HOSOYA POLYNOMIAL, WIENER AND HYPERWIENER INDICES OF SOME REGULAR GRAPHS

Mohammad Reza Farahani
Department of Applied Mathematics, Iran University of Science and Technology (IUST)
Narmak, Tehran, Iran

Abstract

Let G be a graph. The distance $d(u, v)$ between two vertices u and v of G is equal to the length of a shortest path that connects u and v. The Wiener index $W(G)$ is the sum of all distances between vertices of G, whereas the hyper-Wiener index $W W(G)$ is defined as $W W(G)=\sum_{(\mathbb{U v)} \mathrm{VV}(\mathrm{G})}\left(d(v, u)+d(v, u)^{2}\right)$. Also, the Hosoya polynomial was introduced by H. Hosoya and define $H(G, x)=\sum_{(\mathrm{u}, \mathrm{v}) \in \mathrm{V}(\mathrm{G})} x^{d(v, u)}$. In this paper, the Hosoya polynomial, Wiener index and Hyper-Wiener index of some regular graphs are determined.

KEYWORDS

Network Protocols, Topological distance, Hosoya polynomial, Wiener Index, Hyper-Wiener index, Regular graph, Harary graph.

1. INTRODUCTION

Let $G=(V ; E)$ be a simple connected graph. The sets of vertices and edges of G are denoted by $V=V(G)$ and $E=E(G)$, respectively. The distance between vertices u and v of G, denoted by $d(u, v)$, is the number of edges in a shortest path connecting them. An edge $e=u v$ of graph G is joined between two vertices u and $v(d(u, v)=1)$. The number of vertex pairs at unit distance equals the number of edges. Also, the topological diameter $D(G)$ is the longest topological distance in a graph G.

A topological index of a graph is a number related to that graph which is invariant under graph automorphism. The Wiener index $W(G)$ is the oldest topological indices, (based structure descriptors) [8], which have many applications and mathematical properties and defined by Harold Wiener in 1947 as:

$$
\begin{equation*}
W(G)=\frac{1}{2} \sum_{\mathrm{v} \in \mathrm{~V}} \sum_{(\mathrm{G})} \sum_{u \in \mathrm{~V}(\mathrm{G})} d(v, u) \tag{1.1}
\end{equation*}
$$

Also, for this topological index, there is Hosoya Polynomial. The Hosoya polynomial was introduced by H. Hosoya, in 1988 [3] and define as follow:

$$
\begin{equation*}
H(G, x)=\frac{1}{2} \sum_{\mathrm{v} \in \mathrm{~V}(\mathrm{G}) u \in \mathrm{~V}(\mathrm{G})} \sum^{d(v, u)} \tag{1.2}
\end{equation*}
$$

The Hosoya polynomial and Wiener index of some graphs computed [1, 2-4, 5]. Another topological index of graph (based structure descriptor) that was conceived somewhat later is the hyper-Wiener index that introduced by Milan Randić in 1993 [6] as

$$
\begin{align*}
& W W(G)=\frac{1}{2} \sum_{v \in \mathrm{~V}} \sum_{(\mathrm{G})} \sum_{u \in \mathrm{~V}(\mathrm{G})}\left(d(v, u)+d(v, u)^{2}\right) \tag{1.3}\\
& =\frac{1}{2} W(\mathrm{G})+\frac{1}{2} \sum_{\mathrm{v} \in \mathrm{~V}(\mathrm{G})} \sum_{u \in \mathrm{~V}(\mathrm{G})} d(v, u)^{2} \tag{1.4}
\end{align*}
$$

In this paper, we obtained a closed formula of the Hosoya polynomial, Wiener and Hyper-Wiener indices for an interesting regular graph that called Harary graph. The general form of the Harary graph $H_{2 m, n}$ is defined as follows:

Definition 1.1 [7]. Let m and n be two positive integer numbers, then the Harary graph $H_{2 m, n}$ is constructed as follows:

It has vertices $1,2, \ldots, n-1, n$ and two vertices i and j are joined if $i-m \leq j \leq i+m$ (where addition is taken modulo n).

Figure 1. The Harary graph $H_{6,10}$.

2. Main Results

In this section we compute the Hosoya polynomial, Wiener index and hyper-Wiener index of the Harary graph $H_{2 m, n}$.

Theorem 2.1. Consider the Harary graph $H_{2 m, n}$ for all positive integer number m and n. Then,

- The Hosoya polynomial of $H_{2 m, n}$ for n odd is

$$
H_{2 m, n}=\sum_{d=1}^{[n / 2 m]} m n x^{d}+n([n / 2]-m \times[n / 2 m]) x^{[n / 2 m]+1}
$$

- The Hosoya polynomial of $H_{2 m, n}$ for n even $(=2 q)$ is

$$
H_{2 m, 2 q}=\sum_{d=1}^{[q / m]} 2 q m x^{d}+2 q^{2}-2 q m[q / m]-q \cdot x^{[q / m]+1}
$$

Proof. Let H be the Harary graph $H_{2 m, n}$ (Figure 1). The number of vertices in this graph is equal to $\left|V\left(H_{2 m, n}\right)\right|=n(\forall m, n \in \square)$. Also, two vertices $v_{i}, v_{j} \in V\left(H_{2 m, n}\right)$ are adjacent if and only if $|i-j| \leq m$, then $d\left(v_{i}, v_{j}\right)=l$ thus the number of edges of this regular graph is $\left|E\left(H_{2 m, n}\right)\right|=\frac{n(2 m)}{2}=m n$.
It is obvious that for all graph $G, H(G, 1)=\sum_{i=1}^{d(G)} d(G, i)=\binom{n}{2}=\frac{n(n-1)}{2}$. On the other hand from the structure of $H_{2 m, n}$ (Figure 1), we see that all vertices of $H_{2 m, n}$ have similar geometrical and topological conditions then the number of path as distance i in $H_{2 m, n}\left(d\left(H_{2 m, n}, i\right)\right)$ is a multiple of the number of vertices (n). In other words, any vertex $v \in V\left(H_{2 m, n}\right)$ is an endpoint of $d\left(H_{2 m, n}, i\right) / n$ paths as distance i in $H_{2 m, n}\left(=d_{v}\left(H_{2 m, n}, i\right)\right)$. For example $\forall v \in V\left(H_{2 m, n}\right)$, there are $2 m=d_{v}\left(H_{2 m, n}, l\right)$ paths as distance 1 (or all edges incident to v) in $H_{2 m, n}$. From Figure 1, one can see that $\forall i=1,2, \ldots, n \quad$ and $\quad v_{i}, v_{i+m} \in V\left(H_{2 m, n}\right), \quad d\left(v_{i}, v_{i \pm m+j}\right)=2 \quad(j=\{1,2, \ldots, m\}) \quad$ because $\quad v_{i} v_{i \pm m}$, $v_{i \pm m} v_{i \pm m+l} \in E\left(H_{2 m, n}\right)$ and $d\left(v_{i}, v_{i \pm m}\right)=d\left(v_{i \pm m}, v_{i \pm m+l}\right)=1$. Obviously $d_{v i}\left(H_{2 m, n}, 2\right)=2 m$

Now, since $\forall i \in\{1,2, \ldots, n\}$ and $v_{i}, v_{i+m} \in V\left(H_{2 m, n}\right), d\left(v_{i}, v_{i \pm m}\right)=d\left(v_{i \pm m}, v_{i \pm 2 m}\right)=d\left(v_{i \pm 2 m}, v_{i \pm 3 m}\right)=\ldots=d\left(v_{i \pm k-}\right.$ $\left.{ }_{1) m}, v_{i \pm k m}\right)=1$ such that $k \leq[n / 2 m]$. Thus $\forall d=1, \ldots, k d\left(v_{i}, v_{i \pm d m}\right)=d$ and obviously $d\left(v_{i}, v_{i \pm d m+j}\right)=d+1$ $(j=1,2, \ldots, m-1)$. By these mentions, one can see that for an arbitrary vertex v_{i} the diameter $D\left(H_{2 m, n}\right)$ of this Harary graph is $d\left(v_{i}, v_{i+[n / 2]}\right)=[n / 2 m]+1$. Also the distance between vertices v_{i} and $v_{i \pm[n / 2 r] m+j)}$ is equal to $D\left(H_{2 m, n}\right)$ for all $j=1,2, \ldots,[n / 2]$. It's easy to see that if n be odd then $\forall v_{i} \in V\left(H_{2 m, n}\right), d_{v i}(H,[n / 2 m]+1)=|[n / 2]-m \times[n / 2 m]|$, else n be even then $d(H, d(H))=\frac{n}{2}\left(\mathrm{I}\left[\frac{n}{2}\right]^{-}\right.$ $m\left[\frac{n}{2 m}\right]^{1-1) .}$

Now by using the definition of Hosoya polynomial (equation 2), we have

$$
\begin{aligned}
& \begin{aligned}
H\left(H_{2 m, n}, x\right)= & \sum_{\{u, v\} \in V\left(H_{2 m, n}\right)} x^{d(v, u)} \\
& =\sum_{i, j=1}^{n} x^{d\left(v_{i}, v_{j}\right)} \\
& =\sum_{i=1}^{n} \sum_{j=0}^{m-1} \sum_{k=0}^{\left[\frac{n}{2 m}\right]} x^{d\left(v_{i}, v_{i \pm k+j}\right)} \\
& =m n x^{1}+m n x^{2}+\ldots+m n x^{[n / 2 m]}+d\left(H_{2 m, n},[n / 2 m]+1\right) x^{[n / 2 m]+1}
\end{aligned} \\
& \text { where } d\left(H_{2 m, n},[n / 2 m]+1\right)=\left\{\begin{array}{l}
n \times\left|m \times\left[\frac{n}{2 m}\right]-\left[\frac{n}{2}\right]\right| \\
n \times\left|m \times\left[\frac{n}{2 m}\right]-\left[\frac{n}{2}\right]\right|-\frac{n}{2} \quad n \quad \text { even }
\end{array}\right.
\end{aligned}
$$

Here the proof of Theorem 2.1 is completed.
Theorem 2.2. Let $H_{2 m, n}$ be the Harary graph. Then the Wiener index of $H_{2 m, n}$ is equal to

- If n be odd, $W\left(H_{2 m, 2 q+1}\right)=(2 q+1)\left(q+[q / m]\left(q-\frac{m}{2}\right)-\frac{m}{2}[q / m]^{2}\right)$
- If n be even, $W\left(H_{2 m, 2 q}\right)=\left(2 q^{2}-q\right)+q[q / m](2 q-1-m)-q m[q / m]^{2}$

Proof. By according to the definitions of the Wiener index and Hosoya Polynomial of a graph G (Equation 1.1 and 1.2), then the Wiener index $W(G)$ will be the first derivative of Hosoya polynomial $H(G, x)$ evaluated at $x=1$. Thus by using the results from Theorem 2.1, we have

1- \quad If n be an arbitrary even positive integer number $(n=2 q)$, then

$$
\begin{aligned}
W\left(H_{2 m, 2 q}\right) & =\sum_{\{u, v) \in V\left(H_{2 m, 2 q}\right)} d(v, u) \\
& =\left.\frac{\partial H\left(H_{2 m, 2 q}, \mathrm{x}\right)}{\partial x}\right|_{x=1} \\
& =\left.\frac{\partial \sum_{d=1}^{[q / /]]} 2 q m x^{d}+2 q^{2}-2 q m[q / m]-\left.q \cdot x^{[q / m]^{\prime}}\right|_{x=1}}{\partial x}\right|_{x=1} \\
& =2 q m \sum_{d=1}^{[q / m]} d+\left(-2 q m[q / m]^{2}+[q / m]\left(2 q^{2}-q-2 q m\right)+\left(2 q^{2}-q\right)\right) \\
& =\left(2 q^{2}-q\right)+q(2 q-1-m)[q / m]-q m[q / m]^{2}
\end{aligned}
$$

2- If n be an odd positive integer number $(n=2 q+1)$, then

$$
\begin{aligned}
W\left(H_{2 m, 2 q+1}\right) & =\left.\frac{\partial \sum_{d=1}^{[n / 2 m]} m n x^{d}+n([n / 2]-m \times[n / 2 m]) x^{[n / 2 m]+1}}{\partial x}\right|_{x=1} \\
& =(2 q+1)\left(\sum_{d=1}^{[n / 2 m]} m \times d+(q-m[q / m])([q / m]+1)\right) \\
& =\left(2 q^{2}+q\right)+[q / m]\left(2 q^{2}+q-\frac{m(2 q+1)}{2}\right)-\frac{m(2 q+1)}{2}[q / m]^{2} .
\end{aligned}
$$

Corollary 2.3. Suppose n be an even positive integer number $(n=2 q)$ and $2 m \mid n$, then such that $q / m=r$. Thus $W\left(H_{2 m, 2 m r}\right)=m r\left(m r^{2}+m r-r-1\right)$.

Theorem 2.4. The hyper-Wiener index of the Harary graphs $H_{2 m, 2 q}$ and $H_{2 m, 2 q+1}$ are equal to

$$
\begin{aligned}
& W W\left(H_{2 m, 2 q}\right)=\frac{3}{2}\left(2 q^{2}-q\right)+\left(5 q^{2}-\frac{5}{2} q-\frac{13}{6} q m\right)[q / m]+\left(2 q^{2}-q-\frac{7}{2} q m\right)[q / m]^{2}-\frac{2}{3} m q[q / m]^{3} \\
& W W\left(H_{2 m, 2 q+1}\right)=(2 q+1)\left[-\frac{2}{3} m[q / m]^{3}+\left(q-\frac{7}{4} m\right)[q / m]^{2}+\left(\frac{5}{2} q-\frac{13}{12} m\right)[q / m]+\frac{3}{2} q\right]
\end{aligned}
$$

Proof. Consider the Harary graph $H_{2 m, n}$ and refer to Equations 1.3 and 1.4. Thus
$W W\left(H_{2 m, n}\right)=1 / 2 W\left(H_{2 m, n}\right)+W W^{*}\left(H_{2 m, n}\right)$
where $W W^{*}\left(H_{2 m, n}\right)=\sum_{\{u, v\} \in V\left(H_{2 m, n}\right)} d^{2}(v, u)$
Now, suppose n be even $(n=2 q)$, therefore
$W W^{*}\left(H_{2 m, 2 q}\right)=2 q m \sum_{d=1}^{[\% / m]} d^{2}+\left(2 q^{2}-q-2 q m[q / m]\right)([q / m]+1)^{2}$

$$
\begin{aligned}
& =\frac{2 q m}{6}\left(2[q / m]^{3}+3[q / m]^{2}+[q / m]\right)+\left(2 q^{2}-q-2 q m[q / m]\right)\left([q / m]^{2}+2[q / m]+1\right) \\
& =\left(2 q^{2}-q\right)+\left(4 q^{2}-2 q-\frac{5}{3} q m\right)[q / m]+\left(2 q^{2}-q-3 q m\right)[q / m]^{2}-\frac{2}{3} m q[q / m]^{3}
\end{aligned}
$$

Thus, $W W\left(H_{2 m, 2 q}\right)=\frac{3}{2}\left(2 q^{2}-q\right)+\left(5 q^{2}-\frac{5}{2} q-\frac{13}{6} q m\right)[q / m]+\left(2 q^{2}-q-\frac{7}{2} q m\right)[q / m]^{2}-\frac{2}{3} m q[q / m]^{3}$
If n be odd $(n=2 q+1)$, therefore

$$
\begin{aligned}
W W^{*}\left(H_{2 m, 2 q+1}\right) & =m(2 q+1) \sum_{d=1}^{[q / m]} d^{2}+(2 q+1)(q-m[q / m])([q / m]+1)^{2} \\
& =\frac{(2 q+1) m}{6}\left(2[q / m]^{3}+3[q / m]^{2}+[q / m]\right)+(2 q+1)(q-m[q / m])\left([q / m]^{2}+2[q / m]+1\right) \\
& =(2 q+1)\left[-\frac{2}{3} m[q / m]^{3}+\left(q-\frac{3}{2} m\right)[q / m]^{2}+\left(2 q-\frac{5}{6} m\right)[q / m]+q\right]
\end{aligned}
$$

Thus, $W W\left(H_{2 m, 2 q+1}\right)=(2 q+1)\left[-\frac{2}{3} m[q / m]^{3}+\left(q-\frac{7}{4} m\right)[q / m]^{2}+\left(\frac{5}{2} q-\frac{13}{12} m\right)[q / m]+\frac{3}{2} q\right]$.
And theses complete the proof of Theorem 2.4.

References

[1] M.V. Diudea. Hosoya polynomial in Tori. MATCH Commun. Math. Comput. Chem. 45, (2002), 109122.
[2] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001), 211-249.
[3] H. Hosoya. On some counting polynomials in chemistry. Discrete Appl. Math. 19, (1989), 239-257.
[4] D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995), 50-52.
[5] M. Knor, P. Potočnik and R. Škrekovski. Wiener index of iterated line graphs of trees homeomorphic to the claw K1;3. Ars Math. Contemp. 6 (2013), 211-219
[6] M. Randić, Novel molecular descriptor for structure-property studies. Chem. Phys. Lett., 211, (1993), 478.
[7] B. West, Introduction to graph theory. Prentice Hall of India, (2003).
[8] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

