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ABSTRACT 

 
To achieve better calculative performance in optical fiber communication and for simplicity of 

implementation different digital modulation, detection and multiplexing techniques are used. These 

techniques maximize the spectral efficiency. This paper reviews a tabular comparative analysis with 3D 

graphical representation for different optical digital modulation formats and multiplexing techniques 

within and beyond 400 Gb/s. In this particular article we survey about different parameters related to 

digital fiber optic communication. 
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1. INTRODUCTION 
 

Now a days by digital communication one can improve the performance of OSNR sensitivity, Bit  

error  rate,  nominal  range,  sensitivity  to  non-linear  distortion,  transmission,  attenuation 

profile, modulated bandwidth efficiency, information capacity, Spectral efficiency etc, The goal 

behind each type of optical modulation and multiplexing techniques is to increase the data rate, 

transmission fidelity and transmission distance between stations. Over the last years several types 

of modulation techniques are designed which consists of 2.5, 10, 20, 25, 40 and 100 Gb/s 

wavelength channels. But now a day the data rate with respect to the channel increases to 400 

Gb/s and above. Media Access control parameters, physical layers, and management parameter 

[17] using 4-channels with 25Gb/s. 107 Gb/s NRZ-DQPSK transmission at 1.0 b/s/Hz over 12-

100Km have been introduced [18] by P.J.Winzer including 6 optical routing nodes (published in 

Proc.OFC2007, post deadline paper PDP24). Now a days in modern digital optical fiber 

communication to improve transmission data rate200Gb/s , 400Gb/s , 800Gb/s , 1000Gb/s , 

1Tbit/s and above have been used. This paper also provides a tabular manner   survey of 

modulation methods, with emphasis on probability of error, photons per pulse and spectral 

efficiency and other DFOC parameters. Multiplexing is a promising technique in optical fiber 

communication. Different types of fiber optic multiplexing techniques such as OTDM, OFDM, 

COFDM, WDM, CWDM and DWDM are analyzed in a tabular manner compared with different 

digital modulation formats. The comparative analysis taking suitability of various modulation 

formats over bit error rates of 0.004 is studied in this approach.  The robustness of DPSK direct 

detection transmission format in standard fiber WDM systems have been published in2000 [33]. 
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In this paper we mainly emphasize on WDM, CWDM and DWDM. W. Idler publishes WDM 

field over 764 Km SSMF with 16-112Gb/s NRZ DQPSK[34]. These performances are 

comparatively analyzed in a tabular manner and also by different 3D graphical formats. 

 

2. CLASSIFICATION OF DIGITAL OPTICAL FIBER MODULATION AND 

MULTIPLEXING TECHNIQUES. 

 
Sl. No. DFOC Format Type Notation 

 
 
 
 
 
 
 
 
 
 

 

01. 

 
 
 
 
 
 
 
 
 
 

 

Digital 

modulation 

formats 

On-OFF  keying  /Binary  
Amplitude 
Shift Keying 

OOK/BASK 

Binary frequency shift keying BFSK 
Binary Phase Shift Keying BPSK 
Differential Phase Shift Keying DPSK 
Return to zero DPSK RZ-DPSK 
Quadrature Phase Shift Keying QPSK 
Differential QPSK DQPSK 
Return to zero DQPSK RZ-DQPSK 
Return to zero DPSK-3ASK RZ-DPSK-3ASK 
Polarization division multiplexing 
QPSK 

PM-QPSK/DP-QPSK 

PM-Orthogonal   frequency   
division 

PM-OFDM-QPSK/DP- 
OFDM-QPSK 

Optical Polarization FDM-RZ- 
DQPSK 

OP-FDM-RZ-DQPSK 

Polarization division multiplexing 
DQPSK 

PM-DQPSK or DP-DQPSK 

M-ary Quadrature amplitude 
modulation 

M-QAM 

Minimum Shift Keying MSK 
Gaussian MSK GMSK 
Single Carrier Modulation formats SCM 
Multicarrier Modulation formats MCM 

 
 
 
 
 

02. 

 
 
 
 
 
Digital 

Multiplexing 

Formats 

Optical Time Division Multiplexing OTDM 
Subcarrier Multiplexing SCM 
Orthogonal Frequency Division 
Multiplexing 

OFDM(UNCODED) 

Coded Frequency Division 
Multiplexing 

COFDM(coded) 

Duty Cycle Division Multiplexing DCDM 
Optical Polarization Division 
Multiplexing  

OPDM 

  Wavelength Division Multiplexing WDM 

  Coarse WDM CWDM 

  Dense WDM DWDM 
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3. OPTICAL FIBER DIGITAL MODULATION FORMATS. 

 
Modulation is a technique by which the digital information is printed onto an optical carrier [16] 

and in its most general sense also including coding to present transmission errors. In digital 

optical fibers the electromagnetic waves with frequencies of nearly 200 THz are used to transfer 

information from one point to another. 

 

3.1. On-Off Keying/Binary Amplitude Shift Keying 

 
In BFSK, for better demodulation performance matched filter detectors are used. The information 

capacity is better than BASK indicated in Table-5. It is not efficient due to its hardware design of 

receiver, is complex as directed in Table-2. 

 

3.2. Binary Phase Shift Keying 

 
In BFSK, for better demodulation performance matched filter detectors are used. The information 

capacity is better than BASK indicated in Table-5. It is not efficient due to its hardware design of 

receiver, is complex as directed in Table-2. 

 

3.3. Binary Phase Shift Keying 

 
In BPSK error performance is very less as compared to BASK and BFSK. It is widely used for 

satellite communication. The binary 1 is signed as sinωt and 0 signed as –sinωt . 2,4,8,16 BPSK 

formats using coherent detection  techniques to improve their BER performance as shown in 

Table-4.The information capacity of BPSK is twice times the BFSK indicated in Table-5. 

 

3.4. Differential Phase Shift Keying 

 
The non-linear propagation [33] in Optical Transmission systems is only valid for DPSK FOC 

digital modulation techniques. For 400 Gb/s performance, it requires DPSK receiver Optical 

channel monitoring in optical line system. The maximum bandwidth is 80 ps/nm for RZ-DPSK 

shown in Table-10. 

 

3.5. Non Return to Zero /Return to Zero Differential Phase Shift Keying 

 
In NRZ/RZ-DPSK, the receiver design consists of one interferometric detector and two photo 

detectors which increases the hardware complexity in comparison to transmitter design which 

uses only one modulator at 400 Gb/s aggregation bit rate shown in Table-10. 

 

3.6. Quadrature Phase Shift Keying 

 
In QPSK, the bandwidth efficiency is very high in comparison to other primary optical digital 

modulation techniques as illustrated in Table-5. Also the information capacity is twice the Binary 

Frequency Shift Keying which gives major effect on different primary modulation techniques. 

 

3.7. Differential Quadrature Phase Shift Keying 

 
At 400 Gb/s DQPSK requires two modulators which improves the performance in comparison to 

QPSK. Also the BER graph of DQPSK gives better results when probability of error is taken into 

account. This four level version of DPSK has the advantage of tolerating better dispersion which 

is narrated in Table-7. 
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3.8. Return to Zero - Differential Quadrature Phase Shift Keying 

 
To get RZ-DQPSK signal, two phase modulators are cascaded for the modulation of the optical 

phase by 0 to π/2 and 0 to π/4 applying binary modulation. The Optical signal-to-noise-ratio 

tolerance is higher than DQPSK that results in better performance in the context of signal quality 

at 111 Gb/s [35] and at112Gb/s OUT-4 channel bit-rate [34] ,[36].The maximum bandwidth 

(ps/nm) of this format is half that of NRZ-DQPSK as compared in Table-10. 

 

3.9. Return to Zero - Differential Phase Shift Keying - 3 Amplitude Shift Keying 

 
This is a very fundamental mixer of ASK modulation and phase modulation. In RZ-DPSK-3ASK 

modulation formats 2.5bits are coded in one symbol which leads to symbol rate of 43Gbauds [37-

38], [65- 66] for support of the OUT-4 line-rate [67] of 112Gb/s. This  modulation technique 

when applied to field fiber has OSNR limitation, but this could be improved by reducing channel 

bit-rate. 

 

3.10. Polarization Mode -QPSK/Differential Phase –QPSK 

 
The 100Gb/s PM-QPSK transmission process [16] running at a symbol rate of 25-28Gbaud is 

widely applied with offline signal processing of electrical signal which is  measured by 4- channel 

high speed real time Oscilloscopes acting as fast A/D converters[28-29], [40], [69]. Table-4 

shows that the PM-QPSK format has higher modulation efficiency compared to QPSK format. 

 

3.11. Polarization Mode OFDM-QPSK/ Differential Phase -OFDM-QPSK 

 
Another  commercially  available  100Gb/s  transponder  applies  two  narrow spaced  (20GHz) 

optical  carries  each  modulated  with  PM-QPSK  formats  based  on  14  Gbaud  modulation 

[41],[16]. The hardware implementation features of transmitter and receiver of this modulation 

technique is given in Table-10. It has highest estimated reach of about 2000 Km rather than 

QPSK, DQPSK and PM-DQPSK as suggested in Table-7. 

 

3.12. Optical Polarization -FDM-RZ-DQPSK 

 
To carry two optical  carrier there are polarizations can be used to eliminate the fast automatic 

optical polarization de-multiplexers[16]. In this modulation format two carriers are alternatively 

multiplexed and de-multiplexed with optical fiber at 28 Gbaud.  The compatibility with 100Gb/s 

& 400Gb/s is being positive w.r.t PM-OFDM-QPSK as shown in Table-7. 

 

3.13. Polarization Mode -DQPSK / Differential Phase –DQPSK 

 
By applying polarization division multiplexing (PM), we can reduce the symbol rate. As a result 

the line-rate doubles or the symbol rate becomes half [16]. The 28Gbaud modulation formats 

supports the 400G DWDM transmission with 50 GHz channel spacing. Table-7 indicates that the 

OSNR tolerance (dB) @ BER 4X10-3 is higher than OP-FDM-RZ-DQPSK but less than RZ-

DPSK-3ASK format. 

 

3.14. M-QAM 

 
‘M’ number of binary bits are transmitted in a particular slot in this modulation scheme [16]. This 

technique currently is of high research interest and is illustrated  at submarine transmission 

configurations[70] using RZ at PM-QPSK. Polarization multiplexed 16- QAM signals have been 
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realized by multi-level generation using passive combination of binary signals to achieve 224 

Gb/s channel rate (200G + FEC overhead)[71-73] and for higher than 400 Gb/s channel rate [74]. 

Using Polarization multiplexing and QAM modulation format transmission lengths between 

670km to 1500km have been demonstrated [71-73]. RF-assisted optical Dual carrier 112 Gb/s 

polarization multiplexed 16-QAM is applied to achieve 112 Gb/s channel rate[75]. According to 

Table-8, we conclude a comparative analysis between different M-QAM modulation techniques 

having different bit rates (Gb/s). A channel rate of 400 Gb/s has been achieved using 16-QAM 

recently with polarization multiplexing. 

 

3.15. Minimum Shift Keying 

 
The new optical minimum shift keying modulation schemes have the high spectral efficiency as 

compared to other digital modulation formats. The transmitters for optical MSK based on two 

MZM similar to the transmitter for DQPSK. As compared to other modulation formats the 

spectrum is not compact enough to realize data rates as shown in Table-2. 

 

3.16. Gaussian Minimum Shift Keying 

 
GMSK is a digital optical binary modulation schemes and is treated as a extension of optical 

Minimum Shift Keying technique. In this format the side lobe levels of the spectrum are again 

minimized by passing the modulating NRZ data waveform through a pre-modulation Gaussian 

pulse-shaping filter. It promotes ISI at higher bit rate transmission than MSK as compared in 

Table-2. 

 

3.17. Sub-Carrier Modulation 

 
In this format 2xm bits are transmitted per symbol.  Various constellations [16],[42]  can  be  

applied  for  PM-QAM modulation  format. To optimize  the signal error with  M-QAM  

constellation  by  Nyquist filtering towards Nyquist wavelength division multiplexing which is 

currently of high research interest which has been demonstrated at submarine transmission 

configurations[70] using RZ at PM-QPSK. Table-8 gives an overview in single channel M-QAM 

options from 200Gb/s to 1Tb/s . 

 

3.18. Multi-Carrier Modulation 

 
Multi-carrier modulation format approach supports high bandwidth channels [76]. Forming 

inverse fourier transform, Signal Processing  is applied in the transmitter. As OFDM has  

rectangular shape, high capacity transmission can be performed by close allocation of multiple 

OFDM signals in the frequency domain without guard bands. The orthogonal multiplexing 

behavior of  PM-QPSK modulation has been depicted in Table-7. A number of transmission 

experiments using polarization multiplexed O-OFDM and PM-O-OFDM have been reported [16], 

[77], [44-45] transporting Tb/s super channels over submarine distances [78]. 

 

4. OPTICAL FIBER DIGITAL MULTIPLEXING FORMATS 

 
Multiple users can transmit data simultaneously through a single optical fiber link by digital 

multiplexing techniques described in this section. This is widely employed in optical 

communication systems due to its capability to increase the channel utilization and decrease 

system costs. 
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4.1. Optical Time Division Multiplexing 

 
 In OTDM the bit-rate of digital optical fiber systems  is increased beyond the bandwidth 

capabilities of the opto-electronics. [59-60]. 

 

4.2. Sub-Carrier Multiplexing 

 
The subcarrier enables multiple broadband signals to be transmitted over single mode fiber and 

appear particularly attractive for video distribution systems. Also with SCM, the orthodox  

microwave solid-state devices could be used  to further divide the intensity modulation available, 

thereby increasing the  bandwidth. 

 

4.3. Orthogonal Frequency Division Multiplexing 

 
Reduction in the channel spacing is a major adaptability, which is employed in the  orthogonal set 

of signals and is known as  Orthogonal Frequency Division Multiplexing [76-78].Table-7 shows 

an comparative analysis of OFDM with different modulation formats. 

 

4.4. Coded Frequency Division Multiplexing 

 
The Coded Frequency Division Multiplexing is also called as OFDM [77], is a system where 

individual data bits of a word are coded onto individual carriers. Mutually orthogonal frequency 

carriers are used over one symbol period in this method. It has higher spectral efficiency OP- 

FDM-RZ-DQPSK as shown in Table-7. 

 

4.5. Duty Cycle Division Multiplexing 

 
In this Duty Cycle Division Multiplexing (DCDM) technique [75], different users sign with 

different RZ duty cycles and the combine together synchronously to form a multi-level step shape 

signal.  

 

4.6. Optical Polarization Division Multiplexing 

 
Optical Polarization Division Multiplexing is a technique in which  the capacity  of the system  

and  spectral efficiency is enhanced  by using  two independently modulated channels keeping  

the wavelength constant [75]. A brief comparison between 4-QAM(4 bits/symbol), 8-QAM (6 

bits/symbol) and 16-QAM(8 bits/symbol) on the basis of polarization multiplexed transmission is 

illustrated in Table-12. 

 

4.7. Wavelength  Division  Multiplexing 

 
WDM is an optical modulation technique in optical fiber communication employing more than 

one wavelength. In this communication format ,  multiple optical carrier signals on a single fiber 

optic cable is multiplexed  by using   different wavelengths of laser light to carry various  signals . 

In multimode the 850nm, 1310nm wavelengths are used [34-36]. In single mode 1310 and 1550 

nm are used[43].The OSNR (dBm) , maximum bandwidth (ps/nm), CRF (GHz) like parameters 

are clearly compared in Table-10. 
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4.8. Coarse WDM 

 
Coarse WDM gives the ability to combine upto 18 wavelengths onto one fiber. The spacing of 

these eighteen wavelengths which are employed evenly from 1270-1610 nm in 20nm increments 

have been discussed.. The aggregate fiber capacity of CWDM is only 20-40 Gb/s(70Km) as 

indicated in Table-14. 

 

4.9. Dense WDM 

 
Dense WDM takes bandwidth and throughput to higher level. DWDM permits up to 80 

wavelengths [46] to share are fiber[32]. The aggregate fiber capacity of DWDM is higher than 

CWDM that is up to 1Tb/s (900 Km) as indicated in figure 15 of Table-18. 

 
Table 1.  Comparative analysis of different PSK Schemes 

 

Digital PSK 

Modulation 

Techniques 

Probability of Error   Degradation Power Spectral Density 

(PSD) 

BNull 

 

BPSK ���2���� 	 

 

0dB(ref.) A�T ���� ���� ���� �� 
2�� 

 

DEBPSK 
≈ 2� ������� � 

 

<0.5 dB A�T ���� ���� ���� �� 
2�� 

DBPSK 

(Optimum) 

12 ���� ��⁄  
 

0.5-1 dB A�T ���� ���� ���� �� 
2�� 

 

QPSK ���2���� 	 

 

0dB(ref.) 2A�T ���� 2���� 2���� �� 
1T 

 

DEQPSK 
≈ 2� ������� � 

 

<0.5 dB 2A�T ���� 2���� 2���� �� 
1T 

DQPSK 

(Optimum) 
≈ � �� ���� � !�� " √�  

2-3dB 2A�T ���� 2���� 2���� �� 
1T 

 

DMPSK 

(Optimum) 

 

≈
�$ � ���$���� !�� "√�%� 

 

 

3 dB nA�T ���� ����� ����� �� 
2��� 
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Table 2.  Modulation parameters of different Digital modulation techniques in 40Gb/s modulation formats. 
 

Digital 
Modulation 

Demodulation 

performance 

Error 

performance 

Advantages Disadvantages 

 
BASK 

Easy 
demodulation 

Restricted in 

linear region 

Hardware 

Implementations 

simple and low 

cost 

Poor BW 

 
BFSK 

Matched filter 

detectors used 

Performs 

well 

Same as Bask Complex 
Hardware design 
of receiver   

BPSK 
Receiver circuit 
is complex. 

Small error 

rate 

Used only for 
satellite 
communication. 

Inefficient 

 
DPSK 

Receiver 
requires 

memory 

Required 3 

dB less than 

BFSK 

Introduces the 

complexities 

of receiver 

Efficient less 

than coherent 

PSK 
 
QPSK 

Phase shift 

detection is used 

Better over 

BPSK and 

BFSK 

Bandwidth 
efficient 

than BPSK 

Hardware 

design of 

receiver is 

complex 64 QAM Coherent 
detection 

Same as 

QAM 

Very efficient 

spectral efficiency 

BW is same as 

ASK and PSK 
 
 
GMSK 

Bandwidth time 

product is 

measured by 

SNR Vs BER 

The carrier lags 
or leads by 900 

over bit period 
w.r.t  BT. 

Constant envelope, 

spectrally efficient 

It promotes ISI at 
higher bit rate 
transmission 

 

Table 3.  Comparison of performance and implementation for 400Gb/s. 
 

Digital 

Modulatio

n 

Technique

s 

400 Gb/s performance and 

implementation Advantages 

400 Gb/s performance and 

implementation Disadvantages 

NRZ 
• “baseline” (no OSNR penalty) 

• “baseline” : Single modulator stage. 

• 90% spectral width = 33 GHz  

RZ 

• No OSNR penalty. 

• Versatility to non-linear optical  

fiber propagation is achieved. 

• 66 GHz channel spacing is achieved 

with ninety percentage spectral width 

. (unfiltered), channel spacing limited 

to 100GHz. 

• Auxilary modulator stages are 

required 

SCM + 

M-QAM 

• Sectral narrowing = f(M) 

• Symbol duration  = f(M) 

• Lower carrier frequency and/or 

longer symbol duration 

improves tolerance to 

uncompensated CD and PMD 

• OSNR penalty = f(# carriers,M) 

spectral efficiency gains more than 

offset by large OSNR penalty 

• Requires complex analog RF 

electronics 

• Stringent linearity requirements in 

modulator and driver. 

 

DPSK 

• 3 dB OSNR improvement (with 

balanced receiver) 

• Constant envelope modulation 

• Interferometric detection required. 

• Requires DPSK receiver optical 

channel monitoring in optical line 

system. 
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decreases SPM,XPM  

DQPSK 

• No OSNR penalty 

• Decrease in cross polarization 

modulation by employing 

constant envelope modulation. 

• 33 GHz channel spacing is 

achieved with ninety percentage 

spectral width . 

• Interferometric detection required 

• Requires complicated drive signal or 

2 modulators 

• Requires DQPSK receiver receiver 

optical channel monitoring in optical 

line system. 

            

Table 4.  . Comparison of FOC Digital Modulation Spectral Efficiency and Modulation Efficiency 

 

Digital 

Modulation 

Techniques 

≤ 100Gb/s 

Data 

Rate 

Number 

of 

Channels 

Channel 

Spacing 

Spectral 

Efficiency 

(bits/s)/Hz 

Modulation 

Efficiency 

(Bits/Baud) 

Effective 

Baud Rate 

(Symbol 

Rate) 

NRZ-00K 10 40 100 0.1 1 100 G 

DPSK 40 40 100 0.4 1 100G 

QPSK 10 80 50 0.2 2 50G 

DPSK-3ASK 100 40 100 1 2.5 40G 

PM-QPSK 100 80 50 2 4 25G 

 

Table 5.  Parametric comparison of fiber optics digital modulation formats for 400Gb/s. 

 

Digital 
Modulation  

Points Symbols
Information 

capacity 

Derived 

form 
BW efficiency 

BASK 01 01 Poor ASK Poor 

BFSK 01 01 
Better than 

BASK 
FSK Not efficient 

BPSK 02 02 2 BFSK PSK Only for high speed data  

QPSK 04 04 2BFSK PSK High 
MSK 04 04 2BFSK OQPSK Lower than QPSK 

QAM 02 04 
Better than 

BASK 

ASK & 
PSK 

Less than other 

techniques 

16 QAM 04 04 
Better than 

QAM 

ASK & 
PSK 

Less than other 

techniques 

64 QAM 06 04 
Better than 

QAM 

ASK & 
PSK 

Less than other 

techniques 
GMSK 04 04 Same as FSK Excellent 
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Table 6.  The standardized voice-band data modems with duplex methods for different DFOC 
 

Digital 

Modulation 

Techniques 

Speed (b/s) Symbol rate 

(Hz) 

Duplex method CCITT standard 

2-FSK ≤ 300 ≤ 300 Full FDM V.21 

2-FSK 1200 1200 Half V.23 

4-PSK 1200 600 Full FDM V.22 

4-PSK 2400 1200 Half V.26 

16-QAM 2400 600 Full FDM V.22bis 

4-PSK 2400 1200 Full-EC V.26ter 

8-PSK 4800 1600 Half V.27 

4-QPSK 4800 2400 Full-EC V.32 

16-AM/PM 9600 2400 Half V.29 

32- QAM + 

TC 

9600 2400 Full-EC V.32 

1024- QAM + 

TC 

≤ 28,800 ≤ 3429 Full-EC V.fast (V.34) 

    

Table 7.  Major parameters of modulation methods at 400 Gb/s. 
 

Digital 

Modulation 

Formats 

OOK OOK-

VSB 

DQPSK RZ-

DPSK-

3ASK 

PM-

DQPSK 

OP-

FDM-

RZ-

DQPSK 

PM-

QPSK 

PM-

OFD

M-

QPS

K 

Symbol rate 112 112 56 44 28 28 28 14 

Bits/ Symbol 01 01 02 2.5 2x2 2x2 2x2 2x2x

2 

Estimated 

Reach (km) 

< 500 < 500 1000 <500 600 1500 1500 2000 

Spectral 

Efficiency 

0.5 01 01 02 02 01 02 02 

CD tolerance 

(ps/nm)@2dB 

penalty 

± 5 ± 5 ± 20 ± 30 ± 90 ± 90 >> >> 

OSNR 

tolerance(dB)@ 

BER 4x10
-3

 

17.5 18.5 15.5 >20 15.5 15.5 <15 <15 

Coherent/ Non-

coherent 

Non-

coherent 

Non-

coherent 

Non-

coherent 

Non-

coherent 

Non-

coherent 

Non-

coherent 

Coherent Cohe

rent 

Product 

Available 

No No No No No Yes Yes Yes 
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Table 8.  Analysis  of various digital modulation methods up to 1000Gb/s with theoretical 

value  of  40Gb/s taken as reference. 

 

Digital 

Modulation 

Formats 

PM-  

BPS

K 

PM-

QPSK 

PM-8 

QAM 

PM-

16 

QAM 

PM-

32 

QAM 

PM-

32 

QAM 

PM-

64 

QAM 

PM-

256- 

QAM 

Channel 

Spacing 

50 200 133 100 80 200 67 50 

Bit-Rate (Gb/s) 100 400 400 400 400 1000 400 400 

Bits/Symbol 2x1 2x2 2x3 2x4 2x5 2x5 2x6 2x8 

Symbol Rate 28-32 112-

128 

75-85 56-64 45-51 112-

128 

37-43 28-32 

Penalty vs 100G 

(dB) 

00 06 08 10 12 16 14.5 > 20 

No. of C-Band 

Channels 

44 22 33 44 55 22 66 88 

Total Capacity 

(Tb/s) 

8.8 8.8 13.3 17.6 22 22 26.4 35 

OSNR (dB) @ 

Min. Baud Rate 

10.8 18.2 20.2 22.2 24.2 28.2 26.7 >30 

OSNR (dB) @ 

Max. Baud Rate 

8.2 15.8 17.8 19.8 21.8 25.8 24.3 >32 

 

 
Table 9.  Transmission rate performance comparison for NRZ fiber modulation coding format within 

400Gb/s.   
 

Channel 
Bit Rate 

Multiplexin

g 

Method 

PMD 
delay 

 (pico- 

second

Maximum 

Dispersion

at 1550 

nm  

Insertion 

Loss 

Retur
n 

Loss 

Physical 
plant 
verification

Attenuation 
Profile 

2.5 Gbps 

DWDM 

OC- 

48/STM-16 

40 18817 1550/162
5 

nm 

1550 

nm 

1550/1625 
nm 

1550- 

1625nm 

10 Gbps 

DWDM 

OC- 

192/STM-64 

10 1176 1550/162
5 

nm 

1550 

nm 

1550/1625 
nm 

1550- 

1625nm 

40 Gbps 

DWDM 

OC- 

768/STM- 

256 

2.5 73.5 1310/155
0 

nm 

1550 

nm 

1310/1550 
nm 

1550- 

1625nm 

10 Gbps Ethernet 5 738 1310/155
0 

1550 

nm 

1310/1550 
nm 

1550- 

1625nm 
 
 

Table 10.  Performances and complexity Comparison between different multiplexing techniques and 

modulation formats at 400 Gb/s aggregation bit-rate. 

 

Digital 

Modulation  

& 

Multiplexing 

techniques 

Transmitte

r 

TX 

Receive

r 

RX 

OSNR (dBm) CD 

(PS/n

m) 

MBW 

(Ps/nm

) 

CRF 

(GHz

) 

NRZ-WDM 1M 1PD Sim : 16.5 (E-3) 

19.8(E-9) 

Exp: ≈23.3 (E-9) 

54 80 40 
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50% RZ-

WDM 

2Ms ? Sim : 14.4 (E-3) 

18.3(E-9) 

Exp: ≈21 (E-9) 

48 160 40 

DB ? ? Sim : 22.4 (E-9) 

 

? 40 ? 

NRZ-DPSK 1M 1DI + 

2PDs 

Sim : 11.7 (E-3), 

13.5 (E-3) 

Exp: ≈20 (E-9) 

 

74 80 40 

NRZ-16-

QAM 

3PCs,1M 2PDs,3P

Cs,POI,

TFL 

Sim : 20.9 (E-9) 

 

? 20 10 

E-DCDM 

(2X20Gb/s) 

1M 1PD Sim : 17.8 (E-3) 

21.74(E-9) 

 

62 120 20 

E-DCDM 

(4X10Gb/s) 

1M 1PD Sim : 21.6 (E-3) 

26.4(E-9) 

 

58 100 10 

E-DCDM 

(7X5.71Gb/s) 

1M 1PD Sim : 27 (E-3) 

31.4(E-9) 

 

52 91.4 5.71 

 

 
Table 11.  The proposed ITU-standard for DWDM channel codes. 

 

DWDM 

Channel 

Code 

λ 

(nm) 

DWDM 

Channel 

Code 

λ 

(nm) 

DWDM 

Channel 

Code 

λ 

 (nm) 

DWDM 

Channel 

Code 

λ 

 (nm) 

18 1563.05 30 1553.33 42 1543.73 54 1534.25 

19 1562.23 31 1552.53 43 1542.94 55 1533.47 

20 1561.42 32 1551.72 44 1542.14 56 1532.68 

21 1560.61 33 1550.92 45 1541.35 57 1531.90 

22 1559.80 34 1550.12 46 1540.56 58 1531.12 

23 1558.98 35 1549.32 47 1539.77 59 1530.33 

24 1558.17 36 1548.52 48 1538.98 60 1529.55 

25 1557.36 37 1547.72 49 1538.19 61 1528.77 

26 1556.56 38 1546.92 50 1537.40 62 1527.99 

27 1555.75 39 1546.12 51 1536.61   

28 1554.94 40 1545.32 53 1535.82   

29 1554.13 41 1544.53 53 1535.04   
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Table 12.  Optical OFDM Parameters for 100Gb/s using Polarization-multiplexed QAM.       
  

Transmission 

Distance 

(Km) 

Polarization-Multiplexed Transmission 

4-QAM                       

  (4 bits/symbol) 

8-QAM                         

(6 bits/symbol) 

16-QAM                    

    (8 bits/symbol) 

Npre Nc Nu Npre Nc Nu Npre Nc Nu 

1000 5 32 26 4 32 26 2 16 13 

2000 8 64 52 5 32 26 4 32 26 

3000 10 64 52 6 32 26 5 32 26 

5000 14 128 104 8 64 52 6 32 26 

 

Table 13.  Polarization multiplexed complexity of single-carrier transmission compared to  Optical 

Orthogonal Frequency Division Multiplexing at 400Gb/s. 
 

Transmission 

Distance (Km) 

Single-Carrier OFDM 

Direct FFT 

Block 

size (B) 

Complexity Transmitter Receiver Total 

1000 12.0 6 13.3 6.2 10.2 16.4 

2000 24.0 27 16.6 7.4 11.4 18.8 

3000 32.0 25 17.9 7.4 11.4 18.8 

5000 52.0 52 19.7 8.6 12.6 21.2 

 

Table 14.  Performance Comparison of CWDM and DWDM technology at 400Gb/s of WDM. 
 

Features of WDM in 

DFOC 

Coarse WDM Dense WDM 

Laser Transmitter types Uncooled DFB Cooled DFB, external 

modulation 

Spacing of wavelentghs 2500GHz (20nm) 100 GHz (0.8 nm) 

Wavelenghts/ fiber (λ) 8-16 (O,E,S,C,L bands) 40-80 (C,L bands) 

Capacity of each 

wavelength 

Up to 2.5 Gbps Up to 10 Gbps 

Total Capacity 20-40 Gbps 100-1000 Gbps 

Fiber Technology Thin film Thin film, AWG, Bragg 

grating 

Transmission distances Up to 70 KM Up to 900 KM 

Overall Cost Very low Medium 
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Application Enterprise, metro-access Access, metro-core, regional 

Transmitter Board Area 20 cm
2 
(3.1in

2
) 100 cm

2 
(16in

2
) 

Power Consumption per Tx 

Card (SDI) 

1.6 W(100 GHz) 5 W typically(100 GHz) 

Laser Wavelength variation 

(0-40°C) 

±6.5 nm ±0.16 nm 

Channel Spacing 20 nm 0.8 nm 

Channels per frame 4 + 1 upgrade port 4 + 1 upgrade port 

Wavelength Selection Standard ITU wavelength Reduced 

Raman Crosstalk Significant without 

mitigation techniques 

Minimal with selective 

wavelength spacing 

Four-wave mixing Not Applicable Not Applicable 

Dependence on the 

Dispersion of delayed fiber 

Low dependence High Dependence 

No. of Wavelengths 2-5 2-8 
 

Table 15.  Constellation diagrams of different FOC digital modulation formats. 
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Table 16.  3D graphical comparison between different DFOC parameters within 100 Gb/s 
 

Figure 1.   OFDM Performance for 100 Gb/s 

Transmission using Polarization 

Multiplexed QAM 

Figure 2.  OFDM Performance for 100 

Gb/s 

Transmission using Polarization 

Multiplexed QAM 
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Figure 3.  OFDM Performance for 100 Gb/s 

Transmission using Polarization 

Multiplexed QAM 

Figure 4.  Computational  complexity of 

Single-carrier transmission vs 

OFDM-PM-4QAM at 100Gb/s 

 
Figure 5.  Spectral efficiency features w.r.t 

modulation  efficiency for  ≤ 100 

Gb/s  Digital Modulation  Formats. 

Figure 6.  Spectral Efficiency features 

w.r.t bits/symbol for  100  Gb/s 

Digital Modulation Formats. 
 

 

Table 17.  3D graphical comparison between different DFOC parameters within 1Tb/s . 
 

 
Figure 7.  Channel Spacing features w.r.t no. Of 

C-Band ≤ 400 Gb/s Digital Modulation 

Formats. 

 

Figure 8.  Channel Spacing features w.r.t   

                OSNR (max.)  for  ≤ 400 Gb/s    

             Digital Modulation Formats. 
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Figure 9.  Channel Spacing vs No. of C-bands     

           vs Capacity at ≤ 400 Gb/s rate.  

 

 
Figure 10.  Channel Spacing vs OSNR 

(max.) 

vs Capacity  at  ≤ 400 Gb/s 

Figure 11.  Channel Spacing vs OSNR (min.)  

                    vs Capacity for ≤ 400 Gb/s Digital 

Modulation Formats. 

Figure 12.  OSNR (max.) vs OSNR (min.) 

for  

               ≤ 1Tb/s Digital Modulation 

Formats.  

 

 
Table 18.  3D graphical comparison between different digital Modulation and Multiplexing parameters 

within 1Tb/s . 

 

 
Figure 13.  Speed vs symbol rate for ≤ 400 

Gb/s Digital Modulation Formats. 

(Full-Duplex). 

 

 
Figure 14.  Speed vs symbol rate for ≤ 400 

Gb/s Digital Modulation Formats. 

(Half-Duplex). 
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Figure 15.  Performance Comparison of 

CWDM and DWDM technology at 

400 Gbp/s 

 

 
Figure 16.  Complexity  Comparison of 

Chromatic  Dispersion (Ps/nm) & 

MBW(Ps/nm). 

  
Figure 17.  Performances   Comparison of  CRF 

(GHz), Chromatic Dispersion 

(Ps/nm)  & W (Ps/nm) 

 

 
Figure 18.  Performances Comparison of CRF 

(GHz), Chromatic Dispersion 

(Ps/nm) and MBW (Ps/nm). 

 

5. COMPARATIVE ANALYSIS 

 
The parameters of different types of digital fiber optic communication modulation formats with 

their multiplexing techniques are compared in a tabular manner from Table 1-10. Also by 3D 

graph representation from Table 16, 17 & 18, we compare the characteristics of different formats 

having bit-rate of 400 Gb/s – 1Tb/s. The bandwidth efficiency is excellent in case of GMSK 

compared to BASK,    BPSK, BFSK, QPSK and  M-QAM  modulation  techniques summarized 

in Table-5. The modulation formats having speed (b/s) of 2-FSK (≤ 300 b/s and 1200 b/s), 4-PSK 

(1200b/s) up to 1024-QAM + TC (≤ 28,800 b/s) compared on the basis of their duplex methods 

used in Table-6. An comparative survey reflects in Table 7 & 8 on single channel M-QAM 

options like PM-16QAM of 200 Gb/s, PM-8QAM of 400Gb/s, PM-32-QAM of 1000Gb/s, PM-

64-QAM of 1000Gb/s, PM-256-QAM of 1000Gb/s by taking 40Gb/s value as reference, which 

considering Polarization multiplexing for all options. The 67% CS-RZ-WDM and 50% RZ-WDM 

utilizes two modulators as well as in 50% RZ-DPSK shown in Table-10. The complexity 

between different FOC digital modulation techniques and multiplexing techniques are indicated 

in Table-10. The proposed 1550 nm window i.e DWDM by ITU is shown in Table-11. A survey 

of single carrier transmission vs OFDM for polarization multiplexed 4-QAM at 400 Gb/s is 

summarized in Table-13. The transmission distance is up to 70km (CWDM) and upto 900km 

(DWDM) is indicated in Table-14. The 4-QAM,8-QAM &16-QAM modulation formats having 

their polarization multiplexed transmission performances compares in Table-12. The Table-15 

comparatively exhibits the constellation diagrams of different FOC digital modulation formats. 
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Figure 1, 2 & 3 of Table-16  reflects  a  3D-comparative  survey  on  OFDM  performance  for  

100Gb/s. A comparison between channel spacing and C-Bands of PM-BPSK, PM-QPSK, PM-M-

QAM having 100 Gb/s to 400 Gb/s is shown in figure 7 of Table-17. The OSNR at maximum 

range compares with channel spacing by taking different modulation techniques summarizes in a 

3-D pattern in figure 8 & 9 of Table-17. The symbol rate of 400-1000 Gb/s applied for 

comparison of OSNR-maximum & OSNR-minimum. of different digital fiber optic 

communication modulation formats in figure 12 of Table-17.  The comparative analysis of 

complexity between different WDM  multiplexing techniques (50% RZ-WDM, 67% CS-RZ-

WDM & NRZ-WDM) are shown in figure 16 of Table-18.  Here MBW (ps/nm) compared with 

chromatic dispersion at 400 Gb/s. The symbol rate varies with the bit/sec for 2FSK, 4PSK, 

4QPSK and 16-QAM at 2400 Hz (4800 bits/sec). Various parameters like wavelength per fiber, 

aggregate fiber capacity at 400 Gb/s, transmission distances and transmitter board area of CWDM 

and DWDM are analyzed in figure 15 of Table-18. The symbol rate vs speed for different FOC 

digital modulation formats are compared for half and full duplex standardized voice-band data 

modems. 

 

6. CONCLUSIONS 

 
 In this article we describe the influence of bit rate (Gb/s) on different fiber optic communication 

digital modulation, detection and multiplexing techniques. We analyzed the performance of PM-

QPSK (100Gb/s, 400Gb/s), PM-8QAM (400Gb/s), PM-16QAM (200Gb/s), PM-16QAM 

(200Gb/s, 400Gb/s), PM-32QAM (400Gb/s), PM-32QAM (1000Gb/s), PM-256QAM (400Gb/s) 

and PM-64QAM (1000Gb/s). This paper not only affords simple digital modulation techniques 

but also provides a comparative analysis about different detection and multiplexing techniques in 

the optical transmission system. In this article, applications are build up using 3D practical 

exposure in the digital fiber optic communication. 
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