
International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

DOI : 10.5121/ijcnc.2014.6107 95

DISTRIBUTED VERTEX COVER

ALGORITHMS FOR WIRELESS SENSOR

NETWORKS

Vedat Kavalci1, Aybars Ural2 and Orhan Dagdeviren2

1School for Vocational Higher Education, Izmir University, Izmir, Turkey
2International Computer Institute, Ege University, Izmir, Turkey

ABSTRACT

Vertex covering has important applications for wireless sensor networks such as monitoring link failures,

facility location, clustering, and data aggregation. In this study, we designed three algorithms for

constructing vertex cover in wireless sensor networks. The first algorithm, which is an adaption of the

Parnas & Ron’s algorithm, is a greedy approach that finds a vertex cover by using the degrees of the

nodes. The second algorithm finds a vertex cover from graph matching where Hoepman’s weighted

matching algorithm is used. The third algorithm firstly forms a breadth-first search tree and then

constructs a vertex cover by selecting nodes with predefined levels from breadth-first tree. We show the

operation of the designed algorithms, analyze them, and provide the simulation results in the TOSSIM

environment. Finally we have implemented, compared and assessed all these approaches. The transmitted

message count of the first algorithm is smallest among other algorithms where the third algorithm has

turned out to be presenting the best results in vertex cover approximation ratio.

KEYWORDS

Vertex Cover, Wireless Sensor Networks, Distributed Algorithms, Approximation Algorithms, Greedy

Algorithms, Graph Matching, Breadth-First Search Tree.

1. INTRODUCTION

Wireless sensor networks (WSNs) are formed by grouping tiny, self-organized, autonomously
running, and generally radio-communicable and smart sensor devices into a network in some
specific geographical region. Although there may appear differences borne by their usage type
and aim, the main common feature of these devices is the limitedness of sources. Basically, these
limited characteristics are little physical dimensions, little power sources, short range of radio,
little memory capacity, lack of information about the other parts of the network and simplicity of
the communication skills [1].

Due to these mentioned limitedness, rather than a centralized fashion algorithmic approach,
distributed algorithms in WSN are preferred where each node runs the same code with little or no
difference than the others. In WSN, distributed algorithms let nodes to communicate and pass
messages carrying data to other nodes and/or to some specific reception points. Distributed
algorithms have to be designed in such a way that the nodes have to use the least number of
software and hardware components. In this manner, they have to send as little number of
messages as possible, the messages have to be as small as possible and the processing of data and
messages on the nodes has to be minimized.

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

96

A WSN can be modeled with an undirected graph G=(V,E) where V is the set of vertices and E is
the set of edges. Graph-theoretical structures can be used for WSNs to solve problems such as
building communication infrastructures for reacting topology changes. Vertex cover (VC) is one
of these technique and it is quite useful when combined with the power of distributed nature of
the WSN. A vertex cover of a graph is the set of vertices in which at least one end of each and
every edge of it is included. The elements of a cover set can be used for various purposes, since
every communication link will be under the coverage of one or more nodes. Backbone formation,
data aggregation management, cluster formation and management, hub or router location
designation and traffic control on the information flow are some of these [2]. The problem of
finding the minimum vertex cover set (VCS) in a system containing various interconnections
which can be modeled as a graph is an NP-complete problem. However, simple approximation
algorithms can efficiently find a cover that yields a result set with the size of a multiple of the
number of the elements of the minimum cover [3, 4, 5].

In this study, we designed and implement three different distributed vertex cover approximation
algorithms and measure the performances of them. The first algorithm is a greedy approach that is
adapted from Parnas & Ron’s study [6] and the second algorithm uses graph matching [7]. The
third algorithm has been designed depending on the idea of a Breadth-First Search (BFS) tree [3,
8]. When forming the BFS tree, the vertex cover itself is formed as well and this constitutes the
main improvement. Thus, reductions in processing time and energy saving have been achieved.
We first analyze the time, space and message complexities of the algorithms and compare them.
After that, we provide practical evaluation by making simulations of the algorithms on TOSSIM
simulator.

The rest of this paper is organized as follows: in Section 2, the problem formulation is given. The
related work about distributed vertex covering is surveyed in Section 3. The implemented
algorithms are described in detail in Section 4. In Section 5, simulation measurements of the
algorithms are introduced. Lastly, conclusions are given in Section 6.

2. PROBLEM FORMULATION

In this section, we first identify the underlying network model than we define VC problem for
WSNs. Our network model is depicted in Figure 1.a and its underlying communication graph in
Figure 1.b where following assumptions are made:

• Each node in the network has a unique identifier number.
• The communication links are unidirectional and unweighted.
• Each node is identical in terms of hardware and software.
• Each node has identical transmission range and knows its neighbors.
• Nodes are time-synchronized to execute round-based synchronous algorithms. Time
synchronization can be done by applying a method such as [9].

Our objectives for VC construction in sensor networks can be listed as follows:

• VCS should be as small as possible. For example the VCS1 in Figure 1.c is {A,B,D} and
has 3 elements where the VCS2 in Figure 1.d is {A,C} and has 2 elements. Thus, VCS2 is
preferable over VCS1.

• The VC algorithm should be independent from the underlying MAC layer.
• The VC algorithm should be efficient in terms of time, space and message complexities in

order to provide low energy consumptions.

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

97

Figure 1. (a) A wireless sensor network (b) The communication graph
(c) The vertex cover VCS1={A,B,D} (d) The vertex cover VCS2={A,C}

3. RELATED WORK

In a graph, the number of elements of a minimum VCS may vary between 1 and one less than the
number of the vertices depending on the topology. Hence, by 2n

-1 trials, VCS possibilities can be
evaluated and the minimum VCS can be found [10]. As a result of this identification, such a
brute-force algorithm will surely have a time complexity of O(2

n
). With an exponential time

complexity algorithm and with a graph of vertices more than 20 in number, to find a solution for
the minimum VCS requires a huge processing power and takes unfeasibly long processing time.
Therefore, when such problems are in hand, employing approximation algorithms which present
fast and close-to-ideal results is a considerably feasible choice. Approximation algorithms have
polynomial time complexities and hence they generate the required results in polynomial time.
But these algorithms do not put forward the best results; they approximate the best result which
can be considered as an optimal result. By a centralized algorithm, the approximation ratio for a
minimum VCS is at least 1.36. The best upper bound known is 2 − Θ(1/√log2(n)) [11, 12, 13] .
When forming the minimum VCS via matching, maximum matching should be attained where
there shouldn’t be any vertices that are not matched. This situation is only met when the graph is
a bipartite graph. If it is so, then we can use one vertex from each match and form the minimum
VCS. But usually many graphs are not bipartite and a maximum matching set will not lead us to a
minimum VCS by only taking one vertex from each matching couple. Hence some of the graph
will remain uncovered. In such cases, one solution is to take both of the matching vertices into the
VCS. But, this might lead to high approximation ratio and diverging from minimum cover.
In this study, we surveyed the former studies which made assumptions similar to ours. In other
words, we have surveyed studies which consider WSN conditions, with an unweighted,
unidirectional and connected network, and assuming to run on a distributed fashion. The findings
are given in Table 1 where ∆ is the network degree and n is the node count. Distributed VC
algorithms generally use three main methods to minimize VCS. The first method is a greedy
approach which considers the degree of vertices. The second method aims to find a maximum
matching and then forms the VCS from this matching. The last method uses independent set to
find VCS.

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

98

Table 1. Theoretical performance results for some algorithms [14]

Approximation Ratio Time Complexity Year Algorithm

2 O(log4
2(n)) 1997 [15](with matching)

2 O(� + log*
2(n)) 2001 [16](with matching)

2 O(�2) 2009 [17](with edge packing)

3 O(�+1) 2009 [18](with port numbering)

2.5 O(∆) 2010 [12](with partitioning)

4. DESIGNED ALGORITHMS

We designed 3 VC algorithms for WSNs. The first algorithm forms a VC by using a greedy
approach. The second algorithm produces a VC from graph matching. The third algorithm forms
a BFS tree then constructs VC. The details of the algorithms and performance analyses are
presented in the following sections.

4.1. Basic Distributed Greedy Vertex Cover Algorithm

This algorithm is an adaptation of Parnas and Ron’s algorithm [6] for sensor networks. In this
algorithm, each vertex of certain degree adds itself to the VCS and disconnects itself from the
graph. We assume that all nodes know ∆ value. This operation can be applied by broadcast and
convergecast operations. Messaging operations amongst the nodes require acknowledgement
procedures. Since the algorithm run in a distributed manner, a general looping system is
employed and it is supported via message transmission between the nodes.

We have used the condition for selection of the vertex for the VCS as "greater than" rather than
"greater than or equal to", which takes place in the original form of this algorithm; in order to get
closer results to our target obtaining a VCS with the minimum number of elements. The
pseudocode of the algorithm is given in Algorithm 1.

BOOT:
 Just after boot, every node calculates its own degree in the graph (MyDegree)
 R=0 (rounds' counter is set to zero)
 T2 (new round timer) is set for one shot
 T0 (periodic timer for sending drop messages) is set as periodical

UPON T0 FIRED:

If there exists messages in queue and an ACK is not awaited,
 Send one message from the queue
 Do the actions for the ACK of the sent message and set T1 to one shot for ACK

UPON T1 FIRED:
 Resend the message for which an ACK is not received and set T1 to one shot for ACK

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

99

 again

UPON SENDDONE:
 Message is ensured that it has been sent
 Stop T1
 Set AckWait = False

UPON T2 FIRED:
 If ACK is not awaited and there exists no messages in the queue

 R = R+1 (increment rounds' counter by one)
 If R > log2(∆) then return (termination condition is met)
 If (MyDegree) > (∆ / (2R)) then
 Advertise ownself that it is in the cover set
 Send “drop” message to all non-zero degree neighbors (once it is within the cover set,

 it no longer needs to set timer T2)

 Else set T2 to one shot

UPON RECEIVE:
 If "drop me" message is received,
 Delete the appropriate node from the adjacency list
 MyDegree = MyDegree -1

Algorithm 1. Pseudocode of the Basic Distributed Greedy Vertex Cover Algorithm

4.2. Distributed Vertex Cover via Greedy Matching Algorithm

Our second algorithm benefits from graph matching to construct a VCS. We use Hoepman’s
weighted graph matching algorithm [7] then add each endpoint of the matching set to a VCS.
Also, the algorithm in hand uses the notion of weights assigned to the edges in the graph. But
contrarily, our aim is to approximate a distributed vertex cover in an unweighted graph, so we do
not use edge weights.

Our implementation is realized through certain assumptions as well. All messaging will be
finished while timer T2 is running; therefore it is set to quite a high value. All messaging
operations amongst the nodes require acknowledgement procedures. A general looping system is
employed and it is supported via message transmissions. The pseudocode of the distributed vertex
cover via greedy matching is given in Algorithm 2.

BOOT:
 At the beginning each node sends its degree to the other nodes (This takes place at round

 zero)

Timers T2, T0, T1 are set; value of T2 quite high.

UPON T0 FIRED:
 If there is a message in the queue and an ACK is not awaited,
 Send one message from the queue
 Do the actions for the ACK of the sent message and set T1 to one shot for ACK

UPON T1 FIRED:

Resend the message for which an ACK is not received set T1 to one shot for ACK again

UPON SENDDONE:

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

100

 Message is ensured that it has been sent
 Stop T1
 Set AckWait = False

UPON T2 FIRED:
 If ACK is not awaited and there exists no messages in the queue, (normally the queue is

 expected to be empty since the messaging time match request is designated to be long)

 Sort the active adjacency list by the degree of the nodes in descending order
 R = R+1 (increment rounds' counter by one)
 Send match request to the suitable neighbor (who is the neighbor with the least degree –

 that is the last one in the list which has been just sorted)

UPON RECEIVE:
 If a "request" message is received
 If the requester is also requested by me, (I have found my match)

 Stop timer T2
 Fulfill the following matching operations:
 Zero own degree and inform all neighbors about this (send a "drop" message)
 If round ==1
 The node in the matching couple who has the higher degree places itself in
 the vertex cover set
 If the original degrees of the nodes in the matching couple are equal,
 The node with the higher ID number places itself in the vertex cover set
 If round >1
 Both of the nodes in the matching couple place themselves in the vertex
 cover set

 If a "degree" message is received
 Update the degree of the sender node in the adjacency list
 If the received "degree" message includes zero degree, (this in fact means a "drop"

 message)

 Delete this node from the neighbor list
 Inform all neighbors about the change by means of a "drop" message

Algorithm 2. Pseudocode of the Distributed Vertex Cover via Greedy Matching Algorithm

4.3. Distributed Vertex Cover Algorithm with Breadth-First Search Tree

Our third algorithm builds a BFS tree and constructs a VCS by using this infrastructure. BFS tree
formation is very important for WSNs since BFS provides a routing backbone. In a BFS tree,
each node is associated with a level value which is its hop distance from the root (sink) node.
In our algorithm, each node will advertise its level information to its neighbors. Each node which
has once got the level information of its neighbors, will decide, through certain rules (as given
below), whether it should participate within the set of the vertex covering nodes or not. If the
level value of a node is even, then it will be directly in the set. If the level value of a node is odd
and it has a neighbor which has also an odd level value, then the node which has the larger ID
number in-between these two will decide that if it is in the VCS or not. The algorithm is given in
Algorithm 3.

BOOT:
 Sink node:
 It forms its own neighbor list using the adjacency list.
 It sends "level 0" infrastructure message to all its neighbors.

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

101

 Timer T0 is set to periodic for the messages.
 Timer T2 is set for one shot to be used in the discovering "parents" and "levels".

 Other nodes:
 They form their own neighbor lists using the adjacency lists.
 Timer T0 is set to periodic for the messages.
 Timer T2 is set for one shot to be used in the discovering "parents" and "levels".

UPON T0 FIRED:
 If there is a message in the queue and an ACK is not awaited,
 Send one message from the queue.
 Do the actions for the ACK of the sent message and set T1 to one shot for ACK.

UPON T1 FIRED:
 Resend the message for which an ACK is not received.
 Set T1 to one shot for ACK again.

UPON SENDDONE:
 Message is ensured that it has been sent.

 Stop T1.
 Set AckWait = False.

UPON T2 FIRED:
 The BFS tree is constructed.

 Each node now knows its "parent" and its "level" value.

 Timer T3 is set for one shot in order all nodes to decide whether they are within the vertex
 cover set or not.
 All nodes send their "level" information to all their neighbors.

UPON T3 FIRED:
 Every node is ensured that it has got information about each of its neighbors.

 If own "level" is even then place ownself in the vertex cover set.
 If own "level" is odd then,
 Search for a neighbor whose "level" is also odd
 If found then place the node with the higher ID in the vertex cover set.

UPON RECEIVE:
 If an "infrastructure" message is received
 If MyLevel > MsgSenderLevel +1 (if a lower level parent is found)
 Set MyLevel = MsgSenderLevel +1
 Set MyParent = MsgSenderId
 Send "level" information to all neighbors but MsgSender

 If a "level" message is received
 Update own neighbor list depending on the MsgSenderId

Algorithm 3. Pseudocode of the Distributed Vertex Cover with Breadth-First Search Algorithm

5. PERFORMANCE EVALUATIONS

In this section, we provide theoretical and practical evaluations of the algorithms.

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

102

5.1. Theoretical Evaluation

We have performed the analysis through time, message and space complexity calculations. We
have evaluated the worst case performances of the algorithms. Space complexity is given per
node while time and message complexities are calculated network wide. Theorems 1 to 9 are
given for the theoretical analysis.

Theorem 1. The time complexity of the basic distributed greedy algorithm is O(log2(n)).

Proof. The worst case happens when at each round only one node advertises itself to be in the
vertex cover set (VCS). In such a case, the maximum number of rounds is reached. Since each
node which enters the VCS sends a drop message only to its neighbors, the messaging time is 1
unit. The maximum number of rounds possible for this algorithm is R = log2(∆) , where ∆ is the
maximum degree of the graph. ∆ can take n-1 as maximum value. In this case, maximum number
of messages become O(R). Hence the time complexity becomes O(log2(n-1))= O(log2(n)).

Theorem 2. The message complexity of the basic distributed greedy algorithm is O(n

2
).

Proof. A node can send at most as many number of messages as the number of its neighbors.
Hence message complexity is ∆ per node. The worst case can arise in case of a fully connected
graph where ∆=n-1 and for all the n nodes the overall message complexity becomes O(n*(n-

1))=O(n
2
).

Theorem 3. The space complexity of the basic distributed greedy algorithm is O(n) per node.

Proof. Each node has to use memory for keeping its own neighbor list and the maximum degree ∆
present in the graph. If the graph is a fully connected one, the neighbor list can have at most n-1
elements. Hence, the space complexity of this algorithm in the worst case is O(n-1+∆) = O(n).

Theorem 4. The time complexity of the distributed cover via matching algorithm is O(n).

Proof. In the beginning, each node sends its degree to its neighbors, sends a matching request to
one neighbor and may send a drop message to its neighbors. The time complexity of these
operations are constant. In the worst case, maximum number of rounds appears when only two
nodes match in every round. In such a case, number of rounds is |V|/2=n/2. Hence, time
complexity becomes R=n/2. Conclusively, O(n) is the worst case complexity.

Theorem 5. The message complexity of the distributed cover via matching algorithm is O(n).

Proof. Initially, each node sends its degree to all of its neighbors. This adds up to d messages, d
being the degree of the node. In worst case, if the graph is fully connected, ∑Θ(d)= O(|E|)=O(n

2
).

In every round, request and drop messages are sent. Total request messages are
∑Θ(d)=O(|E|)=O(n

2
). Similarly, the complexity of drop messages is O(|E|)=O(n

2
). Hence,

overall message complexity is O(n
2
).

Theorem 6. The space complexity of the distributed cover via matching algorithm is O(n) per

node.

Proof. Each node has to use memory for keeping both for keeping its neighbors' original degrees
and their changing degrees within the rounds. This means a memory space two times the message

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

103

count. And a memory space is used for keeping the ID of the matched node and another memory
space is used for storing the round info. Thus space complexity is Θ(2*d+c)= Θ(2*(n-1)+c).
Degree d may be at most n-1, hence in the worst case space complexity per node is O(n).

Theorem 7. The time complexity of the distributed cover algorithm with BFS tree is O(n).

Proof. At the beginning, BFS tree is constructed in O(D) times where D is the diameter of the
graph. Afterwards, each node will send to its neighbors its own level value. The cost of this
operation is O(1), and if the BFS tree time cost is added to this, it sums up to O(n)+O(1)=O(n).
Total number of rounds passed during the execution of this algorithm is just two, and this value is
independent of the number of nodes present in the graph. In the first round, the BFS tree is
constructed. This procedure takes place in an asynchronous manner. In the second round, level
values are shared and the VCS is constructed.

Theorem 8. The message complexity of the distributed cover algorithm with BFS tree is O(n

3
).

Proof. Initially, BFS tree construction has a cost of O(n
3
). Afterwards, each node will send to its

neighbors its own level value. The overall number of neighbors of an n nodes graph is n*(n-1).
So, in the worst case the messaging cost will yield into ∑Θ(d)=O(|E|)=O(n

2
). The total message

cost is O(n
2
)+O(n

3
)=O(n

3
).

Theorem 9. The space complexity of the distributed cover algorithm with BFS tree is O(n) per

node.

Proof. Each node has to keep the tree level information of its neighbor nodes. Besides, it has to
use a memory space for saving its own tree level information. Hence, O(d+c) memory is required
per node. When the overall memory cost is calculated with the memory cost of BFS tree
construction, it sums up to O(d+2c). Since d can be at most n-1 in an n nodes graph, overall space
complexity becomes O(n-1+2c)=O(n).

Table 2. Overall theoretical results for worst cases

Algorithm
Time

Complexity

Message

Complexity

Space

Complexity

Basic Distributed Greedy Vertex Cover
Algorithm

O(log2(n)) O(n
2
) O(n)

Distributed Vertex Cover via Greedy
Matching Algorithm

O(n) O(n
2
) O(n)

Distributed Vertex Cover Algorithm with BFS
Tree

O(n) O(n
3
) O(n)

When we inspect the theoretical performances, we find out that the best one is the first algorithm.
We have observed the worst performance with the BFS tree based algorithm. The reason is
asynchronous BFS construction is a costly operation. Most of the message complexity stems from
the infrastructure build-up portion, and hence this dominates the overall message complexity. If a
more effective way of tree formation than the BFS can be discovered, the message complexity
can be reduced. The results tabulated in Table 2 represent the worst case scenarios. Since these
results are not tight bounds, they only indicate the order of magnitude for the complexities. And

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

104

also they do not give the complete idea for the effectiveness of the algorithm for finding a
minimal VCS. To fulfill our analysis, we present simulation measurements for the practical
evaluation in the following section.

5.2 Practical Evaluation

We have implemented and tested the designed algorithms on TOSSIM (TinyOS Simulator) [19]
using nesC (networked embedded systems C) language [20]. This language is developed for
writing applications special to embedded systems where its features like event driven structure,
flexible concurrency model and component oriented application design are very useful for such
simulation purposes. It runs in full harmony with the simulation environment TOSSIM.

Figure 2.VCSs on the Basic Graph

Firstly, we measured approximation ratios of the algorithms. Then, we assessed the simulation
results by comparing them with the optimum results. For achieving this goal, we developed a
brute-force vertex cover set finder algorithm. We have also taken into account the number of
messages which each algorithm yields. We compared the number of messages with respect to
each other for various topologies. Since, we have made the assumption that the round duration for
all of the algorithms will be long enough to let all the messaging, runtime measurements are not
meaningful. Therefore, we have not measured the durations and hence have not taken then into
our assessment.

We have run the simulations on four different graphs. First one is a simple graph designed for
general testing purposes. The second one is called octopus and designed especially for testing the
pitfalls that the algorithms may face. The third one is the famous and well-known Hamiltonian
graph in which every node has equal degrees. The last one is a randomly generated graph and lets
us to observe the effects of increasing node number on the algorithms. The measurements for the
simple graph, octopus and Hamiltonian graph are given in Figures 2, 3 and 4 respectively. For all
graphs, basic algorithm (first algorithm) has the best transfer performance. For simple graph and
Hamiltonian graph BFS based algorithm (third algorithm) has the best performance in terms of

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

105

approximation ratio. For octopus graph, basic algorithm has the best approximation ratio
performance ratio.

Figure 3. VCSs on the Octopus Graph

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

106

Figure 4. VCSs on the Hamiltonian Graph

Figure 5. Minimum VCS for the test graph found by brute-force

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

107

The graph in Figure 5 is formed in a randomized way so that it can be a small size representation
of a real-life WSN model. We have numbered the vertices from 0 to 29 and for our tests we used
the first 10, the first 20 and then all of the vertices. The simulation results of the algorithm are
given in Table 3.

Table 3. Overall practical results

The basic and matching based algorithms divert from the optimum results while the node number
is increasing as seen in Table 3. On the contrary, BFS tree based algorithm converges to the
optimum result meanwhile. That is, the approximation ratios of the basic and matching based
algorithm worsen while BFS tree based algorithm gets better. BFS tree based algorithm yields

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

108

worse results than the other two in the octopus graph. The reason of this fact is BFS tree based
algorithm performs worse for dense networks.

Although the basic algorithm has the least number of messages, its approximation to the optimum
VCS value yields the worst value. The matching based algorithm has the worst message transfer
performance but it is better than basic algorithm in terms of approximation ratio. BFS tree based
algorithm is worse message transfer performance than the basic algorithm but it yields best VC
approximation as also shown in Figure 6. At this point, it should be regarded that the BFS tree
based algorithm serves to establish an infrastructure that maintains two different purposes at the
same time.

Figure 6. Comparison of VCS approximation ratio results for the test graph

6. CONCLUSIONS

In this paper, we designed three distributed VC algorithms for WSNs to be used as a
communication infrastructure. The first algorithm is a greedy approach which is WSN adapted
version of Parnas & Ron’s algorithm and used vertex degrees. The second algorithm finds VC
from graph matching where Hoepman’s weighted graph matching algorithm is adapted. The third
algorithm is a BFS tree based approach in which a routing infrastructure is constructed with a VC.
The algorithms are theoretically analyzed and simulated in TOSSIM simulation environment.
Although the "Basic Distributed Greedy Vertex Cover Algorithm" results in the least number of
messages amongst the three, it gives out the worst approximation ratio. The "Distributed Vertex

Cover via Greedy Matching Algorithm" presents a message transfer performance in-between the
other two and it yields an approximation ratio in-between those of the other two as well. The
"Distributed Vertex Cover Algorithm with BFS Tree" produces a results for the number of
messages in-between those of the other two while it issues the best approximation ratio. And yet
an additional feature of the third algorithm besides these results is its functionality in building an
effective communication infrastructure between the sink node and the leaf nodes. These results

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

109

show us that the designed VC algorithms are good candidates for infrastructure management in
WSNs. A subject for the future studies can be the design distributed algorithms for other
distributed systems such as mobile ad hoc networks [21] and grids [22].

7. REFERENCES

[1] S. Gowrishankar, T. G. Basavaraju, D. H. Manjaiah & S. K. Sarkar, (2008) "Issues in wireless sensor

networks", In Proceedings of the World Congress on Engineering (WCE '08), Vol. 1.
[2] K. Erciyes, (2013) "Distributed Graph Algorithms: For Computer Networks", Springer-Verlag New

York Incorporated, p. 60.
[3] T.H. Cormen, C. E. Leiserson, R. L. Rivest & C. Stein (2001) "Introduction To Algorithms", MIT

Press, pp. 1106-1110.
[4] M. Sipser, (2001) "Introduction to the Theory of Computation", Itp, p. 284.
[5] J. Kleinberg & É. Tardos, (2006) "Algorithm Design", Tsinghua University Press, p. 466.
[6] M. Parnas, & D. Ron, (2007) "Approximating the minimum vertex cover in sublinear time and a

connection to distributed algorithms", Theor. Comput. Sci., Vol. 381(1-3), pp. 183-196.
[7] J. H. Hoepman, (2004) "Simple distributed weighted matchings", arXiv preprint cs/0410047.
[8] A. Levitin, (2011) " Introduction to the Design and Analysis of Algorithms", Pearson Education, p.

122.
[9] S. Ganeriwal, R. Kumar & M. B. Srivastava (2003) "Timing-sync Protocol for Sensor Networks", In

Proceedings of SENSYS 2003, pp. 138-149.
[10] R. Hammack, (2009) "Book of Proof", Virginia Commonwealth University, Math Department, p.

12.
[11] I. Dinur & S. Safra, (2002) "The importance of being biased", In Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing, pp. 33-42.
[12] Y. Zhang, F.Y.L. Chin & H.F. Ting, "Approximated distributed minimum vertex cover algorithms for

bounded degree graphs", In Proceedings of the 16th annual international conference on Computing
and combinatorics2010, pp. 100-109.

[13] G. Karakostas, (2009) "A better approximation ratio for the vertex cover problem.", ACM Trans.
Algorithms,. 5(4), pp. 1-8.

[14] M. Astrand & J. Suomela, (2010) "Fast distributed approximation algorithms for vertex cover and set
cover in anonymous networks", In Proceedings of the 22nd ACM symposium on Parallelism in
algorithms and architectures, pp. 294-302.

[15] M. Hańćkowiak, M. Karoński & A. Panconesi, (1997) "On the Distributed Complexity of Computing
Maximal Matchings", BRICS, Department of Computer Science, Univ.

[16] A. Panconesi & R. Rizzi, (2001) "Some simple distributed algorithms for sparse networks", Distrib.
Comput., 14(2), pp. 97-100.

[17] M. Astrand, P. Floréen, V. Polishchuk, J. Rybicki, J. Suomela & J. Uitto (2009) "A local 2-
approximation algorithm for the vertex cover problem", In Proceedings of the 23rd international
conference on Distributed computing, Springer-Verlag: Elche, Spain, pp. 191-205.

[18] V. Polishchuk & J. Suomela, (2009) "A simple local 3-approximation algorithm for vertex cover", Inf.
Process. Lett., 109(12), pp. 642-645.

[19] P. Levis, N. Lee, M. Welsh & D. Culler, (2003) "TOSSIM: Accurate and Scalable Simulation of
Entire TinyOs Applications", In Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, pp. 5-7.

[20] David Gay, Matt Welsh, Philip Levis, Eric Brewer, Robert Von Behren, & David Culler, (2003) “The
nesC language: A holistic approach to networked embedded systems”, In Proceedings of
Programming Language Design and Implementation, pp. 1-11.

[21] Kayhan Erciyes, Orhan Dagdeviren, (2012) A Distributed Mutual Exclusion Algorithm for Mobile Ad
hoc Networks, AIRCCSE International Journal of Computer Networks & Communications, 4(2), pp.
129-148.

[22] Resat Umit Payli, Kayhan Erciyes, Orhan Dagdeviren, (2011) Cluster-based Load Balancing
Algorithms for Grids, AIRCCSE International Journal of Computer Networks & Communications,
3(5), pp. 253-269.

International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.1, January 2014

110

Authors

Vedat Kavalci

Vedat Kavalcı received the BSc. degree in Computer Eng. and MSc. degree in Computer
Eng. from Ege University. He is a lecturer in Vocational Higher School in Izmir University.
He is currently a Ph.D. student in Computer Science and Information Technology joint
program at Ege and Izmir Universities. His interests lie in the computer networking, wireless
sensor networks and embedded systems areas.

Aybars Ural

Aybars Ural received one of his BSc. degrees in Mechanical Eng. from Middle East
Technical University and the other one in Computer Eng. from Yasar University. He is
currently a Ph.D. student in Information Technology program at International Computing
Institute in Ege University. His research interests are mobile informatics and decision
making software.

Orhan Dagdeviren

Orhan Dagdeviren received the BSc. degree in Computer Eng. and MSc. degree in Computer
Eng. from Izmir Institute of Technology. He received Ph.D. degree from Ege University,
International Computing Institute. He is an assistant professor in International Computing
Institute in Ege University. His interests lie in the computer networking and distributed
systems areas. His recent focus is on graph theoretic middleware protocol design for wireless
sensor networks, mobile ad hoc networks and grid computing.

