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ABSTRACT  
 

Information centric networking (ICN) has been in the spotlight of recent research. It is an emerging 

communication paradigm that relays on the concept of publish and subscribe. It aims to revise the current 

Internet with a new clean slate architecture where the design is completely different from today’s location 

based model. To secure the forwarding plan in this network, it is vital to have a time based transient 

forwarding identifiers by periodically changing the network link identifiers. This assumes shared keys to be 

distributed prior the communications between an entity termed topology manager (TM) and each forwarder 

in the network. Exchanging and sharing a secret key between two parties is one of most critical functions in 

cryptography that needs to be more concerned when integrating cryptographic functions into the system. As 

ICN is brand new Internet architecture, many existing cryptography protocols may need to be redesigned 

to fit this new architecture. Therefore, this paper focuses on the security aspect of ICN and proposes an 

initial design to deploy the integrated Diffie-Hellman-DSA key exchange protocol as a key distributions 

mechanism. 
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1. INTRODUCTION  
 

Information-centric networking (ICN) is an emerging communication paradigm that is receiving 

an increasing attention by the research community. This is because of the concept that it relays 

on, where information items are of primary importance rather than the location of end users. The 

motivation of this clean-slate architecture is due to the many limitations on the traditional IP-

based Internet model including security, mobility, scalability, economic [1]. These issues are 

related to the original design of the Internet in 1960s, where the Internet traffic speed was very 

slow with a limited number of trusted users. 

 

Security is one of the major concerns and challenges in the current Internet. Current statistics 

reported by the United States Government Accountability Office shows that there were on total 

100,000 security incidents reported in the year 2011[2]. Distributed denial-of-service (DDoS) 

attacks are observed daily with an average of 7000 attempts.  The security issue of Internet has 

forced many businesses to invest in their infrastructure by adopting various security solutions, 

e.g. firewalls, intrusion detection systems, antivirus software.  One of the main reasons behind the 

success of these security breaches is the current location based model of the Internet. In this 

model sender is in complete control of sending any bad and arbitrary data, such as unsolicited 

messages (spam). The network makes best effort to deliver this data. However, in ICN users only 

receive data that has been previously requested by them. Therefore, to overcome the 

aforementioned network limitations, several solutions have been proposed as architectures for 
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ICN including content-centric networking (CCN) [3], data-oriented network architecture (DONA) 

[4], COMET [5] and PSIRP/PURSUIT [6].  

 

ICN architectures rely on the concept of publish/subscribe paradigm as alternative way to the 

commonly used send/receive paradigm. The basic element of this architecture is information; 

information is everything and everything is information [5].  

 

Our work is based on the PSIRP/PURSUIT ICN architecture. This architecture is composed of 

three elements: publisher, subscriber, and network broker [6]. A simplified view of the 

communication model is shown in Fig 1. Publisher is the information provider where he 

advertises information by issuing publication messages and serving the requested publications to 

the forwarding layer to be delivered to a subscriber. Subscriber is information consumer where he 

subscribes to the desired information item by issuing subscription requests. The network broker is 

divided into Rendezvous (RV) [7], Topology Manager (TM) [8] and Forwarder (FW). 

Rendezvous works as middle-man between publisher and subscriber. It is responsible for linking 

subscriptions with the requested publications. The role of TM is to collect and manage the 

information about network states by monitoring the network and detecting any changes. Also it is 

responsible for finding suitable routes to subscribers by creating forwarding identifiers (FID). 

When information is published it is uniquely identified by assigning a pair of identifiers, 

Rendezvous identifier (RID) and Scope identifier (SID). Each subscriber must know this pair in 

order to request a publication. Subscribers send the subscription request to the Rendezvous to find 

the publication that matches the subscription. Once the publisher of the requested information 

item is identified then the rendezvous instructs the topology manager to construct the delivery 

tree from the publisher to the subscriber. 

 

The routing system adopted in PSIRP/PURSUIT ICN is the line speed publish/subscribe inter-

networking (LISPIN) [9], a multicast forwarding fabric based on Bloom-filter. As this mechanism 

has some security issues discussed later, the zFormation mechanism [10] has been proposed to  

secure the forwarding plane of ICN by offering a DoS resistant forwarding service. The 

zFormation mechanism requires the TM to have a master key shared with each FW in the 

network. Therefore in this paper we extend our previous work proposed in [11] by redesigning 

the integrated Diffie-Hellman-DSA key exchange protocol to fit securely on the ICN architecture. 

This enables each newly bootstrapped forwarding node to create and share a key with TM to be 

used be for the subsequent master key.  

 
Figure. 1. Basic PSIRP/PURSUIT communication model 

 

The rest of this paper is organized as follows. Section 2 briefly outlines the basic forwarding 

mechanism used in PISRP/PURSUIT, the issue of false positives and the forwarding 

vulnerabilities with an existing solution. In Section 3, we describe our recent work and analyse 

the two proposed security designs. In Section 4, we explain the Diffie-Hellman key exchange, the 
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digital signature algorithms and DH-DSA protocol. We proceed in section 5 by introducing our 

initial design of deploying this protocol under ICN. Finally we draw the conclusion in section 6.  

 

2. BACKGROUND 

 
2.1. Bloom-filter Based Forwarding Mechanism 

 
Bloom filter can be described as probabilistic data structure function used to examine if an 

element is present in a set, full description can be found in [12]. Due to the memory efficiency 

that Bloom filter offers, it has gained recently wide interest in network applications. It has been 

proposed in the packets forwarding approach LIPSIN [9] to offer an efficient source routing by 

aggregating the whole delivery tree identifiers. Unlike the current Internet routing system where 

each node is named with a unique IP address, in LIPSIN a link identifier (LID) is assigned to each 

unidirectional link between nodes. Therefore, for a point-to-point connection there will be two 

LIDs, one in each direction. Each LID is an m-bit Bloom filter, with k bits set to 1(i.e. k is the 

number of hash functions applied to set bit position to 1). Typically (k<<m) and m is relatively 

large. This makes the LIDs statistically unique and gives up to 1012 LIDs for 

m=265 k=5 [9].  

 

The communication takes place by the publisher host when publishing information item to RV by 

assigning RID and SID. Then if a subscriber is interested in this information item, he subscribers 

to the information by sending subscription request to RV. When RV receives a publication 

request to publish information items, it records the received publication advertisements in a table 

similar to Table 1. After that, items are considered published. Similar records are kept for 

subscription requests. The RV records them as shown in Table 2. If publication-subscription 

matching occurs, the RV instructs the TM to construct a delivery path from the publisher to the 

subscriber and create a FID representing this delivery path. For example, based on Tables 1 and 2, 

there will be the following matching: Pub-2 – Sub-1: for (00000003, 00000001). 

 

When the TM receives a request to construct the path and to create the FID, it uses its topology 

knowledge to create conceptual map between the two parties to determine the best suitable path. 
 

Table 1. Publication Info at the RV 

 

Pub ID RID SID 

Pub-1 00000001 00000001 

Pub-1 00000002 00000001 

Pub-2 00000003 00000001 
 

Table 2. Subscription Info at the RV 

 

Sub ID RID SID 

Sub-1 00000003 00000001 

Sub-2 00000004 00000001 
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Figure 2. zFilter construction and LIPSIN forwarding mechanism 

 

It takes a bitwise-OR operation over all LIDs of the path to produce an FID which is called a 

zFilter. This zFilter is sent to the publisher and upon receiving this zFilter, publisher starts 

sending the requested information item to the relevant subscriber(s) by including the zFilter in the 

packet header to be used for routing purpose. A simplified example of the forwarding mechanism 

is shown in Fig.2. When the FW receives a packet it extracts the zFilter from the packet’s header 

and performs the membership test against all its outgoing interfaces to determine where the 

packet should be forwarded. The test is done by performing a bitwise-AND operation between the 

outgoing interface and the in-packet zFilter. If the result is the same LID of outgoing interface 

(i.e. LID AND zFilter = LID), the FW assumes that this interface is part of the delivery tree so it 

forwards the packer through it. Each FW does the same procedure with all its outgoing interfaces 

until the packet gets delivered to the subscriber. 

 

2.2. False Positives in Bloom-filter Based Forwarding 

 
One main disadvantage of Bloom filters is the false positive issue, where a low rate of false 

positives may result when forwarding packets. It is inherited in the design of the Bloom filter and 

occurs when a packet is sent erroneously through an outgoing link which is not part of the 

delivery tree. An example of false positives is shown in Fig. 3 (we extend the example of Fig.2 by 

adding a new forwarding node FW3 to the network topology). After creating the zFilter, the 

forwarding procedure continues in the same manner as explained previously and upon the 

packet’s arrival to the FW2, the zFilter is ANDed with each outgoing link, LID3 and LID4. As a 

result the packet is forwarded over LID3 as it is one of the delivery tree elements so the condition 

is satisfied.  Also a copy of the packet is sent over the LID4 (i.e. this is because that the condition 

LID4 AND zFilter = LID4 is true) although the LID4 is not part of our delivery tree. This is a 

wrong forwarding decision and considered a false positive. The false positives issue causes 

packets to be unnecessarily duplicated over some extra links and then introducing wasted 

resources (i.e. traffic consuming). It may become a security threat if exploited by an attacker as he 

could disrupt the network. He could deny services to an end node or network links by 

intentionally causing false positives in sensitive parts of the network. In practice, the attacker 

could launch  several types of attacks such as packet storms, forwarding loops, and flow 

duplication which at the end leads to a significant increase on the network traffic [13]. Below we 

briefly review these attacks. 
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Figure 3. False positives in forwarding decision 

 

Forwarding loops: happen when some false positives occur and lead a packet to be returned to a 

forwarding node it has already visited. The forwarding node will then forward the packet again to 

all the nodes downstream of it, including the false positive links that caused the packet to endless 

loop. An example of this is by assuming a zFilter containing a delivery tree  and then 

after applying the forwarding check to the zFilter a match happen on a separate link  which 

is used to forward the packet from node C to node A (i.e. false positive has occurred), so this 

leads to an infinite loop in the path ABCA.  

 

Packet storms: a high amount of traffic will flood the network if the average number of false 

positives on a forwarding node exceeds one. This is because under these conditions on average 

each false positive will lead to more than one false positive in the next forwarding node. 

 

Flow duplication: here the false positives cause accumulated copies of packets to be sent to the 

intended downstream tree which would lead to an increase in the number of packets according to 

the Fibonacci sequence. 

 

Several proposals have been introduced to reduce the effect of these issues, including the 

multistage Bloom filter [14] and Link ID Tag (LIT) mechanism [9]. In the latter one, d different 

LITs are assigned to each outgoing interface. Therefore, for each delivery tree there will be d 

different zFiters created in order to be evaluated in terms of the false positive rate. Then the best 

performing zFilter is selected and the index d is placed in the packet header as a reference to the 

selected zFilter. From next section we call the link identifier as LID/LIT. 

 

2.3. Security Vulnerabilities in Bloom-filter Based Forwarding 
 

As LIPSIN uses fixed link identifiers and zFilters in the network, it is vulnerable to zFilter replay 

attacks, computational attacks, and brute-force attacks. All these attacks may lead to DDoS 

attacks. In zFilter replay attacks, an attacker is able to reach a target by using a previously 

received valid zFilter that represents the path to the victim, so traffic is sent without subscribers’ 

willingness. Using botnets also the attacker may launch zFilter computational attack by collecting 

and analysing the correlation between valid related zFilters and their bit patterns. Then the 

attacker figures the network topology and with this he can attack any victim or even flooding a 

segment of the network with a huge amount of traffic. 
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Figure 4. Dynamic computation of LIT in zFormation function 

 

Also brute-force attacks are possible by trying all possible zFilters hoping one of them can cause 

false positives and passes through the network. 

 

2.4. Security Enhancements to The Forwarding Plane 

 
Our goal is to make the zFilters expire after a certain time by using periodically changing 

LIDs/LITs. This prevents a malicious publisher from sending data forever. The forwarding 

decisions here are in a dynamic and computational manner depending on specific inputs. The 

approach uses a synchronised time bound shared key between TM and each FW to create the 

corresponding LIDs/LITs, and these keys are changeable in certain time which lead to change 

LIDs/LITs and then limited life-time zFilter. 

 

In this technique to compute each LID/LIT in the delivery tree, cryptographically secure hash 

function called zFormation is used. This function accepts four parameters as input and produces 

changeable LID/LIT with m-bit length and k-bit set to 1 as shown in Fig. 4. These parameters are: 

(1) some in-packet-based information ID (flow ID) and here it will be the RID of request, (2) 

periodically changing time-based secret key K, (3) in-out ports numbers of the hop (where the 

packet came from and where it is going to traverse), (4) the optimisation index d of false positive. 

Therefore a LIT O= Z(I,K(t), In, Out, d) becomes dynamic and bound to one zFilter with a 

specific flow, delivery tree and only valid for certain time period. 

 

When TM receives a request to create a zFilter, it calculates the path as in LIPSIN, and then 

creates the LID/LIT by using the five parameters. At the end an OR operation is taken over all 

LIDs/LITs to produce a time based zFilter. On the forwarder side, when a packet is received by a 

FW it creates the LID/LIT by extracting the flow ID and index d from the packet and using the 

input interface where the packet has come from and the candidate output interface, the current 

time bound key k and putting them into the Z function. 

 

The resulted LID/LIT is examined against the received zFilter to take a forwarding decision. This 

process is repeated with all outgoing interfaces. Therefore, if an attacker managed to figure a 

zFilter then he would be limited to a short period of time and then he has to repeat the attack 

process. In [15], we proposed a solution for updating long lived flows with a new zFilter when the 

current ones are about to expire while communications still in progress. 

 

However, although zFormation approach has solved the issues of replay attack and computational 

attack, it has failed to prevent brute force attack. In [16], we have analysed this attack and 

demonstrated that an attacker could break into the network and attack a victim 5-hops away 
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within a couple of seconds. To prevent such attack with zFormation approach, link identifiers 

have to be changed more frequently (i.e. every 10 seconds) and this may increase the load on the 

network. Therefore, in the next section we propose two proposals to mitigate this attack. 

 
 

3. SECURITY PROPOSALS 

 
In this Section we propose two solutions that mitigate the brute-force and the replay attacks 

defined in Section 2.3. Generally, instead of checking the zFilter at each FW we only do the 

check at the ingress of the network (the first FW node on the path). Two proposals are introduced 

and discussed in the following lines. In these proposals, a FW that is connected to a user will be 

referred to as EdgeFW. For example in Fig. 5, the EdgeFWs are FW-1, FW-5 and FW-6.  

 

3.1. Key Based Hash Function Approach 

 
In this approach we assume that the TM shares a (different) secret key, Ki, with each EdgeFW. 

Full description of creating these shared keys is explained later in Section 5. We also assume that 

the subscriber may subscribe to a whole scope (SID) or only to an information item (RID). If he 

subscribed to an RID, then after receiving the item, the subscriber must unsubscribe. If he 

subscribed to a SID, then he is notified about any information items published under that scope 

and decides whether to subscribe or not.  

 

For example, assume that a publication-subscription matching has occurred at the RV for a 

particular item, which requires a routing to be done between Pub2 and Sub1 as shown in Fig. 5.  

Therefore, TM is requested by the RV to construct the delivery path and create the zFilter 

containing the encoded path (as described in Section 2.1).  When the zFilter is created using 

LIPSIN, the TM takes a hash over this zFilter along with the current time t and the key Ki that is 

shared with the ingress EdgeWF (i.e.FW1). The result of this hash is sent to Pub2 along with the 

zFilter and the time t that has been used when creating the hash. This information is put in each 

packet by Pub2 in order to be forwarded. 

 

When the EdgeFW receives the packet it knows that the packet has come from an end node and 

not from an intermediate device so it does what is called a security check. In this check, the 

EdgeFW (FW-1) validates the zFilter whether it is randomly created by the publisher or not. To 

do this, it extracts the attached hash, t and zFilter from the packet and along with its own shared 

key Ki it creates a new hash. This new hash is compared with the received one. This is just an 

authorization check and is required only at the beginning of the forwarding process. It assures that 

the publisher is using a valid zFilter. If the two hashes are the same, then the EdgeFW assumes 

that this zFilter is created by the TM and not a fake zFilter. So it forwards to appropriate links by 

using the LIPISN mechanism. The EdgeFW also records this zFilter as valid for TTL (time to 

live) of ∆t seconds for this particular publisher (i.e. Pub1) as shown in Table 3. Since the 

publisher does not know the key Ki he is not able to create a valid hash for a fake zFilter. After 

authentication process publisher only sends zFilter with packets assuming a similar zFilter has 

been authenticated previously.  After authenticating the zFilter, any coming packet at EdgeFW is 

checked if it has a valid (recorded in the table) zFilter. If the security check fails, then the 

publisher is assumed to be an attacker and is blocked. The zFilter remains in the record until the 

TTL reaches 0 and then is deleted. 
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Figure 5. Delivery path from Pub-2 to Sub_1 using EdgeFW 

 

We assume that all zFilters are valid for a time ∆t. If time reaches ∆t-j seconds (e.g. j is 10 

seconds before ∆t expires) and the subscriber hasn’t unsubscribed yet, then the RV assumes that 

the subscriber hasn’t received the whole item yet and is interested to receive the remaining data. 

In that case the RV will send a request to the TM to notify EdgeFW to renew the time of this 

existing zFilter that is linked to an item ID (RID, SID) in the record, by resetting the TTL. 

 

3.2. Local-link Based Approach 

 
In this proposal we distinguish two types of zFilters; EdgeFW-to-EdgeFW: ezFilter (edge zFilter) 

and publisher-to-subscriber: uzFilter (user zFilter). The zFilter created by the TM is the ezFiler 

which satisfies the path from the first EdgeFW to the last EdgeFW in the path. 

 

We assume that links from the EdgeFW to the users’s end node are local (i.e. not known by the 

TM). Each publisher is a potential attacker; therefore he is not aware of the ID of his local link 

identifier (local LID/LIT).  Also the SID and RID are sent along with the publisher ID to allow 

the EdgeFW to know where the received ezFilter should be directed. The local LID/LIT is 

changed by the EdgeFW per each flow to prevent the replay attack on the local-LID/LIT by the 

publisher side. 
Table 3. Storing zFilters at the EdgeFW 

 

Pub ID RID SID zFilter TTL (Sec) 

Pub-2 00000003 00000001 10011101 8 

Pub-1 00000005 00000001 11000101 5 

Pub-3 00000009 00000002 10110101 3 

 

Table 4. Storing zFilter at the EdgeFW 

 

Pub ID RID SID ezFilter 

Pub-2 00000003 00000001 10011101 

Pub-1 00000005 00000001 11000101 

 

In this technique, the TM creates the ezFilter from the EdgeFW of the publisher to the EdgeFW 

of the subscriber to be sent to the EdgeFW of the publisher. When this node receives the ezFilter, 

it takes an AND operation over the ezFilter and the local-LID/LIT of the publisher. The resulting 

uzFilter is then sent to the publisher. The EdgeFW records the PubID, RID, SID and the ezFilter 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.6, November 2013  

161 

(see Table 4). The publisher, after receiving the uzFilter, places this uzFilter in the packet header 

to be used when sending data. When EdgeFW gets uzFilter from the publisher, it performs an 

AND operation of the uzFilter (included in the packet) and the local-LID/LIT. We call this a 

security check (SC).  If matching occurs, the packet is forwarded to appropriate outgoing links by 

using the corresponding ezFilter and following the LIPSIN mechanism. If no matching occurs, 

then the EdgeFW assumes that the uzFilter is fake and the publisher is blocked/banned. Each 

intermediate forwarder directs the packet (after performing the LIPSIN check) until it reaches the 

last EdgeFW. At this point the packet is forwarded to the subscriber by checking if there is an 

existing subscription request for the same SID and RID. 

 

We note that in this proposal there would be no updates required for the ezFilters, and this is 

because the local-LID/LIT are not included in the ezFilter. Also the local-LID/LIT is changeable 

per each publication and unknown to the publisher. Hence the publisher is not able to construct 

any uzFilter from the ezFilter. We assume that ezFilters are assumed to be valid until the 

subscriber unsubscribes so the EdgeFW is notified by the RV to cancel the ezFilter. 

 

However, brute force attacks are still possible but with higher cost. This is because if an attacker 

has managed to guess the local-LID/LIT and pass the SC (i.e. the created zFilter includes the 

local-LID/LIT), then he also has to pass the forwarding check with at least one of the outgoing 

interfaces of the EdgeFW node. If the forwarding check fails then the attacker is blocked from 

using the network services. So the probability of sending a packet to the second FW is:      

 

 
 

(1) 

   

where x is the number of outgoing LIDs, k is the number of hash functions and m is the 

maximum allowed fill factor of the Bloom filter. 

 

The attacker’s packet can reach the target’s EdgeFW if the randomly created uzFliter can pass the 

SC at the attacker’s EdgeFW and the forwarding check along at least one path from the attacker’s 

egdeFW to the target’s EdgeFW. The probability of this is: 

 

 
     

(2) 

   

where h is the distance (number of hops) from the attacker’s egdeFW to the target’s EdgeFW. 

We analyse the possibility of computational attack, of this approach, to find the ezFilter. This 

attack can be launched if the attacker collects valid uzFilters and tries to predict the ezFilter to the 

target. An example of a computational attack is as follows: 

 

 

For simplicity assume that k = 2, m = 8 and m = 0.5 and the valid ezFilter that the attacker wants 

to figure out is 01001110. So the attacker will perform the following steps: 

1- The attacker starts with a predicted ezFilter-pred-0 of all ones (i.e. ezFilter-pred-0 = 

11111111). 

 

2- Assume that initially the local link ID is local-LID/LIT _1=11000000, therefore the 

uzFilter is constructed by the EdgeFW and sent to the attacker and is equal to: 

uzFilter_1= ezFilter OR local-LID/LIT _1 = 11001110 

3- The attacker creates the new predicted ezFilter as follows: 

ezFilter-pred-1= uzFilter AND ezFilter-pred-0 = 11001110 
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4- The attacker checks the fill factor ρ of the predicted ezFilter whether ρ ≤ ρm or not. If yes 

then the ezFilter is found (i.e. the predicted ezFilter contains the valid ezFilter). If ρ > ρm, then 

steps 2 to 4 are repeated. 

 

In our example ρ = 5/8 > ρm, therefore the attacker needs to wait for another uzFilter to repeat the 

same previous procedure. When a new uzFilter is received by the attacker, he will start the 

procedure from step 2. Assume that the new local-LID/LIT =01100000, therefore the uzFilter (i.e. 

uzFilter=01101110) is constructed by the EdgeFW and sent to the attacker’s node. In step 3, the 

attacker creates the new predicted ezFilter which will be 01001110.  In the last step that attacker 

checks the fill factor and in this case it is 4/8 which is equal to ρm. This means that 

ezFilter=ezFilter-pred-2. 

 

Changing the Local-LID/LIT per each request can be considered as countermeasures to prevent 

the uzFilter computational attack. This attack might be launched where an attacker is trying figure 

out the local link identifier and then can send bad traffic through a path. In this attack several 

machines of the attacker’s botnet subscribe to the same information item that is available in the 

attacker machine. Within the same ∆t of the local link identifer, the attacker will receive several 

valid zFilters that are already ORed with the local link. Then the attacker will be able to figure out 

the local link by analysing the zFilters. 

 

4. DEFFIE-HELLMAN-DSA KEY EXCHANGE PROTOCOL 

 
4.1. Deffie-Hellman Key Exchange 
 

DH [17] can be used as a key distributions protocol and is the first and the most important key 

establishment mechanism that defined public key cryptography. The purpose of this protocol is to 

enable two parties to securely establish a shared key, over a public channel, which can be used for 

subsequent security keys. The generated key is a result of secret values exchange and its 

effectiveness depends on the difficulties of computing discrete algorithms. This protocol uses two 

publicly known numbers, a large prime number q and an integer g that is primitive of root q. 

Assuming user A and B wish to establish a shared key, user A selects a random private integer v 

< q and then calculates the public key as yA = g
v mod p and similarly user B computes yB using its 

private number w. Then, A computes the shared key using its private key with the public of user 

B as K= (yB)v mod  p, and the same way user B calculates the key K= (yA)
w
 mod  p. By this way, 

the two parties generate identical results of K. Due to the use of private keys, an attacker is only 

able to know the public values: q, g, yA, yB. Therefore, to compute the key K the attacker is forced 

to take a discrete algorithm to find the private key of any user which is considered infeasible.  

 

However, this proposed scheme does not provide authentication mechanism for the exchange 

keys and is also vulnerable to a man-in-the-middle attack, where the communicating parties 

cannot ensure who is on the other side actually when running the DH key exchange algorithm. 

Therefore, several modifications have been purposed to this protocol to integrate authentication to  

 

the DH. Arazi [18] proposed a method where the key exchange messages are authenticated using 

digital signature standard (DSS) [19]. Another attempt is Alexandris-Burmester-Chrissikopoulos-

Desmedt (ABCD) system[20] and in 2004, an improvement was made by Harn et al. on Arazi’s 

scheme [21] to provide some security resilience. Integrating Diffie-Hellman protocol into Digital 

signature algorithm (DSA) leads to some security weakness to the protocol such as key freshness 

[22], forward secrecy [22], unknown key-share attack [23] and known-key security [20].  The  
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work on this paper relies on the most secured scheme of the integrated Diffie-Hellman-DSA key 

exchange protocol [24]. 

 
4.2. Digital Signature Algorithm  
 

The DSA consists of three chosen parameters that are public and known to a group of users. A 

160-bit prime number q (i.e. 2159 
< q < 2

160), and a prime number p with length between 512 and 

1024 bits such that q divides (p-1), and an integer g such as g= h
(p-1)/q

 mod p >1 where h is 

between 1 and (p >1). The user selects a random value as private key x where (q-1) > x >1 and 

generates public key y as y = g x mod p,  H is secure hash function of message m, and k is 

randomly chosen integer with 0 < k < q. (p, q, g, y) are public values. To sign a message m, a user 

computes two parameters, r and s, as r = ((g
k
 mod p) mod q) and s = (k

-1
 (H(m) + x.r )) mod q. 

Here k-1 is the multiplicative inverse of (k mod q). At the receiver end, to verify of the signature 

let m’, r’ and s’ are the received version of m, r and s respectively. The receiver checks the 

signature and it is rejected if r and s are not between 0 and q. Otherwise, the receiver computes a 

= (s’)
-1

 mod q, u1 = [H(m’)a] mod q , u2 = ( r’ a ) mod q and b = [( gu1 yu2 ) mod p] mod q. 

Finally the receiver tests if b=r’ then the signature is validated. 

 

4.3. Integrating DH with DSA 
 

We use the three rounds protocol proposed in [24] which includes key conformation at the third 

round and modify it four our purpose. So, it produces only one shared key for both directions 

instead of two keys. Fig. 6 shows the procedure of generating a shared key between two users A 

and B where v and (w1, w2) are short term integer secret values (ephemeral) chosen by the two 

parties A and B respectively for that session. In step 1 user A selects a random secret value v such 

as 0 < v < q and the values g, p, q according to their definition above, and computes mA and 

sends the values to user B. Upon receiving (mA, g, p, q) and selecting the values w1, w2 in step 

2, user B computes the session key k and mB, rB, sB and sends them to user A. Next user A 

creates the session key K and then verifies B’s signature (rB, sB) on the message (mB|| K) if the 

verification holds it means the shared secret key is established. Step 4 acts as a key confirmation 

to prevent key replay attack so user B can verify the signature (sA, rA) on the message mA || K 

hence user B convinced that mA received is not a replay attack and indeed sent by user A. 
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Figure 6. The classic DH-DSA protocol exchange process 

  

5. DEPLOYING DH-DSA UNDER ICN 
 

As the concept of ICN is based on publish-subscribe paradigm the exchange of the secret values 

is published to specific scope to be subscribed by the other user. To support our proposal in 

section 3.2 and the technique proposed in [10] which requires a shared key between each FW and 

TM to make the link IDs dynamically changing, we apply integrated protocol (i.e. DH-DSA) 

between these two nodes. 

 

5.1. Scopes Setup 
 

We assume some restrictions are applied on the publish-subscribe functionality. This is because if 

an attacker is able to publish to any sub-scope then he may feed the TM with fake information. 

Secure Layered Rendezvous can be used so no one can publish and subscribe without 

authentication (i.e. only the owner of the sub-scope is able to publish or subscribe to the scope). 

Fig. 7 shows the scopes organization and the procedure of this protocol. There are two main 

scopes, Node-Scope and TM-scope, created by the TM. TM subscribes to the two scopes, so it is 

notified if there is an item has been published under any of the two main scopes. Also the FW 

subscribes to the TM-Scope in order to get any information published or sub-scope created by 

TM. To avoid any confusion that may occur in the TM side when establishing key exchange 

process with more than one FW, we add the identity of each node. Therefore, the FW publishes 

its ID under the two sub-scopes just created. By this stage, the TM is notified about the two sub-

scopes created by FW and subscribes to them. Now the two parties are ready to exchange 

information in order to establish the shared key in public without compromising the key. 
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5.2. The Protocol Exchange Process 
 

The exchange process is shown if Fig. 7 and started by the FWs side in the following procedure:  

Step 1: we consider this step to be done on the in scopes Setup phase where FW-1 publish its ID 

under each scope. 

 

Step 2:  FW-1 selects the public values g,p,q and calculates mA , then it publishes the values 

(g,p,q, mA ) to the sub-scope 8754 under Node-Scope. As TM previously subscribed to this sub-

scope in the setup phase then it will receive the values. He can recognize the corresponding node 

from the node ID published previously.  

 

Step 3: T.M creates the session key K using the received values and also calculates mB to be 

signed along with the session key. Then it publishes the message mB along with its signature (i.e. 

mB, sB, rB) to the sub-scope 7582 under TM-Scope. FW-1 node as subscriber will receive these 

published information. 

 

Step 4: FW-1 calculates the session key K, using mB and then it verifies the signature. Then it 

confirms the key to the T.M by singing it along with mA and send the signature sA. 

 

Step 5: TM verifies the signature to be sure that it received a valid value of mA in step 1 and it 

was not a replay attack. Then it randomly creates a master key Kmaster using cryptography secures 

pseudo-random function (CSPRNG) and encrypts it using Advanced Encryption Standard 

algorithm (AES) [25] along with the shared session key. Finally T.M publishes the master key 

Kmaster in encrypted manner which can only be decrypted by FW-1 using the shared session key. 

By this, the two parties will share the same key to be used for a secure channel. 

 

 

Figure 7. Scopes organization and protocol procedure 

 

6. CONCLUSION     

      
ICN is a clean-slate model aiming to solve many issues existing in the current Internet model. As 

this architecture is brand new and completely different from that in the current Internet, this paper 

aimed to redesign the integrated Diffie-Hellman-DSA key exchange protocol as a key 

distributions mechanism to be applicable under ICN. This protocol can be used in the forwarding 

plane to offer a better security level. In practical, it can be used with the zFormation approach 

where LIDs are changeable and created upon a shared key. It also can be used with our recent 
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proposal that is based on a hash function. With this protocol, network nodes are able to exchange 

a mater key in a public channel.  
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