
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013

DOI : 10.5121/ijcses.2013.4601 1

ADAPTIVE MAP FOR SIMPLIFYING BOOLEAN

EXPRESSIONS

Dr. Mohammed H. AL-Jammas

Department of Computer and Information Engineering,

College of Electronics Engineering, University of Mosul, Mosul - Iraq

ABSTRACT

The complexity of implementing the Boolean functions by digital logic gates is directly related to the

complexity of the Boolean algebraic expression. Although the truth table is used to represent a function,

when it is expressed algebraically it appeared in many different, but equivalent, forms. Boolean expressions

may be simplified by Boolean algebra. However, this procedure of minimization is awkward because it

lacks specific rules to predict each succeeding step in the manipulative process. Other methods like Map

methods (Karnaugh map (K-map), and map Entered Variables) are useful to implement the Boolean

expression with minimal prime implicants. Or the Boolean function can be represents and design by used

type N’s Multiplexers by partitioned variable(s) from the function. An adaptive map is a combined method

of Boolean algebra and K-map to reduce and minimize Boolean functions involving more than three

Boolean variables.

KEYWORDS

Adaptive map, Boolean function, Entered variable, K-map, Partitioned variable

1. INTRODUCTION

Because binary logic is used in all digital computers and digital devices, the cost of the circuits is

an important factor addressed by designers [1]. Finding simpler and cheaper, but equivalent,

realizations of a circuit can reap huge payoffs in reducing the overall cost of the design.

Mathematical method, map methods, tabular methods, and, other methods are used to simplify

and implements Boolean functions.

 2. MATHEMATICAL METHOD

In mathematical method, the Boolean algebra, like any other mathematical system, is defined

with set of elements, set of operators, and number of unproved axioms or postulates. All Boolean

expressions, regardless of their form, can be writes in two standard forms: the (SOP) Sum-Of-

Products form or the (POS) Product-Of-Sums form. Standardization makes evaluates, simplified,

and implements the Boolean expressions more systematic and easier [2].

Boolean algebra is formal to express a digital logic equations, and represents a logical design in

an alpha-numeric way. The Boolean algebra format, and many of logic manipulates rules and

techniques were formalized around 1850 by George Boole, an Irish mathematician. It was used a

systematic approach to solving problems in logic and reasoning. With the advent of modern

electronics, and digital systems in particular, Boolean algebra found a natural home. In addition to

being used as a tool for deductive reasoning, it is now an almost indispensable tool to design the

digital logic circuits and machines.

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013

2

3. MAP METHOD

However, the map method presented here provides a simple, straightforward procedure for

minimize Boolean functions. This method regarded as a pictorial form of a truth table. The map

method is also known as Karnaugh map or K-map.

The Karnaugh map, like Boolean algebra, is a simplification tool applicable to digital logic. The

Karnaugh map is simplified logic expression faster and more easily in most cases. Boolean

simplification is faster than the Karnaugh map for a task involving two or fewer Boolean

variables. It is still quite usable at three variables, but a bit slower. At four input variables,

Boolean algebra becomes tedious. Karnaugh maps are both, faster and easier, work well for up to

six input variables. For more than six to eight variables, simplification should be by CAD

(Computer Automated Design) [3], or use other methods.

4. TABULAR METHOD

In tabular methods for function minimization have been devised that can be implemented by a

computer and can therefore be used to minimize functions having a large number of input

variables. One such method has become known as the Quine-McClusky (Q-M) algorithm.

Typical of these methods, the Q-M algorithms first finds the prime implicants and then generates

the minimum cover [4].

5. ENTERED VARIABLE K-MAP METHOD

The K-maps are only useful up to and including functions with six variables, but in the case of a

function having a larger number of variables and providing the function does not contain too

many terms it can be useful to plot it on a reduced dimension map. Such a map is one in which

the individual cells can now contain variables, so that a map for m variables can be used to

represent functions having (m+1) or even (m+2) variables [5]. The entered variable mapping,

which is a logical and very useful extension of conventional (1’s and 0’s) mapping methods

developed previously. Entered variable K-maps are the most common form of graphical

representation, two types of variables shown in K-map, the map variable which represent the

index of K-map, and the entered variables (1’s, 0’s, don’t care, and variable).

6. SHANNON’S EXPANSION THEOREM

Designing with Multiplexers resolves around applying a theorem called Shannon’s Expansion

Theorem. The theorem can be stated as follows:

� = � ��. �� … … … … … … … … … … … … … … … … … (�)
���

���

Where mi is a minterm consisting of n select signals that are applied to the select inputs and Ii is

the input data (used for applying 2
n
 input data signals) [6], the input signals (1’s, 0’s, don’t care,

and variable).

Boolean functions with a large number of inputs can be accommodate by constructing

Multiplexer trees (cascade Multiplexers) to implement functions, but it is not easily reduced or

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013

3

implement functions with a larger than normal number of inputs. It is not necessary to write every

binary entry for every signal in the truth table, since we can reduce the output column by simply

listing the binary values of the partitioned-off signal (or signals). The type of Multiplexers design

simply agrees with the number of input signals partitioned off in the truth table of the function.

For example, we called type 2 Multiplexer when implement the function when partitioned off two

signals.

7. ADAPTIVE MAP

To implement the Boolean function with large number of input signal, it is suitable to use entered

variable method, or use type n Multiplexer. The complexity of these methods is how to find the

input data of Multiplexer, or find the entered variables in K-map.

In this paper, make a combination between Boolean algebra, K-map, Entered variables, and

Shanno’s theorem methods that suggest how to find the variables to implements function by

different types of multiplexers, or by Map Entered variable method.

An adaptive map is build with a variable location of sub-cubes in K-map. The sub-cubes locations

are adaptive with the partitioned off variables or with entered variables.

7.1. The Partitioning off One Variable

Assume a function with four variables,

�(�, �, �, �) = � �� . ��
���

���
 … … … … . . ()

n=4 number of variables.

The variable D is a less significant bit (2
0
 = 1), while variable C is (2

1
 = 2), and variable A is (2

3
 =

8). These values used to implements function with new location of sub-cubes when any of these

variables is partitioned off.

The flowing Adaptive map represents the case when partitioned off one variable.

Partitioned off variable D (2
0
=1)

The difference of location between each two

sub-cubes in the same column = 20 = 1

 ABC

D 000 001 010 011 100 101 110 111

0
I0

m0

I2

m2

I4

m4

I6

m6

I8

m8

I10

m10

I12

m12

I14

m14

1
I1

m1

I3

m3

I5

m5

I7

m7

I9

m9

I11

m11

I13

m13

I15

m15

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013

4

Partitioned off variable B (2
2
=4)

The difference of location between each two

sub-cubes in the same column = 22 = 4

 ACD

B 000 001 010 011 100 101 110 111

0
I0

m0

I1

m2

I2

m4

I3

m6

I8

m8

I9

m9

I10

m10

I11

m11

1
I4

m4

I5

m5

I6

m6

I7

m7

I12

m12

I13

m13

I14

m14

I15

m15

In the adaptive map shown in (a), the equivalent prime implicants of each column (from column 0

to column 7) can be found using direct Boolean algebra.

P0 = I0.m0 + I1.m1, P1 = I2.m2 + I3.m3, , , P7 = I14.m14 + I15.m15.

The Po, P1, , , P7 are inputs data to the (8X1) Multiplexer with (A,B,C) are the select signals, or

an entered variable in map entered variable method that shown below:

The same way in map show in (b), the equivalent prime implicants can find by:

P0 = I0.m0 + I4.m4 , P1 = I1.m1 + I5.m5, , , P7 = I11.m11 + I15.m15

The P0 , P1 , , P7 are the inputs data to the (8X1) Multiplexer with (A,C,D) are select Signals

 BC CD

A 00 01 11 10 A 00 01 11 10

0 P0 P1 P3 P2 0 P0 P1 P3 P2

1 P4 P5 P7 P6 1 P4 P5 P7 P6

7.2. Partitioned off Two Variables

Here we assume a function with five variables,

�(�, �, �, �, �) = � �� . ��
���

���
 … … … … . . (�)

The variable E is less significant bit (20 = 1), while variable B is (23 = 8), and variable A is (24 =

16). These values used to implement the function with new location of sub-cubes when two of

these variables are partitioned off.

The flowing Adaptive map is represent the case of partitioning two variables

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013

5

Partitioned off variables E (2
0
=1), and D (2

1
=2)

The difference between sub-cubes in same column is 20 and 21

 ABC

DE 000 001 010 011 100 101 110 111

00
I0

m0

I4

m4

I8

m8

I12

m12

I16

m16

I20

m20

I24

m24

I28

m28

01
I1

m1

I5

m5

I9

m9

I13

m13

I17

m17

I21

m21

I25

m25

I29

m29

10
I2

m2

I6

m6

I10

m10

I14

m14

I18

m18

I22

m22

I26

m26

I30

m30

11
I3

m3

I7

m7

I11

m11

I15

m15

I19

m19

I23

m23

I27

m27

I31

m31

Partitioned off variables B (23=8), and C (22=4)

The difference between sub-cubes in same column is 22 and 23

 ADE

BC 000 001 010 011 100 101 110 111

00
I0

m0

I1

m2

I2

m4

I3

m6

I16

m16

I17

m17

I18

m18

I19

m19

01
I4

m4

I5

m5

I6

m6

I7

m7

I20

m20

I21

m21

I22

m22

I23

m23

10
I8

m8

I9

m9

I10

m10

I11

m11

I24

m24

I25

m25

I26

m26

I27

m27

11
I12

m12

I13

m13

I14

m14

I15

m15

I28

m28

I29

m29

I30

m30

I31

m31

In the adaptive map shown in (a), the equivalent prime implicants of each column (from column 0

to column 7) can be found using direct Boolean algebra.

P0 = I0.m0 + I1.m1 + I2.m2 + I3.m3, , , P7 = I28.m28 + I29.m29 + I30.m30 + I31.m31

The P0 , P1 , , P7 are the inputs data to the (8X1) Multiplexer with (A,B,C) are select signals, or

use an entered variable in the map shown below

The same way in map (b), the equivalent prime implicants can find by:

P0 = I0.m0 + I4.m4 + I8.m8 + I12.m12, , , P7 = I19.m19 + I23.m23 + I27.m27 + I31.m31

The P0 , P1 , , P7 are the inputs data to the (8X1) Multiplexer with (A,D,E) are select signals

 BC DE

A 00 01 11 10 A 00 01 11 10

0 P0 P1 P3 P2 0 P0 P1 P3 P2

1 P4 P5 P7 P6 1 P4 P5 P7 P6

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013

6

7.3. Partitioned off Three Variables

A function with five variables can be represent as,

�(�, �, �, �, �) = � �� . ��
���

���
 … … … … . . (�)

The flowing Adaptive map represents the case of partitioning off three variables.

Partitioned off variables B (2
3
=8),

 C (22=4), and D (21=2)

The difference of location between sub-

cubes in the same column = 2
1
 , 2

2
 , and 2

3

 Partitioned off variables A (2
4
=16),

C (22=4), and E (20=1)

The difference of location between sub-

cubes in the same column = 2
0
 ,2

2
 ,and 2

4

 AE BD

BCD 00 01 11 10 ACE 00 01 11 10

000
I0

m0

I1

m1

I16

m16

I17

m17

000

I0

m0

I2

m2

I8

m8

I10

m10

001
I2

m2

I3

m3

I18

m18

I19

m19

001

I1

m1

I3

m3

I9

m9

I11

m11

010
I4

m4

I5

m5

I20

m20

I21

m21

010

I4

m4

I6

m6

I12

m12

I14

m14

011
I6

m6

I7

m7

I22

m22

I23

m23

011

I5

m5

I7

m7

I13

m13

I15

m15

100
I8

m8

I9

m9

I24

m24

I25

m25

100

I16

m16

I18

m18

I24

m24

I26

m26

101
I10

m10

I11

m11

I26

m26

I27

M27

101

I17

m17

I19

m19

I25

m25

I27

m27

110
I12

m12

I13

m13

I28

m28

I29

m29

110

I20

m20

I22

m22

I28

m28

I30

m30

111
I14

m14

I15

m15

I30

m30

I31

m31

111

I21

m21

I23

m23

I29

m29

I31

m31

In the adaptive map show in (a), the equivalent prime implicants of each column (from column 0

to column 4) can be fined use direct Boolean algebra.

P0 = I0.m0 + I2.m2 + I4.m4 + I6.m6 + I8.m8 + I10.m10 + I12.m12 + I14.m14

The P0 , P1 , P3 , P4 are the inputs to the (4X1) Multiplexer with (A,E) are select signals, or use an

entered variable in the map.

The same way in map (b), the equivalent prime implicants can find by:

P0 = I0.m0 + I1.m1 + I4.m4 + I5.m5 + I16.m16 + I17.m17 + I20.m20 + I21.m21

The P0 , P1 , P3 , P4 are the inputs data to the (4X1) Multiplexer with (B,D) are select signals

8. CONCLUSIONS

The most simplification methods are useful for less than 6 variables. A large number of input

signals will be complex to simplify the function and implements with minimal logic gates, or use

a suitable multiplexer. The adaptive map is a useful method used to reduce the K-map size and

International Journal of Computer Science & Engineering Survey (IJCSES) Vol.4, No.6, December 2013

7

simplify the function use entered variable method, or to use type n multiplexers with number of

select signals less than the number of the input signals.

This method gives more imagination to designer to find different way to simplify any complex

Boolean function with more than three input signals.

REFERENCES

[1] M. Morris Mano, and Michael D. Ciletti,(2006) Digital Design, Fourth Edition, Prentice Hall.

[2] Thomas L. Floyd, (2006) Digital Fundamentals, Ninth Edition, Prentice Hall.

[3] Tony R. Kuphaldt, (2007) Lessons In Electric Circuits, Volume IV – Digital.

[4] Richard F. Tinder, (2000) Engineering Digital Design, Second Edition, Academic Press (AP).

[5] Brain Holdsworth, and Clive Woods, (2002) Digital Logic Design, Fourth Edition, Copyright

Material.

[6] Richard S. Sandige, (1990) Modern Digital Design. Mcgraw-Hill

[7] Richard S. Sandige, and Michael L. Sandige, (2012) Fundamentals of Digital and Computer Design

with VHDL, McGraw Hill.

Author

Mohammed H. AL-Jammas (Jun’02) born in 1966 in Mosul-Iraq. He awarded BSc in

Electronic and Communication Engineering from the University of Mosul, Mosul-Iraq

in 1988. Next, he awarded the MSc in Communication from the University of Mosul,

Mosul-Iraq in 1994, and PhD in Computer Engineering from the University of

Technology, Baghdad-Iraq in 2007. From 2002-2006, Dr. Mohammed worked with

the University of Technology in Baghdad. From 2007, he acts as an Assistance dean of

the College of Electronics Engineering at the University of Mosul.

Through his academic life he published over 5 papers in field of computer

engineering, and information security.

