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ABSTRACT 

This paper deploys active control for achieving complete synchronization of hyperchaotic Xu (2009) and 

hyperchaotic Lü (2006) systems.  Specifically, this paper derives complete synchronization results for 

identical hyperchaotic Xu systems, identical hyperchaotic Lü systems and non-identical hyperchaotic Xu 

and Lü systems. The complete synchronization results have been proved using Lyapunov stability theory. 

Numerical simulations have been shown to validate and demonstrate the effectiveness of the complete 

synchronization results derived in this paper. 
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1. INTRODUCTION 

For the last few decades, chaos theory has been received critical investigations in a variety of 

fields including physical systems [1-2], chemical systems [3], ecological systems [4], secure 

communications [5-6], etc. 

If we call a particular chaotic system as the master system and another chaotic system as the 

slave system, then the idea of complete chaos synchronization is to use the output of the master 

system to control the slave system so that the states of the slave system track the states of the 

master system asymptotically. 

In the last two decades, a variety of schemes have been derived for chaos synchronization such 

as PC method [7], OGY method [8], active control [9-13], adaptive control [14-17], 

backstepping design [18-20], sampled-data feedback [21], sliding mode control [22-26], etc.   

Hyperchaotic system is usually defined as a chaotic system having at least two positive 

Lyapunov exponents, implying that its dynamics can be extended in several directions 

simultaneously. Thus, hyperchaotic systems have more complex dynamical behaviour which 

can be used to improve the security of a chaotic communication system [27]. 

In this paper, we use active control method to derive new results for the complete chaos 

synchronization of identical hyperchaotic Xu systems ([28], 2009), identical hyperchaotic Lü 

systems ([29], 2006) and non-identical hyperchaotic Bao and hyperchaotic Xu systems. The 

complete synchronization results derived in this paper have been used using Lyapunov stability 

theory [30]. 
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2. PROBLEM STATEMENT AND OUR METHODOLOGY 

As the master system, we take the chaotic system described by   

  ( ),x Ax f x= +&          (1) 

where 
n

x ∈R is the state vector, A is the n n× matrix of system parameters and : n n
f →R R  

is the nonlinear part of the system.   

As the slave system, we take the chaotic system described by 

  ( ) ,y By g y u= + +&         (2) 

where 
n

y ∈R is the state of the slave system, B is the n n× matrix of system parameters, 

: n n
g →R R is the nonlinear part of the system and u is the active controller to be designed. 

If A B= and ,f g= then x and y are the states of two identical chaotic systems. If A B≠ or 

,f g≠ then x and y are the states of two different chaotic systems. 

For the complete chaos synchronization of the chaotic systems (1) and (2) using active control, 

we define the synchronization error as 

,e y x= −          (3) 

From (1), (2) and (3), the error dynamics is obtained as 

( ) ( )e By Ax g y f x u= − + − +&        (4) 

Thus, the complete synchronization problem is to determine a feedback controller u so that 

lim ( ) 0,
t

e t
→∞

=  for all (0) n
e ∈R       (5) 

Next, we consider a candidate Lyapunov function 

( ) ,T
V e e Pe=          (6) 

where P is a positive definite matrix. Note that : n
V R→R is a positive definite function by 

construction. 

If we determine a feedback controller u so that 

( ) ,T
V e e Qe= −&          (7) 

where Q is a positive definite matrix, then : n
V →& R R is a negative definite function. 

Thus, by Lyapunov stability theory [25], the error dynamics (4) is globally exponentially stable. 

Hence, the states of the master system (1) and slave system (2) are completely synchronized. 
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3.  SYSTEMS DESCRIPTION 

In this section, we give details of the hyperchaotic systems discussed in this paper. 

The hyperchaotic Xu system ([28], 2009) is described by the 4D dynamics 

1 2 1 4

2 1 1 3

3 3 1 2

4 1 3 2

( )x a x x x

x bx x x

x cx x x

x x x dx

ε

= − +

= +

= − −

= −

&

&

&

&

        (8) 

where 1 2 3 4, , ,x x x x are the states and , , , ,a b c d ε are positive constants. 

The system (8) exhibits hyperchaotic behaviour when the parameter values are chosen as 

10,   40,   2.5,   2a b c d= = = =  and 16.ε =        

Figure 1 describes the hyperchaotic attractor of the hyperchaotic Xu system (8). 

 

Figure 1.  Hyperchaotic Attractor of the Hyperchaotic Xu System 
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The hyperchaotic Lü system ([29], 2006) is described by the 4D dynamics 

  

1 2 1 4

2 1 3 2

3 1 2 3

4 1 3 4

( )x x x x

x x x x

x x x x

x x x x

α

γ

β

δ

= − +

= − +

= −

= +

&

&

&

&

        (9) 

where 
1 2 3 4, , ,x x x x are the states and , , , ,a b c d ε are positive constants. 

The system (9) exhibits hyperchaotic behaviour when the parameter values are chosen as 

36,   3,   20α β γ= = =  and  1.3.δ =        

Figure 2 describes the hyperchaotic attractor of the hyperchaotic Lü system (9). 

 

Figure 2.  Hyperchaotic Attractor of the Hyperchaotic Lü System 



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.3, June 2012 

33 

 

 

 

4. SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC XU SYSTEMS 

In this section, we apply active control method for the complete synchronization of identical 

hyperchaotic Xu systems (2009). 

As the master system, we take the hyperchaotic Xu dynamics described by 

      

1 2 1 4

2 1 1 3

3 3 1 2

4 1 3 2

( )x a x x x

x bx x x

x cx x x

x x x dx

ε

= − +

= +

= − −

= −

&

&

&

&

               (10) 

where 
1 2 3 4, , ,x x x x are the state variables and , , , ,a b c d ε are positive constants. 

As the slave system, we take the controlled hyperchaotic Xu dynamics described by 

      

1 2 1 4 1

2 1 1 3 2

3 3 1 2 3

4 1 3 2 4

( )y a y y y u

y by y y u

y cy y y u

y y y dy u

ε

= − + +

= + +

= − − +

= − +

&

&

&

&

          (11) 

where 1 2 3 4, , ,y y y y are the state variables and 1 2 3 4, , ,u u u u are the active controls. 

The synchronization error is defined as 

       1 1 1 2 2 2 3 3 3 4 4 4,  ,  ,  e y x e y x e y x e y x= − = − = − = −      (12) 

A simple calculation gives the error dynamics  

        

1 2 1 4 1

2 1 1 3 1 3 2

3 3 1 2 1 2 3

4 1 3 1 3 2 4

( )

( )

e a e e e u

e be y y x x u

e ce y y x x u

e y y x x de u

ε

= − + +

= + − +

= − − + +

= − − +

&

&

&

&

            (13) 

We consider the active nonlinear controller defined by 

           

1 2 1 4 1 1

2 1 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 1 3 1 3 2 4 4

( )

( )

u a e e e k e

u be y y x x k e

u ce y y x x k e

u y y x x de k e

ε

= − − − −

= − − − −

= + − −

= − + + −

                          (14) 

where the gains 1 2 3 4, , ,k k k k are positive constants. 
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Substitution of (14) into (13) yields the linear error dynamics 

  1 1 1 2 2 2 3 3 3 4 4 4,   ,   ,   e k e e k e e k e e k e= − = − = − = −& & & &            (15) 

Theorem 4.1. The identical hyperchaotic Xu systems (10) and (11) are globally and 

exponentially synchronized with the active nonlinear controller (14), where the gains 

,  ( 1, 2,3,4)ik i = are positive constants. 

Proof.  Consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( ) ,

2 2

T
V e e e e e e e= = + + +             (16) 

which is a positive definite function on 4.R  

Differentiating (16) along the trajectories of the error system (15), we get 

       2 2 2 2

1 1 2 2 3 3 4 4( ) ,V e k e k e k e k e= − − − −&         (17) 

which is a negative definite function on 4
R since 1 2 3 4, , ,k k k k    are positive constants. 

Thus, by Lyapunov stability theory [30], the error dynamics (15) is globally 

exponentially stable. � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method with initial time-

step 810h
−= is used to solve the two systems (10) and (11) with the active controller 

(14). We take the gains as 5ik =  for 1, 2,3, 4.i =  

The parameters of the identical hyperchaotic Xu systems (10) and (11) are selected as 

10,   40,   2.5,   2a b c d= = = =     and    16.ε =         

The initial values for the master system (10) are taken as 

       1 2 3 4(0) 5,   (0) 6,   (0) 12,   (0) 15x x x x= = − = = −  

and the initial values for the slave system (11) are taken as 

      1 2 3 4(0) 14,   (0) 8,   (0) 18,   (0) 16y y y y= − = = =  

Figure 3 shows the complete synchronization of the identical hyperchaotic Xu systems. 

Figure 4 shows the time-history of the synchronization error  1 2 3 4, , , .e e e e  
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Figure 3.  Synchronization of Identical Hyperchaotic Xu Systems 

 

Figure 4.  Time History of the Synchronization Error 1 2 3 4, , ,e e e e  
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5. SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LÜ SYSTEMS 

In this section, we apply active control method for the complete synchronization of identical 

hyperchaotic Lü systems (2006). 

As the master system, we take the hyperchaotic Lü dynamics described by 

     

1 2 1 4

2 1 3 2

3 1 2 3

4 1 3 4

( )x x x x

x x x x

x x x x

x x x x

α

γ

β

δ

= − +

= − +

= −

= +

&

&

&

&

                 (18) 

where 
1 2 3 4, , ,x x x x are the state variables and  , , ,α β γ δ are positive constants. 

As the slave system, we take the controlled hyperchaotic Lü dynamics described by 

       

1 2 1 4 1

2 1 3 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y u

y y y y u

y y y y u

α

γ

β

δ

= − + +

= − + +

= − +

= + +

&

&

&

&

          (19) 

where 1 2 3 4, , ,y y y y are the state variables and 1 2 3 4, , ,u u u u are the active controls. 

The synchronization error is defined as 

       1 1 1 2 2 2 3 3 3 4 4 4,  ,  ,  e y x e y x e y x e y x= − = − = − = −      (20) 

A simple calculation gives the error dynamics  

        

1 2 1 4 1

2 2 1 3 1 3 2

3 3 1 2 1 2 3

4 4 1 3 1 3 4

( )e e e e u

e e y y x x u

e e y y x x u

e e y y x x u

α

γ

β

δ

= − + +

= + − +

= − − + +

= + − +

&

&

&

&

            (21) 

We consider the active nonlinear controller defined by 

           

1 2 1 4 1 1

2 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 4 1 3 1 3 2 4 4

( )u e e e k e

u e y y x x k e

u e y y x x k e

u e y y x x de k e

α

γ

β

δ

= − − − −

= − + − −

= − + −

= − − + + −

                          (22) 

where the gains 1 2 3 4, , ,k k k k are positive constants. 
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Substitution of (22) into (21) yields the linear error dynamics 

  1 1 1 2 2 2 3 3 3 4 4 4,   ,   ,   e k e e k e e k e e k e= − = − = − = −& & & &            (23) 

Theorem 5.1. The identical hyperchaotic Lü systems (18) and (19) are globally and 

exponentially synchronized with the active nonlinear controller (22), where the gains 

,  ( 1, 2,3, 4)ik i = are positive constants. 

Proof.  Consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( ) ,

2 2

T
V e e e e e e e= = + + +             (24) 

which is a positive definite function on 4.R  

Differentiating (24) along the trajectories of the error system (23), we get 

       2 2 2 2

1 1 2 2 3 3 4 4( ) ,V e k e k e k e k e= − − − −&         (25) 

which is a negative definite function on 4
R since 1 2 3 4, , ,k k k k    are positive constants. 

Thus, by Lyapunov stability theory [30], the error dynamics (23) is globally 

exponentially stable. � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method with initial time-

step 810h
−= is used to solve the two systems (18) and (19) with the active controller 

(22). We take the gains as 5ik =  for 1, 2,3, 4.i =  

The parameters of the identical hyperchaotic Lü systems (18) and (19) are selected as 

36,   3,   20α β γ= = =     and    1.3.δ =         

The initial values for the master system (18) are taken as 

       1 2 3 4(0) 8,   (0) 26,   (0) 15,   (0) 9x x x x= = = − = −  

and the initial values for the slave system (19) are taken as 

      1 2 3 4(0) 4,   (0) 18,   (0) 8,   (0) 19y y y y= − = = − =  

Figure 5 shows the complete synchronization of the identical hyperchaotic Lü systems. 

Figure 6 shows the time-history of the synchronization error  1 2 3 4, , , .e e e e  
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Figure 5.  Synchronization of Identical Hyperchaotic Lü Systems 

 

Figure 6.  Time History of the Synchronization Error 1 2 3 4, , ,e e e e  
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6. SYNCHRONIZATION OF NON-IDENTICAL HYPERCHAOTIC XU AND 

HYPERCHAOTIC LÜ SYSTEMS 

In this section, we consider the global chaos synchronization of non-identical hyperchaotic Xu 

system ([28], 2009) and hyperchaotic Lü system ([29], 2006). 

As the master system, we take the hyperchaotic Xu dynamics described by 

     

1 2 1 4

2 1 1 3

3 3 1 2

4 1 3 2

( )x a x x x

x bx x x

x cx x x

x x x dx

ε

= − +

= +

= − −

= −

&

&

&

&

                 (26) 

where 
1 2 3 4, , ,x x x x are the state variables and  , , ,a b c d are positive constants. 

As the slave system, we take the controlled hyperchaotic Lü dynamics described by 

       

1 2 1 4 1

2 1 3 2 2

3 1 2 3 3

4 1 3 4 4

( )y y y y u

y y y y u

y y y y u

y y y y u

α

γ

β

δ

= − + +

= − + +

= − +

= + +

&

&

&

&

          (27) 

where 1 2 3 4, , ,y y y y are the state variables, , , ,α β γ δ  are positive constants and 

1 2 3 4, , ,u u u u are the active controls. 

The synchronization error is defined as 

       1 1 1 2 2 2 3 3 3 4 4 4,  ,  ,  e y x e y x e y x e y x= − = − = − = −      (28) 

A simple calculation gives the error dynamics  

        

1 2 1 2 1 4 1

2 2 1 1 3 1 3 2

3 3 3 1 2 1 2 3

4 4 2 1 3 1 3 4

( ) ( )( )

( )

e e e a x x e u

e y bx y y x x u

e e c x y y x x u

e y dx y y x x u

α α

γ ε

β β

δ

= − + − − − +

= − − − +

= − + − + + +

= + + − +

&

&

&

&

             (29) 

We consider the active nonlinear controller defined by 

            

1 2 1 2 1 4 1 1

2 2 1 1 3 1 3 2 2

3 3 3 1 2 1 2 3 3

4 4 2 1 3 1 3 4 4

( ) ( )( )

( )

u e e a x x e k e

u y bx y y x x k e

u e c x y y x x k e

u y dx y y x x k e

α α

γ ε

β β

δ

= − − − − − + −

= − + + + −

= − − − − −

= − − − + −

                        (30) 

where the gains 1 2 3 4, , ,k k k k are positive constants. 
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Substitution of (30) into (29) yields the linear error dynamics 

  1 1 1 2 2 2 3 3 3 4 4 4,   ,   ,   e k e e k e e k e e k e= − = − = − = −& & & &            (31) 

Theorem 6.1. The hyperchaotic Xu system (26) and hyperchaotic Lü system (26) are 

globally and exponentially synchronized with the active nonlinear controller (30), 

where the gains ,  ( 1, 2,3, 4)ik i = are positive constants. 

Proof.  Consider the quadratic Lyapunov function defined by 

       ( )2 2 2 2

1 2 3 4

1 1
( ) ,

2 2

T
V e e e e e e e= = + + +             (32) 

which is a positive definite function on 4.R  

Differentiating (24) along the trajectories of the error system (23), we get 

       2 2 2 2

1 1 2 2 3 3 4 4( ) ,V e k e k e k e k e= − − − −&          (33) 

which is a negative definite function on 4
R since 1 2 3 4, , ,k k k k    are positive constants. 

Thus, by Lyapunov stability theory [30], the error dynamics (31) is globally 

exponentially stable. � 

Numerical Simulations 

For the numerical simulations, the fourth order Runge-Kutta method with initial time-

step 810h
−= is used to solve the two systems (26) and (27) with the active controller 

(22). We take the gains as 5ik =  for 1, 2,3, 4.i =  

The parameters of the hyperchaotic Xu and hyperchaotic Lü systems are selected as 

10,  40,  2.5,  2,  16,  36,   3,   20,  1.3a b c d ε α β γ δ= = = = = = = = =       

The initial values for the master system (26) are taken as 

        1 2 3 4(0) 12,   (0) 16,   (0) 25,   (0) 19x x x x= − = = = −  

and the initial values for the slave system (27) are taken as 

       1 2 3 4(0) 24,   (0) 8,   (0) 14,   (0) 6y y y y= = = − =  

Figure 7 shows the complete synchronization of the hyperchaotic Xu and hyperchaotic Lü 

systems. 

Figure 8 shows the time-history of the synchronization error  1 2 3 4, , , .e e e e  
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Figure 7.  Synchronization of Hyperchaotic Xu and Hyperchaotic Lü Systems 

 

Figure 8.  Time History of the Synchronization Error 1 2 3 4, , ,e e e e  



International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.3, June 2012 

42 

 

 

 

7. CONCLUSIONS 

Using the active control method, we have derived new results for the complete synchronization 

of the identical hyperchaotic Xu systems (2009), identical hyperchaotic Lü systems (2006) and 

non-identical hyperchaotic Xu and hyperchaotic Lü systems. The complete synchronization 

results derived in this paper have been proved using Lyapunov stability theory.   Numerical 

simulation results have been shown to demonstrate the complete synchronization results derived 

in this paper.  
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