

 

The flowing Adaptive map represents the case of partitioning off three variables. 

 

Partitioned off variables B (2
3
=8),  

 C (22=4),  and D (21=2) 

The difference of location between sub-

cubes in the same column = 2
1
 , 2

2
 , and  2

3
 

 Partitioned off variables A (2
4
=16),        

C (22=4), and E (20=1) 

The difference of location between sub-

cubes in the same column = 2
0
 ,2

2
 ,and 2

4
 

 AE   BD 

BCD 00 01 11 10  ACE 00 01 11 10 

000 
I0 

m0 

I1 

m1 

I16 

m16 

I17 

m17 

 
000 

I0 

m0 

I2 

m2 

I8 

m8 

I10 

m10 

001 
I2 

m2 

I3 

m3 

I18 

m18 

I19 

m19 

 
001 

I1 

m1 

I3 

m3 

I9 

m9 

I11 

m11 

010 
I4 

m4 

I5 

m5 

I20 

m20 

I21 

m21 

 
010 

I4 

m4 

I6 

m6 

I12 

m12 

I14 

m14 

011 
I6 

m6 

I7 

m7 

I22 

m22 

I23 

m23 

 
011 

I5 

m5 

I7 

m7 

I13 

m13 

I15 

m15 

100 
I8 

m8 

I9 

m9 

I24 

m24 

I25 

m25 

 
100 

I16 

m16 

I18 

m18 

I24 

m24 

I26 

m26 

101 
I10 

m10 

I11 

m11 

I26 

m26 

I27 

M27 

 
101 

I17 

m17 

I19 

m19 

I25 

m25 

I27 

m27 

110 
I12 

m12 

I13 

m13 

I28 

m28 

I29 

m29 

 
110 

I20 

m20 

I22 

m22 

I28 

m28 

I30 

m30 

111 
I14 

m14 

I15 

m15 

I30 

m30 

I31 

m31 

 
111 

I21 

m21 

I23 

m23 

I29 

m29 

I31 

m31 

 

In the adaptive map show in (a), the equivalent prime implicants of each column (from column 0 

to column 4) can be fined use direct Boolean algebra. 
 

P0 =  I0.m0 + I2.m2  + I4.m4 + I6.m6 + I8.m8 + I10.m10 + I12.m12 + I14.m14 

 

The P0 , P1 , P3 , P4 are the inputs to the (4X1) Multiplexer with (A,E) are select signals, or use an 

entered variable in the map. 
 

The same way in map (b), the equivalent prime implicants can find by: 
 

P0 =  I0.m0 + I1.m1  + I4.m4 + I5.m5 + I16.m16 + I17.m17 + I20.m20 + I21.m21 

 

The P0 , P1 , P3 , P4 are the inputs data to the (4X1) Multiplexer with (B,D) are select signals 
 

8. CONCLUSIONS 

 
The most simplification methods are useful for less than 6 variables. A large number of input 

signals will be complex to simplify the function and implements with minimal logic gates, or use 

a suitable multiplexer. The adaptive map is a useful method used to reduce the K-map size and 
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simplify the function use entered variable method, or to use type n multiplexers with number of 

select signals less than the number of the input signals. 

 

This method gives more imagination to designer to find different way to simplify any complex 

Boolean function with more than three input signals. 

 

REFERENCES 

 
[1] M. Morris Mano, and Michael D. Ciletti,(2006)  Digital Design, Fourth Edition, Prentice Hall. 

[2] Thomas L. Floyd, (2006) Digital Fundamentals, Ninth Edition, Prentice Hall. 

[3] Tony R. Kuphaldt, (2007) Lessons In Electric Circuits, Volume IV – Digital. 

[4] Richard F. Tinder, (2000) Engineering Digital Design, Second Edition, Academic Press (AP). 

[5] Brain Holdsworth, and Clive Woods, (2002) Digital Logic Design, Fourth Edition, Copyright 

Material. 

[6] Richard S. Sandige, (1990) Modern Digital Design. Mcgraw-Hill 

[7] Richard S. Sandige, and Michael L. Sandige, (2012) Fundamentals of Digital and Computer Design 

with VHDL, McGraw Hill. 

 

Author 
 

Mohammed H. AL-Jammas (Jun’02) born in 1966 in Mosul-Iraq. He awarded BSc in 

Electronic and Communication Engineering from the University of Mosul, Mosul-Iraq 

in 1988. Next, he awarded the MSc in Communication from the University of Mosul, 

Mosul-Iraq in 1994, and PhD in Computer Engineering from the University of 

Technology, Baghdad-Iraq in 2007. From 2002-2006, Dr. Mohammed worked with 

the University of Technology in Baghdad. From 2007, he acts as an Assistance dean of 

the College of Electronics Engineering at the University of Mosul.  

 

Through his academic life he published over 5 papers in field of computer 

engineering, and information security. 


