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ABSTRACT 

 
Data redistribution in parallel is an often-addressed issue in modern computer networks. In this context, we 

study the case of data redistribution over a switching network. Data from the source stations need to be 

transferred to the destination stations in the minimum time possible. Unfortunately the time required to 

complete the transfer is burdened by each switching and thus producing an optimal schedule is proven to 

be computationally intractable. For the purposes of this paper we consider two algorithms, which have 

been proved to be very efficient in the past. To get improved results in comparison to previous approaches, 

we propose splitting the data in two clusters depending on the size of the data to be transferred. To prove 

the efficiency of our approach we ran experiments on all three algorithms, comparing the time span of the 

schedules produced as well as  the running times to produce those schedules.  The test cases we ran 

indicate that not only our newly proposed algorithm yields better results in terms of the schedule produced 

but runs  faster as well. 
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1. INTRODUCTION 

 

As the need for communication and dissemination of information increases in modern technology 

based societies, so does the need for faster and more efficient networks and routing of packages 

between stations. In this context the study of parallel machines (parallel supercomputers, 

symmetric multiprocessors, multicomputer clusters and IP router switch fabrics), communication 

backbones interconnecting the machines and the transfer of large packets of data between them, 

has become an issue of major importance. As information loads continue to increase rapidly, it is 

expected that the need for well scheduled data transfers that decrease time and resource usage, 

will keep on being an often addressed subject for many computer scientists and engineers. 

 

In this manuscript and in the context of redistributing data between parallel machines using a 

centralized switch (Figure1), the problem studied is the Preemptive Bipartite Scheduling problem 

(encountered as PBS in the literature). Given a set of n1 source stations and a set of n2 destination 

stations, we are required to send across data streams, each initiated from a specific source, to 

reach an also prespecified target. The duration of each data stream is also predetermined for all 

data streams scheduled for transfer. Restrictions in the systems considered, are that no source may 

send data towards more than one destination at any time, nor may a destination station receive, 

from more than one source station at any time. Messages are sent in packages and to enhance 

transfer speed we are allowed to preempt any package and continue transfer of any part of that 

package at a later time. Unfortunately, since the system has to reconfigure after each preemption, 
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any interruption of packages transfer will come with a time cost. Information on the data remains 

that were not transferred along with the main part of the package, have to be saved and a new 

setup has to be initiated for the next package to start transferring. Consequently prior to sending 

any of the packages there will be a setup overhead. We consider this overhead to be constant for 

all transfer initiations. In this paper we aim to minimize the duration of the aforementioned 

process.  

 
 

Figure 1. Crossbar switch interconnection network 

 

2. PREVIOUS RESULTS 

 

PBS has been proven to be NP-Hard in [8], and 4/3-ε inapproximable for any ε>0, unless P=NP in 

[4]. 

As PBS algorithms can be implemented in various applications, many polynomial time 

algorithms have been designed to produce solutions close to the optimal, found in [1], [4], [5], 

[6]. The optimal approximation ratio proven so far is 
1

2
d 1

−
+

, where d is the setup cost. Proof of 

that can be found in [1]. Tests  on the performance of numerous algorithms producing near-

optimal solutions are presented in [4], [5], [6] and [10]. 

The optimal solution can be found in  polynomial time if the setup cost is zero and in the case we 

are only interested in minimizing the number of preemptions [8]. Finally, in [1] can be found a 

polynomial time algorithm to calculate the optimal solution for a class of graphs that the authors 

define. 

The performance of our algorithm is compared to that of 2 algorithms found in bibliography: 

 

• A-PBS(d+1), which has the best approximation ratio proven so far [1]. 

• A1, which appears to perform very well in practice [6]. 

 

To schedule each data package, A-PBS(d+1) rounds up the time of each transfer to the closest 

multiple of d+1 and calculates the package reducing the workload of each station to the minimum 

multiple of  d+1. 

 

Whereas, A1 computes an arbitrary package with a maximum number of data transfers and 

decides how to preempt by calculating a lower bound to the transfer duration of the remaining 

packages plus the cost of the current package, to be the minimum possible. 
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3. GRAPH REPRESENTATION AND NOTATIONS 

 

Our data representation will be through a bipartite graph G(V,U,E). V will be the set of source 

stations, U the set of receiving stations while E, the set of edges, will correspond to the data loads 

that have to be transferred from V to U. A weight (or cost) c(v,u), will be assigned to each of the 

edges e=(v,u), to denote the time required to transfer the data from node v to node u. Edge 

weights are considered to be non-negative integers. 

 

Furthermore the following notation will be used: ∆=∆(G)=max{
v V

max(deg(v))
∈

,
u U

max(deg(u))
∈

}, 

that is, ∆ will denote the maximum number of data transfers from or to any of the stations. 

The function t: V∪U→Z+ will denote the total workload of any station, namely t(v)=
u U

c(v,u)
∈

∑  

for any v∈V or t(u)=
v V

c(v,u)
∈

∑  for any u∈U. 

W=W(G)=max{
v V

max(t(v))
∈

,
u U

max(t(u))
∈

}, that is W will denote the maximum total transfer time 

from or to any station. 

d∈Z*
+  will denote the overhead to start the next transfer. 

The objective function to be minimized is C(G,d)=
S

i

i 1

T(p )
=

∑ +d·S, where S is the number of data 

packages and T(pi) is the time required for each package pi, to be transferred. 

 

A lower bound to the optimal solution is W(G)+d·∆(G). Yet, this lower bound is not always 

achievable as shown in [6]. 

 

4. THE SPLIT GRAPH ALGORITHM 

 

For the purposes of our algorithm the initial graph is split in two parts. GM comprises edges of 

weight at least d and Gm contains all edges of weight less than d. Our main concern for GM is to 

keep reducing the workload for each of the stations, achieving the minimum transfer time 

possible, whereas in the case of Gm, where edge weights are small in comparison to d, we aim in 

minimizing the number of preemptions. The intuition in designing this algorithm is that for data 

transfers of long duration, priority on how to schedule has the duration of the data transfer rather 

than the number of preemptions, whilst for data transfers of shortest duration prioritized is the 

minimization of the number of preemptions. In particular: 

 

The Split-Graph Algorithm (SGA) 

 

Step 1: Split the initial graph G(V,U,E) in two bipartite graphs Gm(Vm,Um,Em) and 

GM(VM,UM,EM), where Vm=VM=V, Um=UM=U and Em contains all edges of  weight less than d, 

EM contains all edges of weight d or more. Clearly in this initiation step E=Em∪EM and 

Em∩EM=∅.  

Step 2: Use subroutine1 to find a maximal matching M, in GM.  

Step 3: Use subroutine 2 to calculate the weight of the matching to be removed. Remove the 

corresponding parts of the edges.  

Step 4: If possible, add edges to M, from Em to maximize |M| and remove them from Em. 

Step 5: Move edges of weight less than d, from the graph induced by step 3 to Em. 

Step 6: Repeat steps 2 to 5 until all edges initially in EM have been completely removed. 

Step 7: Use subroutine 3 to calculate ∆m maximum matchings in Gm, where ∆m  is the degree of 

Gm. 
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Step 8: Schedule the data packets as calculated in steps 2, 3 and 7. 

 

Subroutine 1: 

 

Step 1: M=∅ (Initialization of the matching). 

Step 2: For each node w∈VM∪UM calculate t(w). 

Step 3: Sort all nodes w∈VM∪UM in decreasing order of t(w). Let L be the induced list of nodes. 

Step 4: Let w0 be the 1st node to appear in L. Run sequential search in L to find the 1st  neighbour 

of w0 appearing in L. Denote that neighbour by w1. 

Step 5: M←M∪{w0, w1}. 

Step 6: Remove w0, w1 from L. 

Step 7: Repeat steps  2, to 6 until  M becomes maximal. 

 

Subroutine 2: 

 

Step 1: For each edge e=(v,u) of the matching M, with corresponding weight c(e) calculate what 

the value W(Ge) of the induced graph Ge(Ve,Ue,Ee) would be if all edge weights in the matching 

were to be reduced by c(e). In this case edges in M, of cost less than c(e) would be completely 

removed.  

Step2: For all e∈M, set r(e)=c(e)+W(Ge) and denote by e0 the edge such that 

r(e0)=min{r(e)|e∈M} and c(e0)=max{c(e)|r(e)=r(e0)}. 

Step 3: For each edge e, in M set its new weight c(e)= 
0 0c(e) c(e ), if c(e) c(e )

0, otherwise

 − >



 . 

Subroutine 3: 

 

Step 1: Add nodes and edges to make Gm a regular graph of degree ∆m. New edges will be of zero 

weight. In a regular graph, all nodes will be of the same degree. 

Step 2: Calculate a maximum matching Mm in Gm and remove all edges of Mm from Gm. Gm’s 

degree will now be reduced by 1. 

Step 3: Repeat step 2 until Gm=∅. 

Example:  

Consider matrix A to be the adjacency matrix of G(V, U, E), where V={a1, b1, c1, d1}, U={a2, b2, 

c2}. Rows 1, 2, 3 and 4, show the times required to transfer the data from nodes a1, b1, c1, d1 

respectively, while columns 1, 2 and 3 stand for the durations needed to transfer the data to a2, b2, 

c2,  respectively. Suppose d=3. 

 

5 3 2

1 4 3
A

2 5 0

4 2 5

 
 
 =
 
 
 

 

 
Let AM be the adjacency matrix corresponding to GM and Am be the adjacency matrix of Gm. 

Then: 

 

M

5 3 0

0 4 3
A

0 5 0

4 0 5

 
 
 =
 
 
 

  m

0 0 2

1 0 0
A

2 0 0

0 2 0

 
 
 =
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t(a1)=8, t(b1)=7, t(c1)=5, t(d1)=9, t(a2)=9, t(b2)=12, t(c2)=8. 

sorting the nodes: b2, d1, a2, a1, c2, b1, c1. 

M={{b2,a1}, {d1,c2}}, e0={d1,c2}, r(e0)=14.  

Add edge {b1,a2}∈Em to M. Schedule a transfer of duration 5 

Total time for this iteration including preemption cost is 8 

The induced matrices after the 1
st
 iteration are: 

 

M

5 0 0

0 4 3
A

0 5 0

4 0 0

 
 
 =
 
 
 

, 
m

0 0 2

0 0 0
A

2 0 0

0 2 0

 
 
 =
 
 
 

 

 

t(a1)=5, t(b1)=7, t(c1)=5, t(d1)=4, t(a2)=9, t(b2)=9, t(c2)=3 

sorting the nodes: a2, b2, b1, a1, c1, d1, c2 

M={{a2,a1},{b2,b1}} e0={a2,a1}, r(e0)=10. 

No additional edge from Em. Schedule a transfer of duration 5 

Total time for this iteration including preemption cost is 8 

The induced matrices after the 2
nd

 iteration are: 

 

M

0 0 0

0 0 3
A

0 5 0

4 0 0

 
 
 =
 
 
 

, m

0 0 2

0 0 0
A

2 0 0

0 2 0

 
 
 =
 
 
 

 

 

t(a1)=0, t(b1)=3, t(c1)=5, t(d1)=4, t(a2)=4, t(b2)=5, t(c2)=3 

sorting the nodes: c1, b2, d1, a2, b1, c2, a1. 

M={{c1,b2},{d1,a2},{b1,c2}} e0={c1,b2}, r(e0)=5. 

No additional edge from Em. Schedule a transfer of duration 5 

Total time for this iteration including preemption cost is 8.  

All edges in EM are now removed, proceeding to step 7 of SGA:  

 

m

0 0 2

0 0 0
A

2 0 0

0 2 0

 
 
 =
 
 
 

 

 

The corresponding maximum matching is M={{a1,c2}, {c1,a2}, {d1,b2}} 

The duration of the scheduled transfer is 2. 

Total time for this iteration including preemption cost is 5.  

 

Total time to transfer the data is 29, while the lower bound is 26. 

 

 

5. COMPARING THE SCHEDULES 

 

One thousand test cases have been ran for a 15 source-15 destination system for values of setup 

cost varying from 1 to 100 and message durations varying from 0  to 50. Figure 2 represents each 

algorithm’s performance in terms of proximity to the lower bound. SGA performs significantly 
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better than both A1 and A-PBS(d+1) and as the overhead increases it shows an increasingly 

improved performance. It is important to mention that in practice, as information loads 

exponentially increase, the number of stations and communication tasks increases and so does the 

setup cost. That is in fact the most encountered situation nowadays. 

 

Figure 3 presents the worst performance that each algorithm had depending on the setup cost, in 

terms of proximity to the lower bound again. SGA is found to be once again a lot more efficient. 

Furthermore, SGA in most cases has a worst case really close to the average showing that its 

performance does not fluctuate much, making it an all cases reliable tool for this type of 

scheduling. 

 

It is important to stress out that the ratio calculated, is in comparison to the lower bound and not 

to the optimal value of the objective function. Therefore the schedules produced are in fact a lot 

closer to the optimal and the ratios a lot closer to 1. 

 

Figure 2. Average (cost/lower bound) comparison 
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Figure 3. Worst (cost/lower bound) comparison 

 

6. COMPARING THE RUNNING TIMES 

 

To compare time complexities for the 3 algorithms we will assume that |E|=m and we will denote 

max{|V|,|U|}=n. 

 

All three algorithms compared, will need O(m) iterations to produce a schedule as it is certain that 

each iteration will result in the complete removal of at least one edge. 

 

For each iteration the most time consuming subroutine of A-PBS(d+1) is finding a maximum 

matching which will need O( n m) [12]. Therefore the overall complexity of A-PBS(d+1) is 

O( n m
2
) 

 

As far as A1 is concerned, determining how to preempt is the most time consuming subroutine for 

each iteration.  For each of the edge weights in the matching, it calculates for each node v, deg(v) 

and t(v). Each of these three processes  requires O(n), therefore the complexity of each iteration is 

O(n3) making the overall time complexity O(n3m). 

 

Finally,  the complexity of SGA is determined by the maximum matching process that takes place 

in step2 of subroutine3 and consequently the overall  complexity is the same  as that of  A-

PBS(d+1), namely O( n m2).  

 

As |E| varies from O(n) to O(n2), it is clear that A-PBS(d+1) and SGA work faster than A1. Yet, 

SGA will only be using the maximum matching algorithm after most of the graphs edges are 

removed. Consequently in practice it runs somewhat faster.  
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7. CONCLUSIONS AND FUTURE WORK 

 

Our newly presented algorithm (SGA), has proven to produce more efficient schedules. We 

believe that the idea of splitting the initial graph in parts can be further researched and depending 

on the magnitude of the edges as well as the setup cost, the Split-Graph Algorithm’s efficiency 

can be further improved. An approximation ratio for SGA could be established to be less than 2. 

Exploiting to a greater extend algorithms that provide optimal solutions for special instances of 

the problem might also yield interesting new approximation algorithms. Finally, lifting limitations 

of the problem or introducing new ones could help in identifying new classes of graphs for which 

polynomial algorithms might provide an optimal schedule.  
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