
International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

DOI : 10.5121/ijcnc.2013.5504                                                                                                                      45 

 

AVAILABLE NETWORK BANDWIDTH  

SCHEMA TO IMPROVE PERFORMANCE IN TCP 

PROTOCOLS 

 
Marcos Talau and Emilio Carlos Gomes Wille 

 

Federal University of Technology - Paraná (UTFPR) 

Av. Sete de Setembro 3165, 80230-901, Curitiba (PR), Brazil 
talau@users.sourceforge.net, ewille@utfpr.edu.br 

 

 

ABSTRACT 

 
The TCP congestion control mechanism in standard implementations presents several problems, for 

example, large queue lengths in network routers and packet losses, a misleading reduce of the transmission 

rate when there are link failures, among others. This paper proposes a schema to congestion control in 

TCP protocols, called NGWA, witch is based on the network bandwidth. The NGWA provides information 

considering the available bandwidth of the network infrastructure to the endpoints of the TCP connection. 

Hence, it helps in choosing a better transmission rate for TCP improving its performance. Simulation 

results show superior performance of the proposed scheme when compared to those obtained by TCP New 

Reno and standard TCP. A physical implementation in the Linux kernel was performed to prove the correct 

operation of the proposal. 

 

KEYWORDS 

 
 TCP, Congestion Control, Network Bandwidth, Linux. 

 

1. INTRODUCTION 
 

The Transmission Control Protocol (TCP) is the dominant transport protocol on the Internet. It 

supports a wide range of applications such as WEB, e-mail and, recently, emerging applications 

such as peer-to-peer. The TCP is based on a sliding window protocol and provides end-to-end, 

reliable, congestion controlled connections over the network [1]. 

 

Nowadays, given its importance, there is great interest in the analysis of its performance and on 

the overcoming of its limitations. Among the TCP problems we can mention: large queue lengths 

in network routers and packet losses, a misleading reduce of the transmission rate when there are 

link failures (e.g., wireless transmission problem), the network congestion recognition based on 

packet losses, and bandwidth unfair sharing [2,3,4,5,6].  

 

The default TCP implementation uses the window of the received TCP segment and the 

congestion window (cwnd) to assign the burst of data to be transmitted. The congestion window 

tries to predict the network bandwidth. It is done simply by the exponential increase of the 

window until the occurrence of a loss, then the window is reduced and fewer bytes are 

transmitted. If the loss was not caused by congestion (a very common event in wireless 

networks), the transmission rate will reduce unnecessary [3,7,8]. The literature shows that if the 

TCP transmitter has information about the network bandwidth it could, quickly and properly, 

enforce a better congestion control mechanism [2,9].  



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

46 

 

This paper proposes a new congestion control scheme for TCP, called New General Window 

Advertising (NGWA). The NGWA provides information considering the available bandwidth of 

the network infrastructure to the endpoints of the TCP connection. Hence, NGWA helps in 

choosing a better transmission rate for TCP improving its performance. It is similar to GWA 

proposed in [10], but presents a different functioning principle. To evaluate the performance of 

our proposed scheme, simulation results (obtained using the NS-3 package [11]) are presented 

and analysed. Due to the good simulation results, an implementation in the Linux kernel was 

performed to physically prove the operation of the proposal.  

 

The remainder of this paper is structured as follows. Section 2 presents the architecture and 

operation of the NGWA proposal. In Section 3 a set of simulation results is discussed. Section 4 

describes the Linux implementation, as well as, analyzes numerical results. Finally, concluding 

remarks and suggestions are presented in Section 5. 

  

2. THE NEW GENERAL WINDOW ADVERTISING  

 
The NGWA is a new congestion control scheme for TCP, it provides to the TCP end points the 

amount of bandwidth available in the network infrastructure. The NGWA work as follows: the 

total number of bytes available in a router queue is recorded in a variable (Wngwa), transiting in the 

network layer. This amount is stored in the options field of the IPv4 header (for compatibility 

with the IP protocol). The update of the variable is performed by the nodes in the packets route. 

Then, each node performs as follows: if 
packet

nwga

node

nwga WW < then 
packet

nwga

node

nwga WW = .  

 

Figure 1 illustrates the process. When a packet arrives the receiver, it is processed normally and 

the variable Wngwa is extracted from the IP header and deposited into the memory. During the 

creation of an ACK segment to be sent to the transmitter, Wngwa is extracted from memory (and 

may eventually undergo some type of processing) and it is inserted in the window field of the 

TCP segment. With this mechanism the TCP receiver knows the maximum quantity of bytes that 

the network supports at that instant. When the ACK segment reaches the TCP sender, it is advised 

of the available network bandwidth.  

 

 
 

Fig. 1. Simple example of the proposal. 

 

Finally, the above stated mechanism has been divided into eight modes (Table 1) considering the 

following combination of options: congestion window (CW), smoothing equation (SE) and 

division by number of flows (FD). Each option can be active or not.  

 

2.1. Congestion Window Option 

 

This feature applies only to TCP sources. When active, a TCP implementation with congestion 

control is used by the transmitter; in this work we used the TCP New Reno. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

47 

 

 
Table 1. NGWA modes. 

 

 congestion window smoothing equation flow division 

1 × − − 

2 × × − 

3 − − − 

4 − × − 

5 × − × 

6 × × × 

7 − − × 

8 − × × 

 

 

If the feature is not active, naturally standard TCP (RFC 793) [12] will be used. Equation 1 

defines the amount of data Wt that TCP is allowed to transmit at any given time.  

 

[ ]





−

−
=

.inactiveCW,

.activeCW,,min

ua

uca

t
WW

WWW
W     (1) 

 

where Wa is the receiver advertised window (rcvwnd) which is set by the receiver in the header of 

acknowledgment (ACK) segments; Wc is the congestion window (cnwd) that is computed by the 

transmitter following a congestion control algorithm; and Wu is the amount of outstanding data, 

i.e., the data already sent but not yet acknowledged.  

 

It is important to make clear that the variable Wngwa is processed by the receiver side, and 

indirectly applied to the transmitter by means of Wa, which is obtained from the receiver. This 

parameter is generated by the receiver by using Equation 2.  

 

[ ]
[ ]




=
.offNGWA ,,min

.onNGWA ,,,min

max

max

WW

WWW
W

b

ngwab

a     (2) 

  

where Wmax corresponds to the maximum window size, and Wb indicates the amount of space 

available in the TCP receiver memory.  

 

2.2. Division by Number of Flows Option 

 

By default the NGWA stores in the Wngwa variable the total amount of bytes available in the queue 

of the intermediate nodes. This behavior can induce injustice because a flow can consume all the 

resources of the node. The flow division (FD) option realizes the sharing of free bytes in the 

queue node by the amount of active flows (connections). The detection of TCP flows is done by 

recording the source/destination of IP addresses and ports. When this option is active, a process is 

executed to create and keep track of active connections transiting the specific node (variable nf ).  

 

The Wngwa value is then calculated by Equation (3), where Br is the total space available in the 

queue of the router. The factor 0.98 is used to provide space in the queue for acknowledgments 

(ACK).  



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

48 

 

f

r
ngwa

n

B
W

×
=

98.0
     (3) 

 

The flow division feature is ideal when routing is static, if it is dynamic (where packets can travel 

different paths) the amount Wngwa will not be correctly estimated. This may cause some 

unfairness, but will not significantly change the performance of the system.  

 

2.3. Smoothing Equation Option 

 

The TCP window generally varies substantially in short time intervals [13]. Aiming to avoid 

abrupt changes in the transmission window, a smoothing equation (4) is used by TCP receiver, 

where 0 < α < 1. When the smoothing equation (SE) option is active, Wngwa in Equation (2) is 

replaced by ngwaW . 

ngwangwangwa WWW ×+×−= αα )1(     (4) 

 

3. SIMULATION RESULTS 

 

The proposal was implemented in the network simulator NS-3. A natural choice would be the NS-

2, but it does not offer a basic TCP implementation to support the method. Simulations were 

performed to evaluate the performance of the proposal. We performed experiments in order to 

estimate a set of metrics: transmission rate, network fairness, transmission window behavior, and 

packet loss rate. For the experiments we considered a topology, widely considered in literature 

[9,14,15,16,17,18], witch is depicted in Figure 2. In the simulations, each node on the left side has 

established a TCP connection with a node on the right side.  

 

 
 

Fig. 2. Network topology for experiments. 

 

As a benchmark to the proposed implementation we used the TCP New Reno and the standard 

TCP (RFC 793) [12]. The following values were considered: Wmax = 64 kbps; TCP segment size: 

1000 Bytes, queue: drop tail; router queue capacity: 97 kBytes; constant α = 0.3; simulation time: 

10 minutes. Traffic was generated using the model OnOffApplication, present in NS-3, witch was 

configured to continuously transmit data until the end of the simulation at a rate of 500 kbps.  

 

3.1. Transmission Window Behavior 

 

In order to analyze the window behavior, the number of active connections was modified, being a 

function of the time. At the beginning a connection has been established, followed by a new 

connection at each 15s interval. In the time interval from 45s to 120s four connections were 

active. Next, only two connections were active from 121s until the end of the simulation. Hence, 

it is possible to analyze variations in the transmission window considering the start/end of 

connections (Figure 3).  



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

49 

 

 

 

 

 
 
Fig. 3. Transmission Window Behavior. The graph shows the flow that remained active from the beginning 

to the end of the simulation. 

 

The results of Figure 3 are analyzed in three intervals: (1) 0-45s, (2) 60s-120s, and (3) 121s-180s. 

In the first interval it can be seen that the transmission window of TCP New Reno started at a low 

value, increasing constantly to a peak and remaining there until about 30s, then the rate reduces. 

Modes 5 and 6 of NGWA followed the initial behavior of New Reno, while modes 7 and 8 started 

with a high value. After that, both modes presented similar behavior. At around 15s the window 

decreased reaching 50000 bytes, remaining constant until the establishment of a new connection. 

Then, for each new connection there was a drop in the transmission rate followed by a stability 

phase. In the second interval New Reno kept its oscillatory behavior, while NGWA persisted with 

a stable window. In the last interval only two flows remained active. In this case, TCP New Reno 

presented high variation on its window size, while NGWA rapidly adjusted the window size, 

keeping it stable until the end of the simulation.  

 

Note that, in general, NGWA achieved a stable transmission rate with good fairness between 

flows. TCP New Reno presented unfairness and high oscillation.  

 

3.2. Transmission Rate and Network Fairness 

 

In this experiment we compare the transmission rate (in bytes/s) for each flow. With the result of 

this analysis is possible to verify the network fairness. We considered the standard TCP, TCP 

New Reno, and all modes of NGWA. Figures 4 and 5 shows the transmission rate for all flows. 

Each node on the left side established a TCP connection with a node of the right side. We 

obtained 95% confidence interval by using the batch means approach (with 30 batches), a 

standard technique to evaluate simulation results [19].  

 

Analyzing the results it is clear that the standard TCP was, as expected, the most unfair - the 

flows 2 and 4 consumed the whole network bandwidth, leaving flows 1 and 3 with a low 

transmission. TCP New Reno maintained their flows with a good justice. The modes 1 and 3 of 

NGWA were unfair. On the other hand, the modes 5, 6, 7 and 8 obtained a fair behavior, 

overcoming the TCP New Reno performance. The NGWA smoothing option presented a more 

interesting effect in modes 2 and 4, reducing the injustice presented in modes 1 and 3.   



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

50 

 

 

 

 

 

 
 

Fig. 4. Total transmission rate for four flows of standard TCP, TCP New Reno, and NGWA modes 1-4. 

 

3.3. Packet Loss Rate 

 

The number of sent, but not received, packets is an important factor when analyzing the quality of 

the congestion control method, because lost packets, using the network, may increase congestion. 

Even as timeouts, the receiving of triple dupacks is considered a sign of network congestion. The 

total amount of triple dupacks obtained along the transmission is shown in Figure 6.  

 

The number of triple dupacks, for the standard TCP and New Reno, were the highest in the 

simulation. NGWA presented different performances depending on the selected mode. The worst 

case was with the mode 3, reaching 5279 received triple dupacks. Being followed by modes 4 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

51 

 

(2833), and 1 (30). The smoothing option again showed a good effect for the modes 2 and 4, with 

superior result when compared with modes 1 and 3. Modes 2/5/6/7/8 do not appear on the graph 

because received no triple dupacks.  

 

 
 

Fig. 5. Total transmission rate for four flows of NGWA modes 5-8. 

 

We also present the average number of lost packets (in 30 rounds) on Table 2. The standard TCP 

produced the highest average amount of losses (4001), followed by: NGWA mode 3 (1063), 

mode 4 (869), New Reno (328), and NGWA mode 1 (7). The modes 2/5/6/7/8 do not produced 

any losses.  

  

 
 

Fig. 6. Total amount of triple dupacks. 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

52 

 

 

Table 2. Average number of lost packets (in 30 rounds). 

 

Test Result 

RFC 793 4001 

New Reno 328 

NGWA mode 1 7 

NGWA mode 2 0 

NGWA mode 3 1063 

NGWA mode 4 869 

NGWA mode 5 0 

NGWA mode 6 0 

NGWA mode 7 0 

NGWA mode 8 0 

 

 

4. PHYSICAL IMPLEMENTATION (NGWA IN LINUX KERNEL)  

 
In order to prove the correct operation of the proposal, a physical implementation was done in 

Linux 2.6.34. This implementation was naturally divided in two groups: Queue and TCP. The 

first one was developed to be a module, and must be used in the network routers, and the second 

one was placed into the TCP stack of the kernel core. These groups are detailed below.   

 

4.1 NGWA Queue  

 
The NGWA Queue runs on the network routers, and do not need to be in the TCP endpoints. 

Incoming packets are processed by the router, and forwarded to the NGWA Queue. The queue 

was implemented in the network subsystem, into the file net/sched/sch_ngwa.c. The queue 

management module, in the directory net/sched, follow a standard interface for functions and 

structures and the NGWA is called by the function dequeue. First, it is checked the packet type, 

which is obtained by reading a field of IP header. If the packet isn't TCP, nothing will be done. 

Next it is checked the state of the DF option. The amount of available bytes in the router queue is 

determined, and it is checked the existence of Wngwa in the IP header, if it exists, its amount is 

stored. When the packet doesn't have NGWA mark or when the amount of bytes in the router 

queue is less than the Wngwa inserted in the packet, it will be inserted/updated the variable Wngwa in 

the options field of IP header. Further details of this module are presented below. 

  

Division by Flows: The implementation verifies the type of the TCP segment by checking the 

control bits of the header, performing a proper operation on a double linked list. If the segment is 

of type SYN and if the connection has not been previously recorded, it is inserted in the list. If the 

segment is of type FIN or RST the connection is removed from the list. To avoid duplicate 

records it was used a set of variables to identify each connection, as follows: TCP source and 

destination ports, source and destination IP addresses, and the protocol identify.  

 

Options Field: The use of the options field is done based on the ip_options structure declared in 

include/net/inet_sock.h. Its main variables are: optlen, that register the total size (in bytes) of 

options; __pad2, a generic use pointer (that can be used for new options); and __data, a vector to 

store the options' data. The main functions involved in its use are ip_options_build and the 

ip_options_compile. The first one is used to write the options in the IP header, the structure 

ip_options is passed as parameter to store the content of variable __data in the IP; and 

ip_options_compile checks the options and stores in an ip_options structure [20]. We created a 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

53 

 

new type of options to be used by the NGWA; the type must have the size of eight bits and not be 

in use; we chose the value of 33 (0010 0001). The NGWA option is used only in the kernel level, 

not having user interface.  

 

4.2 NGWA TCP  

 
The code that implements the NGWA TCP was inserted in the TCP stack of Linux, and was 

divided into incoming and outgoing TCP.  

 

Incoming TCP: A received TCP segment is processed by the Incoming TCP code. During a TCP 

connection, all segments pass through the tcp_rcv_established function, found at file 

net/ipv4/tcp_input.c. The main codes for the Incoming TCP were inserted in this function. But, 

before reaching this level, the received segment is compiled in the network layer to adjust the 

ip_options structure. This is done by the ip_options_compile routine. Returning to transport layer, 

at the arrival of a segment, it is verified if the options field are in the IP header, if it is true, it is 

checked if the variable opt->__pad2 is present (this confirms that the segment is of NGWA type), 

and then the octets are read and stored in a new variable ngwa_ipopt of the structure tcp_sock.  

 

Outgoing TCP: The Outgoing TCP uses the information of Incoming TCP as parameter for 

calculating the TCP window. All the code for Outgoing TCP is inserted in the file 

net/ipv4/tcp_output.c. The information of NGWA has been previously saved by the Incoming 

TCP in the variable ngwa_ipopt of the tcp_sock structure, and now it is used to obtain the new 

window value; the new window is determined by the function tcp_select_window.  

 

In the NGWA approach, when a packet does not contain the options field in the IP header, this 

will be added. Naturally, with more bytes in the packet, it can exceed the maximum packet size 

supported by the network. To prevent this from happening, the Outgoing TCP also performs a 

reduction of the maximum segment size (MSS) by the size of NGWA option.  

 

4.3 Numerical Results  

 
To assess the performance of the Linux implementation we set up a physical environment with 

computers and network cables. The connection between the devices on this network was carried 

out directly, as show in Figure 7. All computers have the same configuration: Core 2 Duo 

processor; 1024 MBytes of memory; and network card RTL-8169 Gigabit Ethernet.  

 

 
 

                                                       Figure 7. Network topology. 

 

The tests were performed considering four different network configurations. The central link 

capacity is 1 Gbps, but we utilized capacities of 10 and 100 Mpbs. To perform this setting we 

used the ethtool software in Linux. The queue was dimensioned to 100 and 1000 packets, 

according to the test. Using these network settings, the tests were conducted with NGWA, TCP 

New Reno, and TCP New Reno with RED queue [21]. The following configurations were 

considered in NGWA: basic, SE, FD, and SE/FD options (modes 1/2/5/6, respectively). The 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

54 

 

traffic was generated using the iperf software; it has been used in similar studies [22,23]. The 

iperf was configured to use TCP protocol with 64 KBytes of window, transmitting data constantly 

in one direction (client to server). The experiments were performed with one flow, and with two 

simultaneous flows. The data was analyzed using the batch means method, with 30 batches, to 

obtain 95% confidence intervals. 

  

One Flow: In this experiment we established a connection between a computer on the left side 

with one on the right side of the topology, through the software iperf. Each experiment ran for 

two minutes in steady state. In the tests with TCP New Reno we used a FIFO queue, except when 

RED was explicitly configured. RED parameters were adjusted according to the procedure found 

in [24]. We considered the packets average size equal to 1700 bytes; then, for a 100 packets size 

queue, we have the following RED parameters: buffer limit = 170 kBytes, min_th = 20 kBytes, 

max_th = 84 kBytes. In the test with 1000 packets, the previous values were multiplied by ten. In 

both cases the max_p = 0.02.  

 

Results are shown in Figure 8, which displays the transmission rate (in bytes/s). It can be seen 

that, in the four combinations, NGWA performance overcomes the others methods. The 

performance of New Reno and RED improved significantly with the increase of the queue size, 

but the results of NGWA remained stable. The NGWA with smoothing equation obtained better 

results than basic NGWA. 

 
 
                                    Figure 8. Total transmission rate of one flow in Linux.  

 

Two Flows: In this experiment two new computers were added to the network; this way two 

computers on the left side transmit to those the right side. The iperf ran on the four computers and 

two sets of data were collected. One set for the first pair (flow 1) and another one for the other 

two computers (flow 2). The settings of the simulation are the same as in the previous section, 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

55 

 

however the main link was set to 100 Mbps. In this second test it is also checked the network 

fairness. 

 Figure 9 present the results. The division by flow worked properly (with 100 packets queue), and 

good results were obtained when using the smoothing NGWA option. In the case of 1000 packets 

queue, the NGWA fairness decreased, but remained higher than the other methods. The 

transmission rate of the NGWA, in general, was higher than New Reno and New Reno/RED. 

Analyzing the performance of TCP New Reno and New Reno/RED, or they had a good 

transmission rate, or reasonable fairness, but not both.  

 

 
Figure. 9. Total transmission rate of two flows in Linux. 

  

5. DISCUSSION  

 
In this paper we have presented a new scheme, called NGWA, for congestion control of TCP 

protocols. The NGWA provides information considering the available bandwidth of the network 

infrastructure to the endpoints of the TCP connection. Hence, it helps in choosing a better 

transmission rate for TCP improving its performance. The NGWA was subdivided into eight 

modes, each with a different set of features. It was tested in the network simulator NS-3 and also 

implemented in the Linux kernel. We performed experiments in order to analyze a set of metrics: 

transmission rate, network fairness, transmission window behavior, and packet loss rate.  

 

Simulation results show superior performance of the proposed scheme when compared to those 

obtained by TCP New Reno and standard TCP. Compared to TCP New Reno and standard TCP, 

NGWA achieved best performance in all tests, especially the loss rate, where the modes 5/6/7/8 

did not record the receipt of triple dupacks and losses. The smoothing option improved the 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

56 

 

performance of the modes 1 and 3. The division by flow provided results greatly superior to the 

others methods. The modes 7 and 8 require, by construction, no congestion control mechanisms.  

 

Even in environments of different nature (NS-3 and Linux), it is acceptable to compare the results 

in each environment, in order to evaluate the NGWA performance in general. Hence, analyzing 

the results obtained with NS-3 and in the Linux kernel, it was found that the results were 

consistent. In the basic NGWA (without SE or FD options) the volume of data transmitted was 

high, but there was unfairness in the network; the FD option has brought greater justice to the 

flows, and the smoothing option improved the results.  

 

The studies indicated that the proposed scheme is promising. However, the simulations do not 

allow us to evaluate all the potential and/or possible shortcomings of NGWA. Hence, 

improvements in the proposal are possible and some issues deserve further investigation, 

including: (a) to study the effectiveness of the method when dealing with the accounting of active 

connections that make use of routers. In a dynamic network, it can occur rerouting processes 

and/or loss of flows due to failures. In this case, it is suggested that the necessary statistics occur 

by “time windows” to ensure a better representation of the state of the connections; (b) to perform 

an analysis of the system performance when the NGWA competes with different schemes for 

congestion control, such as TCP New Reno, TCP CUBIC, and other types of traffic, such as 

UDP; (c) to test more complex networks, with a larger number of nodes and links, so that there 

are different round trip times (RTTs) in routes. It is known that when there are flows that compete 

for limited resources, connections with higher RTTs will be most penalized, reducing the network 

fairness. In general, in this case, the source reacts with delay. Hence, one need to check what 

would be the impact on NGWA performance due to ACK delays; and (d) to use the Linux 

environment to perform more complex or impossible (simulation) tests, for example, the use of 

transmission rate of 1 Gbps and beyond.  

  

REFERENCES 
 
[1] J. Kurose and K. Ross, “Computer Networking: A Top-Down Approach.” Addison Wesley Higher 

Education, 2010. 

[2] S. Jiang, Q. Zuo, and G. Wei, “Decoupling congestion control from TCP for multi-hop wireless 

networks: semi-TCP”, in CHANTS '09: Proceedings of the 4th ACM workshop on Challenged 

networks, (New York, NY, USA), pp. 27-34, ACM, 2009. 

[3] S. Vangala and M. Labrador, “The TCP SACK-aware snoop protocol for TCP over wireless 

networks” , in Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, vol. 4, 

(Orlando, Florida, USA), pp. 2624-2628, IEEE Press, oct. 2003. 

[4] E. Weigle and W. Feng, “Dynamic right-sizing: a simulation study”, in Computer 

Communications and Networks, 2001. Proceedings. Tenth International Conference on, (St. 

Thomas, Virgin Islands, USA), pp. 152-158, IEEE Press, 2001.  

[5] O. Gnana Prakasi and P. Varalakshmi, “Enhancing performance of TCP in multihop networks”, 

International Journal of Computer Networks & Communications (IJCNC), vol. 4, sep. 2012. 

[6] S. Utsumi and S. M. S. Zabir, “Utilization-based congestion control”, International Journal of 

Computer Networks & Communications (IJCNC), vol. 4, sep. 2012.  

[7] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable transport and handoff 

performance in cellular wireless networks”, Wireless Networks, vol. 1, no. 4, pp. 469-481, 1995.  

[8] K.-F. Leung and K. Yeung, “G-Snoop: enhancing TCP performance over wireless networks”, in 

Computers and Communications, 2004. Proceedings. ISCC 2004. Ninth International Symposium 

on, vol. 1, (Alexandria, Egypt), pp. 545-550, IEEE Press, jun. 2004.  

[9] G. Hasegawa and M. Murata, “TCP symbiosis: congestion control mechanisms of TCP based on 

Lotka- Volterra competition model”, in Interperf '06: Proceedings from the 2006 workshop on 

Interdisciplinary systems approach in performance evaluation and design of computer & 

communications sytems, (New York, NY, USA), p. 11, ACM, 2006.  



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.5, September 2013 

57 

 

[10] M. Gerla, R. L. Cigno, and W. Weng, “Generalized Window Advertising for TCP Congestion 

Control”, European Transactions on Telecommunications, vol. 13, pp. 549-562, dec. 2002.  

[11] NS-3, “The Network Simulator”, nov. 2011.  

[12] J. B. Postel, “Transmission Control Protocol”, 1981. RFC 793.  

[13] J.-C. Moon and B. G. Lee, “Rate-adaptive snoop: a TCP enhancement scheme over rate-controlled 

lossy links”, IEEE/ACM Transactions on Networking (TON), vol. 14, no. 3, pp. 603-615, 2006. 

[14] S. Floyd, “TCP and explicit congestion notification”, SIGCOMM Computer Communication 

Review, vol. 24, no. 5, pp. 8-23, 1994.  

[15] M. Gerla, W. Weng, and R. Cigno, “Bandwidth feedback control of TCP and real time sources in 

the Internet”, in Global Telecommunications Conference, 2000. GLOBECOM '00. IEEE, vol. 1, 

(San Francisco, United States), pp. 561-565, IEEE Press, nov. 2000.  

[16] S. H. Low, L. Peterson, and L. Wang, “Understanding TCP vegas: a duality model”, in 

Proceedings of the 2001 ACM SIGMETRICS international conference on Measurement and 

modeling of computer systems, SIGMETRICS '01, (New York, NY, USA), pp. 226-235, ACM, 

2001. 

[17] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control”, IEEE/ACM 

Transactions on Networking (TON), vol. 8, no. 5, pp. 556-567, 2000.  

[18] Y. Yang and S. Lam, “General AIMD congestion control”, in Network Protocols, 2000. 

Proceedings. 2000 International Conference on, (Osaka, Japan), pp. 187-198, IEEE Press, 2000.  

[19] C. Chien, “Batch size selection for the batch means method”, in Proceedings of the 26th 

conference on Winter simulation, WSC '94, (San Diego, CA, USA), pp. 345-352, Society for 

Computer Simulation International, 1994.  

[20] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and M. Bechler, The Linux Networking Architecture: 

Design and Implementation of Network Protocols in the Linux Kernel. Gravenstein Highway 

North, Sebastopol, CA: Prentice Hall, 2004.  

[21] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”, 

IEEE/ACM Transactions on Networking (TON), vol. 1, no. 4, pp. 397-413, 1993. 

[22] Y.-T. Li, D. Leith, and R. Shorten, “Experimental Evaluation of TCP Protocols for High-Speed 

Networks”, IEEE/ACM Transactions on Networking, vol. 15, pp. 1109-1122, oct. 2007. 

[23] D. X. Wei and P. Cao, “NS-2 TCP-Linux: an NS-2 TCP implementation with congestion control 

algorithms from Linux”, in Proceeding from the 2006 workshop on NS-2: the IP network 

simulator, WNS2 '06, (New York, NY, USA), ACM, 2006. 

[24] E. C. G. Wille, M. Mellia, E. Leonardi, and M. Ajmone-Marsan, “Design and Analysis of IP 

Networks with End-to-End QoS Guarantees”, in XXI Brazilian Symposium on 

Telecommunications, (Belém- Pará, Brazil), Brazilian Society of Telecommunications, sep. 2004. 

 
Authors 

Marcos Talau was born in Dois Vizinhos/PR - Brazil. He received his degree in Information 

Systems in 2005 from UNISEP (Dois Vizinhos/PR). He received his M.Sc. in Electrical 

Engineering in May 2012 from Federal University of Technology of Paraná - UTFPR 

(Curitiba/PR - Brazil). Prof. Talau is with the UTFPR since January 2007. His teaching duties 

at UTFPR comprise undergraduate course on Computer Science. His research interests are 

centered upon the area of computer networks and congestion control protocols.  

 

Emilio C. G. Wille was born in Lapa/PR - Brazil. He received his degree in Electronic 

Engineering in February 1989, and a M.Sc. in Electronic and Telecommunications 

Engineering in July 1991, both from Federal University of Technology of Paraná - UTFPR 

(Curitiba/PR - Brazil). He received his Ph.D. degree in Telecommunications Engineering in 

February 2004 from Politecnico di Torino (Italy). During his stay in Italy he was supported 

by a CAPES Foundation scholarship from the Ministry of Education of Brazil. Prof. Wille is 

an Associate Professor at the UTFPR, and since October 1991 he is with the Electronics Department. His 

teaching duties at UTFPR comprise graduate and undergraduate-level courses on electronic and 

telecommunication theory. He has co-authored several papers presented in national and international 

conferences, all of them in the area of telecommunication systems and networks. His research interests are 

centered upon the application of optimization algorithms for telecommunication networks design and 

planning, Markov processes, queueing models, and performance analysis of telecommunication systems. 

 


