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ABSTRACT

Graph coloring is a widely used technique for allocation of time and frequency slots to nodes, for forming
clusters, for constructing independent sets and dominating sets on wireless ad hoc and sensor networks. A
good coloring approach should produce low color count as possible. Besides, since the nodes of a wireless
ad hoc and sensor network operate with limited bandwidth, energy and computing resources, the coloring
should be computed with few message passing and computational steps. In this paper, we provide a
performance evaluation of distributed synchronous greedy graph coloring algorithms on ad hoc and sensor
networks. We provide both theoretical and practical evaluations of distributed largest first and the
distributed version of Brelaz’s algorithm. We showed that although distributed version of Brelaz’s
algorithm produces less color count, its resource consumption is worse than distributed largest first
algorithm.
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1. INTRODUCTION

The availability of wireless devices have been increased rapidly in recent years and number of
these devices reached to enormous amounts. So need for self-organizing networks not require
pre-established infrastructure become inevitable. Ad-hoc networks consists of many autonomous
wireless devices that communicates with each other via radio signals. Ad-hoc networks can be
static or mobile. In static ad-hoc networks, positions of devices do not change after it joined the
network, whereas, in mobile ad-hoc networks, devices can move arbitrarily.

One of most common problems for wireless ad-hoc networks is accessing the shared wireless
medium. If two or more neighbor nodes in an ad hoc network transmit at the same time, they
cause interference and receiver node hears only noise. Media access control (MAC) protocols for
wireless ad hoc and sensor networks try to coordinate the access to the shared medium. MAC
protocols use three ways, time (TDMA), frequency (FDMA), or code division multiple access
(CDMA) schemes to divide the channel among the nodes. Channel assignment is an NP-Hard
problem [1]. Many methods have been proposed to design efficient MAC protocols for wireless
ad hoc and sensor networks [2-5]. TDMA, FDMA, and CDMA protocols are implemented by a
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vertex coloring of the graph constructed according to interference relations [6]. Many MAC
protocols use distributed graph coloring for coordinating access to the shared wireless medium [7-
16].

Another application of distributed graph coloring is finding maximal independent sets and
dominating sets in wireless networks.  A maximal independent set (MIS) in an undirected graph
G = (V, E) is a maximal collection of vertices I ⊆ V with the restriction that no pair of vertices in
I are adjacent. A dominating set (DS) is a collection of vertices D ⊆ V with the restriction that
each vertex in V is either in D or adjacent to one vertex in D.  These two problems are strongly
related to graph coloring problem. In solution of optimal graph coloring problem, each set of
vertices that share same color in a graph forms a maximal independent set [17].

In wireless ad hoc and sensor networks, partitioning the nodes into clusters is also very important.
Clustering is a fundamental approach to manage the wireless ad-hoc networks. In clustered networks,
nodes can be cluster members or cluster heads. A cluster member is an ordinary cluster node which
only sends its request to its cluster head. A cluster head collects requests from cluster members and
manage inter cluster operations [18]. The most important advantage of clustering is minimizing the
amount of data to be exchanged between nodes. Clustering also enables systems to adapt
dynamically with changing network configurations [19]. Most greedy clustering algorithms
propose methods for finding independent or dominating sets of nodes which can act as set of
clusterheads. Several papers use graph coloring for constructing independent or dominating sets
in wireless networks [20-22].

Wireless ad hoc and sensor networks consist of devices with limited power and storage
capabilities. Many wireless devices operate with only batteries so they have to keep
computational time as short as possible. Distributed algorithms that operate on wireless devices
communicate with each other with message passing and there is no central coordination. So, the
nodes have to use algorithms which do not need high amount of message passing. These
constraints make us choose distributed algorithms with as little computational time and message
passing as possible. Selection of appropriate distributed graph coloring algorithm for wireless ad
hoc networks is based on these constraints [11].

The rest of this paper is organized as follows. In Section 2, the background information for ad-
hoc network modeling and distributed graph coloring problem are given. In Section 3, the related
work about distributed graph coloring algorithms for ad-hoc networks are surveyed. The
implemented algorithms and performance evaluations are described in detail in Section 4 and
Section 5 respectively. Lastly, conclusions are given in Section 6.

2. BACKGROUND

2.1 Network Model

A wireless ad hoc or sensor network assumed to have following properties:

• Each node in the network has a unique id.
• There are directional links between nodes. This means that if there is a link from node u

to node v, there is also a link from node v to node u.
• Each node knows ids of its neighbors in its transmission range.

With considering these properties, the set of nodes in an ad-hoc or sensor network can be
modeled as an undirected graph G = (V, E). In graph G, the nodes are vertices and links are edges
that existing between two vertices if they are close enough to communicate directly with each
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other. We denote the number of nodes in the network by n = |V| and the maximum degree of G
by ∆ . In Figure 1, in the left side a sample ad-hoc network with 4 nodes and their transmission
ranges is given and in the right side its corresponding undirected graph is given.

Figure 1. A sample ad-hoc network and its graph representation

2.2. Graph Coloring

Graph coloring is defined as coloring the elements of a graph with using the minimum number of
colors with the restriction that any two adjacent element of the graph cannot have the same color.
Graph coloring has two common forms: vertex coloring, edge coloring. The most common form
is vertex coloring and it is coloring vertices of a graph that any adjacent vertices have the same
color. Very similar to vertex coloring, edge coloring aims to color the edges of a graph that any
adjacent edges have the same color. In this paper, we refer graph coloring as vertex coloring. The
coloring of a graph G = (V, E) is a mapping c: v → s, where s is a set of colors, such that if vw ∈
E then c(v) ≠ c(w). This means that any adjacent vertices are not colored with the same color.
The chromatic number ( )G is the minimum number of colors needed for a coloring of a graph

G. A graph G is k-chromatic, if ( )G k = , and G is k-colorable, if ( )G k ≤ [23].

3. RELATED WORK

Many methods have been proposed to solve graph coloring problem. It is an easy case to decide if
a given graph can be colored with 1 color or 2 colors. But it is NP-complete to decide if a given
graph has a k-coloring for 3k ≥ . It is also NP-hard to find the chromatic number ( )G of a given
graph. It is also difficult to find an approximation ratio for chromatic number, it is NP-hard to
approximate the chromatic number within n1−ε, where 0 > .

Chromatic number of a graph can be found in polynomial time for some special graphs. To find
that a given graph can be colored with 2 colors is equal to find that it is a bipartite graph or not.
Testing for bipartiteness can be done using depth-first search in linear time. For other special
classes of graphs such as chordal graphs, cycles, wheels, ladders, trapezoid graphs chromatic
numbers can be computed in polynomial time [25, 26].

Some exponential-time exact algorithms have been proposed to find k-coloring of a graph. The
easiest exact approach is making a brute-force search for a k-coloring. In the brute force search
we should consider each of the kn assignments of k colors to n vertices and check for each that
any adjacent vertex do not share the same color. To find the chromatic number, brute force is
done for every k = 1, ..., n-1, n and the minimum value of k with a legal coloring is chromatic
number. This procedure can be only used for small graphs. Other exact algorithm for finding
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chromatic number in O(2.415 )n time uses a dynamic programming approach and puts a bound
on the number of maximal independent sets [27]. Yate’s algorithm uses the principle of

inclusion–exclusion and find that if a graph is k-colorable or not in O(2 n)n time for any k [28].

For finding 3- and 4-colorability of a graph O(1.3289 )n time and O(1.7504 )n time algorithms
have been proposed recently [29, 30].

The greedy algorithms for graph coloring problem considers the vertices in a specific order  and
assigns to the smallest available color not used by any adjacent vertices. The fastest and easiest
heuristic is First Fit (FF) algorithm. FF sequentially assigns a vertex with the lowest possible
color and its time complexity is ( )O n . In other important heuristics, vertices are ordered
according to their degrees. If the vertex with maximum degree is selected to be colored, then this

heuristic is called Largest First (LF) algorithm [31]. Time complexity of LF is 2( )O n . Another
heuristic due to Brélaz establishes the ordering dynamically while the algorithm proceeds,
choosing next the vertex adjacent to the largest number of different colors. The number of
different colors used by neighbors of a node is called saturation degree of that node, so Brelaz’s
algorithm is also called Dsatur algorithm [32]. Dsatur’s time complexity is 3( )O n .

Many distributed algorithms have been proposed for graph coloring problem. The most important
issue in distributed approach is breaking the symmetry between nodes. It is because deterministic
algorithms cannot find a legal coloring of a symmetric graph. Randomized algorithms are used to
overcome this problem. The state-of-art randomized algorithms for graph coloring are faster than
deterministic algorithms. An ( )O ∆ -coloring can be computed in a randomized way in

( log )O n time where ∆ is the maximum degree of the graph. [33]. Using randomization, a

( 1)∆ + -coloring of a graph can be found with an algorithm based on finding maximal

independent set of the graph [20] and it is an (logn)O time algorithm. The fastest randomized
algorithm uses the multi-trials technique of Schneider and Wattenhoffer. By this technique,

( 1)∆ + -coloring takes (log log )O n∆ + time and to find an 1 1/log*( log )nO n+∆ + coloring

takes O(log n)∗ time [34].

Linial studied the lower bound of time complexity of distributed graph coloring in [35]. The main
result of [35] is (log* )nΩ time is lower bound for coloring a ring with a constant number of

colors. Some of best deterministic algorithms to compute a ( 1)∆ + -coloring have time

complexities of log(2 )nO and O( log log n)∆ ∆ + ∗ [36, 37]. The fastest deterministic algorithm

for ( 1)∆ + -coloring for small Δ runs in time O( ) log *( ) / 2n∆ + . This result is is optimal in
terms of n because according to Linial’s lower bound the constant factor 1/2 cannot be improved
[38]. For special graph classes, there are more efficient deterministic algorithms. For rings and
bounded degree graphs, a ( 1)∆ + -coloring can be computed in O(log n)∗ time [39, 40]. This
time complexity is also applied to much larger class of graphs with bounded local independent
sets [41]. In particular, these graph classes contains most of the graph classes that are used to
model wireless ad hoc and sensor networks [11].

Greedy approach is also used to compute distributed graph coloring problem. The Largest First
and Brelaz’s heuristics are applied to graphs in a distributed setting; nodes compute minimal
colorings according to local and neighbors’ data. Distributed version of LF algorithm is called
Distributed Largest First (DLF) and studied in [42]. Brelaz’s saturation degree heuristic was
implemented for parallel computers in [43], but it has not been implemented for a distributed
system. Due to their implementation simplicity, they are appropriate for many applications.
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Details of implemented greedy algorithms are explained in the next sections. Performance
evaluation of distributed greedy graph coloring algorithms in many aspects is also provided.

4. ALGORITHMS

Greedy distributed graph coloring algorithms are simpler than the fast deterministic and
randomized algorithms mentioned before.  They are also easier to implement on large graphs,
they compute optimal colorings for most general graphs and optimum results for bipartite graphs.
For many applications, the number of used colors and total messages sent between nodes are
optimal.

4.1. DLF

Distributed Largest First (DLF) algorithm [42] is based on sequential LF algorithm. The main
assumptions of the algorithm are there is no shared memory and each processor knows only its
own links and its unique identifier. They aim these units to compute a coloring of the associated
graph without any other information about the structure of G. Another assumption is that the
system is synchronized in rounds. The number of rounds will be measure of efficiency. In each
round, the nodes with largest degrees are selected to be colored. In [42] they claim that,

1. The algorithm does not use colors more than ( 1)∆ + colors.
2. At each round at least one node gets colored.
3. In each round, in whole graph at most one new color can be assigned.

In DLF algorithm, each vertex has three parameters: degree: deg(v), random value: rndvalue(v),
palette of forbidden colors, which were used by its neighbors: usedcolor(v) (initially empty). To
find the priority between two node u and v, we follow the following rules:

deg(v) > deg(u)

or

(deg(v) = deg(u)) AND (rndvalue(v) > rndvalue(u))

In the implementation of DLF, each node sends four types of messages: DATA messages are for
informing neighbors about its own degree, rndvalue and legal color; COLOR messages are for
informing neighbors the color it used, so neighbors can update their usedcolor list. Legal color
means the lowest numbered color that a node wants to use if it has the highest priority; START
messages are send by a system node to start new round and END messages are sent by the system
node to end application.

The pseudocode of DLF is as follows. During each round every uncolored vertex v executes the
following five steps:

1. Choose parameter rndvalue(v).
2. Send to all neighbors the following parameters: deg(v), rndvalue(v), and the first legal
color (not on the list of forbidden colors).
3. Compare its own parameters with these received from the neighbors and check which
vertex has the highest priority.
4. If vertex v has the highest priority, keep the proposed color and stop.
5. If not, update list usedcolor(v).
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In Figure 2, a sample execution of DLF algorithm is shown. DLF algorithm colors the graph with
3 colors in 3 rounds. In first round, the node with maximum degree is colored with first legal
color, in the next rounds the uncolored nodes with maximum degrees in their neighborhood are
colored with their first legal color.

Figure 2. A sample execution of DLF algorithm

4.2 D_Dsatur

The sequential Dsatur algorithm [32] of Brelaz is a sequential coloring algorithm with a
dynamically established order of the vertices. The degree of saturation of a vertex x, degs(x), is
the number of different colors at the vertices adjacent to x.  Dsatur starts by assigning lowest
numbered color to a vertex of maximal degree. The vertex to be colored next is a vertex x with
maximal degs(x). The distributed version of Brelaz’s Dsatur algorithm is called D_Dsatur in this
paper.

The implementation of D_Dsatur is same as DLF. Each node keeps same data structures as in
DLF, but each node also keeps its saturation degree. The message types are also same as DLF.
The pseudocode of D_Dsatur is as follows. During each round every uncolored vertex v executes
the following five steps:

1. Choose parameter rndvalue(v).
2. If it is first round then send to all neighbors the following parameters: deg(v), rndvalue(v),
and the first legal color,

else send to all neighbors the following parameters: sat_deg(v), rndvalue(v), and the first
legal color.
3. Compare its own parameters with these received from the neighbors and check which
vertex has the highest priority.
4. If vertex v has the highest priority, keep the proposed color and stop.
5. If not, update list usedcolor(v).

In Figure 3, a sample execution of D_Dsatur algorithm is shown. D_Dsatur algorithm also colors
the graph with 3 colors in 3 rounds. In first round, the node with maximum degree is colored with
first legal color, in the next rounds the uncolored nodes with maximum saturation degrees in their
neighborhood are colored with their first legal color. If two nodes have same saturation degrees,
such as A, B and E in round two, the nodes with greater random numbers color themselves.
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Figure 3. A sample execution of D_Dsatur algorithm

5. PERFORMANCE EVALUATION

DLF and D_Dsatur algorithms are also tested for large graph with varying node count and
densities to compare them in terms of number of colors used, message counts and round counts.
The algorithms are implemented in C language. The distributed environment is provided by using
a synchronous thread based simulator. The simulator provides a library [44] for message passing
between threads. Random graphs are generated and nodes communicate with each other by using
the functions in the library. The simulator with a sample application can be downloaded from
[45].

5.1 Theoretical Evaluation

When a distributed graph coloring algorithm is evaluated theoretically, there are two important
measures to consider. The first important measure is time complexity of the distributed algorithm.
The second important thing is message complexity of the distributed algorithm.

Both DLF and D_Dsatur algorithms use at most ( 1)∆ + colors, and they are not effective

if ( )n∆ = Θ . But, in practice graphs are sparse and numbers of used colors are nearly optimal
[31]. Both algorithms produce optimal colorings for complete k-partite graphs, crown graphs,
wheels.

Hansen et al. claims that DLF algorithm runs in 2( log )O n∆ rounds for random graphs, where n

is number of vertices and ∆ denotes the largest vertex degree. The detailed proof of time
complexity of DLF is given in [42], but message complexity is not given. For our implementation

of DLF, in each round there are at most 2( )O n messages are sent, each node sends either DATA
or COLOR message in each round and each node has at most n-1 neighbors, so message

complexity is computed as 2 2( log )O n n∆ .

To the best of our knowledge, there is not a detailed research about time complexity of distributed
Dsatur algorithm. In [44], it is claimed that any distributed implementation of saturation based
coloring algorithms require ( )nΩ rounds, so it is not suitable for distributed applications. In

practice, at each round, at least one node gets colored and D_Dsatur algorithm needs ( )O n rounds

to complete coloring. The message complexity can be calculated as 3( )O n , where at each round

at most 2( )O n messages are sent such as DLF algorithm. Detailed analysis is required on the
time complexity of D_Dsatur algorithm.
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5.2 Practical Evaluation

DLF and D_Dsatur algorithms should also be compared experimentally in terms of number of
colors used, number of total messages sent and execution time. It is not appropriate to use running
time of algorithm for execution time comparison. It is because running time of the algorithm not
only depends on the size of input, but also it depends on other running processes on the same
processor. So number of rounds required to complete coloring is used for execution time
comparison.

Experimental comparison of DLF and D_Dsatur algorithms are given in Table 1. Node count
varies from 50 to 200, for each node count 3 different graphs are generated with increasing edge
densities. Both algorithms are evaluated in terms of number of colors used, number of total
messages sent and number of total round for each graph.

Experimental results show that DLF algorithm shows poorer performance than D_Dsatur
algorithm in terms of total number of colors used. For the graphs of same size, D_Dsatur uses less
different colors than DLF algorithm. When node count is constant and edge density of the graph
increases, the number for colors used also increases for both algorithms. These results are very
close to the practical comparisons of sequential LF and Dsatur algorithms such as in
[27, 47].

Table 1. Experimental comparison of DLF and D_Dsatur algorithms

No.of
Vertices

No.of
Edges

No. of Colors Used No. of Total Rounds No. of Total Messages

DLF D_Dsatur DLF D_Dsatur DLF D_Dsatur

50 125 4 3 8 12 704 860

625 11 10 22 34 10369 15109

1250 15 14 25 36 15023 20091

100 500 7 6 13 20 5675 7730

2500 21 20 43 68 77411 134612

5000 26 23 52 73 125438 171920

200 2000 9 8 22 33 34739 49644

10000 36 32 94 136 623642 1024991

20000 44 42 110 143 979443 1429561

According to Table 1, DLF algorithm generally uses one or two more colors than D_Dsatur for
each node count and edge density. For graphs with 50 nodes, number of colors used for sparse
graphs is 7%, for mid-sparse graphs it is 21% and for dense graphs it is 29% of node count in
average of two algorithms. When number of nodes increase to 100, the average values of colors
used are 6.5%, 20.5% and 24.5% of node count. For graphs of size 200, the average values of
colors used are 4%, 17% and 21.5% of node count. When graph keeps same node count and gets
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denser, the number of colors used increases significantly. But when the node count of graph
increases the percentage of number of colors used decreases.

DLF algorithm shows better performance than D_Dsatur algorithm in terms of execution time. It
is because DLF needs fewer rounds for coloring than D_Dsatur. For graphs with 50 nodes,
number of rounds for sparse graphs is 32%, for mid-sparse graphs it is 13% and for dense graphs
it is 11% of node count for DLF algorithm. For each graph, D_Dsatur uses rounds more than
approximately 52% of rounds that DLF algorithm uses. For large graphs it is more practical to
choose DLF when number of colors used is not very critical.

The numbers of total messages sent are also larger for D_Dsatur, it is because D_Dsatur needs
more rounds to finish coloring. In Table 1, for message counts only DATA and COLOR
messages are considered, other synchronization messages are not considered. For each graph
D_Dsatur sends messages more than approximately 50% of messages that DLF algorithm sends.
Experimental results are strongly related to theoretical time and message complexities.

6. CONCLUSION

Distributed graph coloring has many applications in wireless ad hoc and sensor networks. The
most common applications are assigning frequency, time and code slots to nodes in a shared
wireless medium. Other important applications include finding independent sets, dominating sets
and forming clusters of nodes in wireless networks.

Finding optimal coloring of a graph is NP-complete so we need some heuristics to solve this
problem in a sub-optimal way. Many heuristics and algorithms have been proposed in this field
and each of them tries to improve the existing algorithms in terms of execution time or number of
colors used. Greedy algorithms are efficient approaches among the other algorithms to solve the
graph coloring problem.

In this paper, two greedy distributed graph coloring algorithms DLF and D_Dsatur are examined
in detail. They are implemented and tested for different graphs; their performances are compared
in terms of number of colors used, total rounds and total messages sent. Experimental results
show that DLF algorithm shows poorer performance than D_Dsatur algorithm in terms of total
number of colors used whereas DLF algorithm shows better performance than D_Dsatur
algorithm in terms of execution time and total messages sent. The results show us that DLF is
suitable for energy constrained sensor networks, on the other hand D_Dsatur can be a good
choice for IEEE 802.11 based ad hoc networks.
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