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 ABSTRACT 
 

Methods for super-resolution can be broadly classified into two families of methods: (i) The classical 

multi-image super-resolution (combining images obtained at subpixel misalignments), and (ii) Example-

Based super-resolution (learning correspondence between low and high resolution image patches from a 

database). In this paper we propose a unified framework for combining these two families of methods. We 

further show how this combined approach can be applied to obtain super resolution from as little as a 

single image (with no database or prior examples). Our approach is based on the observation that patches 

in a natural image tend to redundantly recur many times inside the image, both within the same scale, as 

well as across different scales. Recurrence of patches within the same image scale (at sub pixel 

misalignments) gives rise to the classical super-resolution, whereas recurrence of patches across different 

scales of the same image gives rise to example-based super-resolution. Our approach attempts to recover 

at each pixel its best possible resolution increase based on its patch redundancy within and across scales. 
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1. INTRODUCTION  

 

The goal of single image super-resolution is to estimate a hi-resolution (HR) image from a low-

resolution (LR) input. There are mainly three categories of approach for this problem: 

interpolation based methods, reconstruction based methods, and learning based methods. Main 

goal of Super-Resolution (SR) methods is to recover a high resolution image from one or more 

low resolution input images. Methods for SR can be broadly classified into two families of 

methods: (i) The classical multi-image super-resolution, and (ii) Example-Based super-

resolution. In the classical multi-image SR (e.g., [12, 5, 8] to name just a few) a set of low-

resolution images of the same scene are taken (at sub pixel misalignments). Each low resolution 

image imposes a set of linear constraints on the unknown high resolution intensity values.If 

enough low-resolution images are available (at sub pixel shifts), then the set of equations 

becomes determined and can be solved to recover the high-resolution image. Practically, 

however, this approach is numerically limited only to small increases in resolution [3, 14] (by 

factors smaller than 2). These limitations have led to the development of “Example-Based 

Super-Resolution” also termed “image hallucination” (introduced by [10, 11, 2] and extended 

later by others e.g. [13]). In example-based SR, correspondences between low and high 

resolution image patches are learned from a database of low and high resolution image pairs 

(usually with a relative scale factor of 2), and then applied to a new Low-resolution image to 

recover its most likely high-resolution version. Higher SR factors have often been obtained by 

repeated applications of this process. Example-based SR has been shown to exceed the limits of 

classical SR. However, unlike classical SR, the high resolution details reconstructed 
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(“hallucinated”) by example-based SR are not guaranteed to provide the true (unknown) high 

resolution details. 

Sophisticated methods for image up-scaling based on learning edge models have also been 

proposed (e.g., [9, 19]). The goal of these methods is to magnify (up-scale) an image while 

maintaining the sharpness of the edges and the details in the image. In contrast, in SR (example 

based as well as classical) the goal is to recover new missing high-resolution details that are not 

explicitly found in any individual low-resolution image (details beyond the Nyquist frequency of 

the low-resolution image). In the classical SR, this high-frequency information is assumed to be 

split across multiple low-resolution images, implicitly found there in aliased form. In example-

based SR, this missing high-resolution information is assumed to be available in the high-

resolution database patches, and learned from the low-res/high-res pairs of examples in the 

database. In this paper we propose a framework to combine the power of both SR approaches 

(Classical SR and Example-based SR), and show how this combined framework can be applied 

to obtain SR from as little as a single low-resolution image, without any additional external 

information. Our approach is based on an observation (justified statistically in the paper) that 

patches in a single natural image tend to redundantly recur many times inside the image, both 

within the same scale, as well as across different scales. Recurrence of patches within the same 

image scale (at sub pixel misalignments) forms the basis for applying the classical SR 

constraints to information from a single image. Recurrence of patches across different (coarser) 

image scales implicitly provides examples of low-res/high-res pairs of patches,   

Thus giving rise to example-based super-resolution from a single image (without any external 

database or any prior examples). Moreover, we show how these two different approaches to SR 

can be combined in a single unified computational framework. Patch repetitions within an image 

were previously exploited for noise-cleaning using ‘Non-Local Means’[4], as well as 

regularization prior for inverse problems [15]. A related SR approach was proposed by [16] for 

obtaining higher-resolution video frames, by applying the classical SR constraints to similar 

patches across consecutive video frames and within a small local spatial neighborhood. Their 

algorithm relied on having multiple image frames, and did not exploit the power of patch 

redundancy across different image scales. The power of patch repetitions across scales (although 

restricted to a fixed scale-factor of 2) was previously alluded to in the papers [10, 18and 6]. In 

contrast to all the above, we propose a single unified approach which combines the classical SR 

constraints with the example-based constraints, while exploiting (for each pixel) patch 

redundancies across all image scales and at varying scale gaps, thus obtaining adaptive SR with 

as little as a single low resolution image. The rest of this paper is organized as follows: In Sec. 2 

we statistically examine the observation that small patches in a single natural image tend to recur 

many times within and across scales of the same image. Sec. 3 presents our unified SR 

framework (unifying classical SR and example-based SR), and shows how it can be applied to as 

little as a single image. Results are provided in Sec. 4. 
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Figure 1: Patch recurrence within and across scales of a single image. Source patches in I are 

found in different locations and in other image scales of I (solid-marked squares). The high-res 

corresponding parent patches (dashed-marked squares) provide an indication of what the 

(unknown) high-res parents of the source patches might look like. 

2.  Patch Redundancy 

Natural images tend to contain repetitive visual content. In particular, small (e.g., 5 X 5) image patches in 

a natural image tend to redundantly recur many times inside the image, both within the same scale, as 

well as across different scales. This observation forms the basis for our single image super-

resolution framework as well as for other algorithms in computer vision (e.g., image completion 

[7], image re-targeting [17], image denoising [4], etc.) In this section we try to empirically 

quantify this notion of patch redundancy (within a single image). Fig.1 schematically illustrates 

what we mean by “patch recurrence” within and across scales of a single image. 

 

                                                                                  
 
                          Image scales 

(a) All images patches          (b) High variance patches only 
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Figure 2: Average patch recurrence within and across scales of a single image (averaged over 

hundreds of natural images – see text for more details). (a) The percent of image patches for 

which there exist n or more similar patches (n = 1; 2; 3; :::; 9), measured at several different 

image scales. (b) The same statistics, but this time measured only for image patches with the 

highest intensity variances (top 25%). These patches correspond to patches of edges, corners, 

and texture. 

An input patch “recurs” in another scale if it appears ‘as is’ (without blurring, 

subsampling, or scaling down) in a Scaled-down version of the image. Having found a similar 

patch in a smaller image scale, we can extract its high resolution parent from the input image 

(see Fig. 1). Each low-resolution patch with its high-res parent form a “low res/higher pair of 

patches” (marked by arrows in the figure). The high-res parent of a found low-res patch provides 

an indication to what the (unknown) high-res parent of the source patch might look like. This 

forms the basis for Example- Based SR, even without an external database. For this approach to 

be effective, however, enough such recurring patches must exist in different scales of the same 

image. The patches displayed in Fig. 1 were chosen large for illustration purpose, and were 

displayed on clear repetitive structure in the image. However, when much smaller image patches 

are used, e.g., 5 X 5, such patch repetitions occur abundantly within and across image scales, 

even when we do not visually perceive any obvious repetitive structure in the image. This is due 

to the fact that very small patches often contain only an edge, a corner, etc. such patches are 

found abundantly in multiple image scales of almost any natural image. Moreover, due to the 

perspective projection of cameras, images tend to contain scene-specific information in 

diminishing sizes (diminishing toward the horizon), thus recurring in multiple scales of the same 

image. 

We statistically tested this observation on the Berkeley Segmentation Database1 (Fig. 

2). More specifically, we tested the hypothesis that small 5 � 5 patches in a single natural gray 

scale image, when removing their DC (their average gray scale), tend to recur many times within 

and across scales of the same image. The test was performed as follows: Each image I in the 

Berkeley database was first converted to a gray scale image. We then generated from I a cascade 

of images of decreasing resolutions fIsg, scaled (down) by scale factors of 1:25
s
 for s = 0,-1,....,-

6 (I0 = I). The size of the smallest resolution image was 1.25
-6

 = 0.26 of the size of the source 

image I (in each dimension). Each 5x5 patch in the source image I was compared against the 5x5 

patches in all the images {Is} (without their DC), measuring how many similar2 patches it has in 

each image scale. This intra-image patch statistics was computed separately for each image. The 

resulting independent statistics were then averaged across all the images in the database (300 

images), and are shown in Fig. 2a. Note that, on the average, more than 90% of the patches in an 

image have 9 or more other similar patches in the same image at the original image scale 

(‘within scale’). Moreover, more than 80% of the input patches have 9 or more similar patches 

in 0.41 = 1.25-
4 

of the input scale, and 70% of them have 9 or more similar patches in 0.26 = 

1.25
-6 

of the input scale. 

Recurrence of patches forms the basis for our single image super-resolution approach. 

Since the impact of super-resolution is expressed mostly in highly detailed image regions (edges, 

corners, texture, etc.); we wish to eliminate the effect of uniform patches on the above statistics. 

Therefore, we repeated the same experiment using only 25% of the source patches with the 

highest intensity variance. This excludes the uniform and low-frequency patches, maintaining 

mostly patches of edges, corners, and texture. The resulting graphs are displayed in Fig. 2b. 

Although there is a slight drop in patch recurrence, the basic observation still holds even for the 

high-frequency patches: Most of them recur several times within and across scales of the same 
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image (more than 80% of the patches recur 9 or more times in the original image scale; more 

than 70% recur 9 or more times at 0.41 of the input scale, and 60% of them recur 9 or more 

times in 0.26 of the input scale.) 

 In principle, the lowest image scale in which we can still find recurrence of a source 

patch, provides an indication of its maximal potential resolution increase using our approach 

(when the only available information is the image itself). This is pixel-dependent, and can be 

estimated at every pixel in the image. 

 

 

 

 
 

(a) Classical Multi-Image SR                 (b) Single-Image Multi-Patch SR 

Figure 3: (a) Low-res pixels in multiple low-res images impose multiple linear constraints on the 

high-res unknowns within the support of their blur kernels. (b) Recurring patches within a single 

low-res image can be regarded as if extracted from multiple different low-res images of the same 

high resolution scene, thus inducing multiple linear constraints on the high-res unknowns. 

3. SUPER-RESOLUTION – A UNIFIED FRAMEWORK 

Recurrence of patches within the same image scale forms the basis for applying the 

Classical SR constraints to information from a single image (Sec. 3.1). Recurrence of patches 

across different scales gives rise to Example- Based SR from a single image, with no prior 

examples (Sec. 3.2). Moreover, these two different approaches to SR can be combined into a 

single unified computational framework. 

 

 3.1. Patch redundancy 

In the classical Multi-Image Super-resolution (e.g., [12, 5, 8]), a set of low-resolution 

images {L1,…, Ln} of the same scene (at sub pixel misalignments) is given, and the goal is to 

recover their mutual high-resolution source image H. Each low resolution image Lj (j = 1,…, n) 

is assumed to have been generated from H by a blur and subsampling process: Lj =(H * Bj)↓sj , 

where ↓ denotes a subsampling operation, sj is the scale reduction factor (the subsampling rate) 

between H and Lj , and Bj(q) is the corresponding blur kernel (the Point Spread Function – PSF), 

represented in the high-resolution coordinate system – see Fig. 3a. Thus, each low-resolution 

pixel p = (x, y) in each low-resolution image Lj induces one linear constraint on the unknown 

high-resolution intensity values within the local neighborhood around its corresponding high-

resolution pixel q � H (the size of the neighborhood is determined by the support of the blur 

kernel Bj ): 
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                                   Lj ( p)=(H *Bj) (q) = ∑qi�Support(Bj ) H(qi) Bj(qi -q)                                       (1) 

where {H(qi)} are the unknown high-resolution intensity value. If enough low-resolution images 

are available (at sub-pixel shifts), then the number of independent equations exceeds the number 

of unknowns. Such super-resolution schemes have been shown to provide reasonably stable 

super resolution results up to a factor of ~ 2 (a limit of 1.6 is shown in [14] when noise removal 

and registration are not good enough). In principle, when there is only a single low-resolution 

image L = (H *B) ↓s, the problem of recovering H becomes under-determined, as the number of 

constraints induced by L is smaller than the number of unknowns in H. Nevertheless, as 

observed in Sec. 2, there is plenty of patch redundancy within a single image L. Let p be a pixel 

in L, and P be its surrounding patch (e.g., 5 X 5), then there exist multiple similar patches P1,…, 

Pk in L (inevitably, at sub pixel shifts). These patches can be treated as if taken from k different 

low-resolution images of the same high resolution “scene”, thus inducing k times more linear 

constraints (Eq. (1)) on the high-resolution intensities of pixels within the neighborhood of q � 

H (see Fig. 3b). For increased numerical stability, each equation induced by a patch Pi is 

globally scaled by the degree of similarity of Pi to its source patch P. Thus, patches of higher 

similarity to P will have a stronger influence on the recovered high-resolution pixel values than 

patches of lower similarity. These ideas can be translated to the following simple algorithm: For 

each pixel in L find its k nearest patch neighbors in the same image L (e.g., using an 

Approximate Nearest Neighbor algorithm [1]; we typically use k=9) and compute their sub pixel 

alignment (at 1 s pixel shifts, where s is the scale factor.) Assuming sufficient neighbors are 

found, this process results in a determined set of linear equations on the unknown pixel values in 

H. Globally scale each equation by its reliability (determined by its patch similarity score), and 

solve the linear set of equations to obtain H. An example of such a result can be found in Fig. 5c. 

 3.2. Cross scale patch redundancy 

The above process allows to extend the applicability of the classical Super-Resolution 

(SR) to a single image. However, even if we disregard additional difficulties which arise in the 

single image case (e.g., the limited accuracy of our patch registration; image patches with 

insufficient matches), this process still suffers from the same inherent limitations of the classical 

multi-image SR (see [3, 14]). 

The limitations of the classical SR have led to the development of “Example-Based Super 
Resolution” (e.g., [11, 2]). In example-based SR, correspondences between low and high 
resolution image patches are learned from a database of low and high resolution image pairs, and 
then applied to a new low-resolution image to recover its most likely high-resolution version. 
Example-based SR has been shown to exceed the limits of classical SR. In this section we show 
how similar ideas can be exploited within our single image SR framework, without any external 
database or any prior example images. The low-res/high-res patch correspondences can be 
learned directly from the image itself, by employing patch repetitions across multiple image 
scales. Let B be the blur kernel (camera PSF) relating the low res input image L with the 
unknown high-res image H:   L =(H * B)↓s. Let I0, I1, in denote a cascade of unknown 
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Figure 4: Combining Example-based SR constraints with Classical SR constraints in a single 

unified computational framework. 
 

images of increasing resolutions (scales) ranging from the low-res L to the target high-res H 
(I0 = L and In = H), with a corresponding cascade of blur functions B0, B1,…., Bn (where Bn = B 
is the PSF relating H to L, and B0 is the � function), such that every Il satisfies:  L = (Il * Bl) ↓sl 
(sl denotes the relative scaling factor) .The resulting cascade of images is illustrated in Fig. 4 (the 
purple images). Note that although the images {Il}

n
l =0 are unknown, the cascade of blur kernels 

{Bl}
n
l =0 can be assumed to be known. When the PSF B is unknown (which is often the case), then 

B can be approximated with a gaussian, in which case Bl = B (sl) are simply a cascade of 
gaussians whose variances are determined by sl. Moreover, when the scale factors sl are chosen 
such that sl = α

l
 for a fixed α, then the following constraint will also hold for all {Il}

n
l =1: Il = (H 

*Bn-l) ↓sn-l . (The uniform scale factor guarantees that if two images in this cascade are found m 
levels apart (e.g. Il and Il+m), they will be related by the same blur kernel Bm, regardless of l.) 

Let L = I0; I-1,…., I-m denote a cascade of images of  decreasing resolutions (scales) obtained 
from L using the same blur functions {Bl}: I-l = (L * Bl) ↓sl (l = 0,…,m). Note that unlike the 
high-res image cascade, these low-resolution images are known (computed from L). The resulting 
cascade of images is also illustrated in Fig. 4 (the blue images). Let Pl(p) denote a patch in the 
image Il at pixel location p. For any pixel in the input image p�L (L = I0) and its surrounding 
patch P0(p), we can search for similar patches within the cascade of low resolution images {I-l}, l 
> 0 (e.g., using Approximate Nearest Neighbor search [1]). Let P-l(~p) be such a matching patch 
found in the low-res image I-l. Then its higher-res ‘parent’ patch, Q0(sl. ~p), can be extracted from 
the input image I0 = L (or from any intermediate resolution level between I�l and L, if desired). 

 This provides a low-res/high-res patch pair [P;Q], which provides a prior on the appearance 
of the high-res parent of the low-res input patch P0(p), namely patch Ql(sl.p) in the high-res 
unknown image Il (or in any intermediate resolution level between L and Il, if desired). The basic 
step is therefore as follows (schematically illustrated in Fig. 4): 
 P0(p) 

findNN
 P-l(~p) 

parent
  Q0(sl . ~p) 

copy
  Ql(sl .p) 

 

3.3. Classical and Example Based SR 
The process described in Sec 3.2, when repeated for all pixels in L, will yield a large 

collection of (possibly overlapping) suggested high-res patches {Ql} at the range of resolution 

levels l = 1,...n between L and H. Each such ‘learned’ high-res patch Q1 induces linear 

constraints on the unknown target resolution H. These constraints are in the form of the classical 

SR constraints of Eq. (1), but with a more compactly supported blur kernel than B = PSF. These 

constraints are induced by a smaller blur kernel Bn
-l
 which needs to compensate only for the 

residual gap in scale (n
-l
) between the resolution level l of the  
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(a) Input(b) Bicubic interpolation (X3).(c) Unified single-image SR (x3 (d) Ground truth image. 

Figure 5: Comparison: The input image (a) was down-scaled (blurred and subsampled) by a 

factor of 3 from the ground-truth image (d). (b) shows bicubic interpolation of the input image 

(a) and (c) is the result of our unified single-image SR algorithm. 

 

Note the bottom part of the image. The lines of letters have been recovered quite well 

due to the existence of cross-scale patch recurrence in those image areas. However, the small 

digits on the left margin of the image could not be recovered, since their patches recurrence 

occurs only within the same (input) scale. Thus their resulting unified SR constraints reduce to 

the “classical” SR constraints (imposed on multiple patches within the input image). The 

resulting resolution of the digits is better than the bicubic interpolation, but suffers from the 

inherent limits of classical SR [3, 14]. ‘Learned’ patch and the final resolution level n of the 

target high-res H. This is illustrated in Fig. 4. The closer the learned patches are to the target 

resolution H, the better conditioned the resulting set of equations is (since the blur kernel 

gradually approaches the � function, and accordingly, the coefficient matrix gradually 

approaches the identity matrix). Note that the constraints in Eq. 1 are of the same form, with l = 

0 and B = PSF. As in Sec. 3.1, each such linear constraint is globally scaled by its reliability 

(determined by its patch similarity score). Note that if, for a particular pixel, the only similar 

patches found are within the input scale L, then this scheme reduces to the ‘classical’ single-

image SR of Sec. 3.1 at that pixel; and if no similar patches are found, this scheme reduces to 

simple DE blurring at that pixel. Thus, the above scheme guarantees to provide the best possible 

resolution increase at each pixel (according to its patch redundancy within and across scales of 

L), but never worse than simple up scaling (interpolation) of L.  

3.4 Solving Coarse-to-Fine:  

In most of our experiments we used the constant scale factor α = 1.25 (namely, sl = 

1.25l). When integer magnification factors were desired this value was adjusted (e.g. for factors 

2 and 4 we used α= 2(1=3)). In our current implementation the above set of linear equations was 

not solved at once to produce H, but rather gradually, coarse-to-fine, from the lowest to the 

highest resolution. When solving the equations for image Il+1, we employed not only the low-

res/high-res patch correspondences found in the input image L, but also all newly learned patch 

correspondences from the newly recovered high-res images so far: I0,.... Il. This process is 

repeated until the resolution level of H is reached. We found this gradual scheme to provide 

numerically more stable results. To further guarantee consistency of the recovered higher results, 

when a new high-res image Il is obtained, it is projected onto the low-res image L (by blurring 

and subsampling) and compared to L. Large differences indicate errors in the corresponding 

high-res pixels, and are thus ‘back-projected’ [12] onto Il to correct those high-res pixels. This 

process verifies that each newly recovered Il is consistent with the input low resolution image. 
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4. Conclusion 

Our experiments show that the main improvement in resolution comes from the Example-Based 

SR component in our combined framework. However, the Classical-SR component (apart from 

providing small resolution increase - see Fig. 5c), plays a central role in preventing the Example-

Based SR component from hallucinating erroneous high-res details (a problem alluded to by 

[11]). Our combined Classical + Example-Based SR framework can be equivalently posed as 

optimizing an objective function with a ‘data-term’ and two types of ‘prior-terms’: The data-

term stems from the blur + sub sample relation (of the Classical SR) between the high-res image 

H and low-res image L. The Example-Based SR constraints form one type of prior, whereas the 

use of multiple patches in the Classical SR constraints form another type of prior (at sub-pixel 

accuracy). The high-res image H which optimizes this objective function must satisfy both the 

Example-Based SR and the Classical SR constrains simultaneously, which is the result of our 

combined framework. Although presented here in the context of single-image SR, the proposed 

unified framework (classical + example based) can be applied also in other contexts of SR. It can 

extend classical SR of multiple low-res images of the same scene by adding the example-based 

cross-scale constraints. Similarly, existing example-based SR methods which work with an 

external database can be extended by adding our unified SR constraints. 

4.1 Experimental Results 

Fig. 5 show results of our SR method. Full scale images, comparisons with other methods when 

working with color images, the image is first transformed from RGB to Y IQ. The SR algorithm 

is then applied to the Y (intensity) channel. The I and Q chromatic channels (which are 

characterized by low frequency information) are only interpolated (bi-cubic). The three channels 

are then combined to form our SR result. Our results are comparable, even though we do not use 

any external database of low-res/higher pairs of patches [11, 13], nor a parametric learned edge 

model [9].  Fig. 5 displays an example of the different obtainable resolution improvements by 

using only within-scale classical SR constraints (Sec. 3.1), versus adding also cross scale 

example-based constraints (Sec. 3.3). 
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