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ABSTRACT

This article develops an extremely simple and tight closed-form approximation for the moment
generating function (MGF) of signal-to-noise ratio (SNR) for two-hop amplify-and-forward relayed
paths over generalized fading environments. The resulting expression facilitates efficient analysis of two-
hop cooperative amplify-and-forward (CAF) multi-relay networks over a myriad of stochastic channel
models (including mixed-fading scenarios where fading statistics of distinct links in the relayed path may
be from different family of distributions). The efficacy of our proposed MGF expression for computing
the average symbol error rate (ASER), outage probability, and the ergodic capacity (with limited
channel side-information among cooperating nodes) is also studied. Numerical results indicate that the
proposed MGF expression tightly approximates the exact MGF formulas and outperforms the existing
MGF of lower and upper bounds of the half-harmonic mean (HM) SNR, while overcoming the difficulties
associated in deriving an accurate MGF formula for the end-to-end SNR over generalized fading
channels. Further application of our new closed-form formula for the MGF of end-to-end SNR for
evaluating the average bit and/or packet error rate with adaptive discrete-rate modulation in CAF relay
networks is also discussed.
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1. INTRODUCTION

The broadcast nature of wireless transmissions has enabled a new communication paradigm
known as “cooperative communications” wherein the source node communicates with the
destination node with the help of one or more relay nodes to harness the inherent spatial
diversity gain in wireless networks without requiring multiple transceivers at the destination
node. It is an active and growing field of research because this form of “user cooperation
diversity” has the ability to overcome the practical implementation issue of packing a large
number of antenna elements on small-sized hand-held portable wireless devices and sensor
nodes, besides enabling the source node to tap into the available resources of local
neighbouring nodes to increase its throughput, range, reliability, and covertness.

Cooperative diversity can be broadly categorized as one of amplify-and-forward, decode-and-
forward, and compress-and-forward relaying strategies, each corresponding to different
protocol implementations at the relay nodes [1]-[2]. Other variations cooperative diversity
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strategies include opportunistic, incremental, variable-gain and fixed-gain (either blind or semi-
blind) relaying that are based on the availability of channel side information (CSI) and the
number of nodes actively participating in information relaying [1]-[4]. In this article, we
primarily focus on variable-gain cooperative amplify-and-forward (CAF) relaying strategy
although the analysis may be extended to other categories and variations of cooperative
relaying strategies.

While numerous performance metrics of CAF relay networks have been considered in the
literature including ergodic/outage capacity, outage probability, and ASER (see [5]-[25] and
references therein), most results in the literature were restricted to either Rayleigh or
Nakagami-m channels, or the authors’ resort to asymptotic analysis, or develop performance
bounds. In fact, determination of the exact performance of CAF multi-relay networks over a
generalized fading environment with independent but non-identically distributed (i.n.d) fading
statistics via an analytical approach is known to be a daunting task. This is attributed to the
difficulty in deriving the exact probability density function (PDF) or the moment generating
function (MGF) of the end-to-end signal-to-noise ratio (SNR). For instance, the exact MGF
expression for the desired SNR over i.n.d Nakagami-m derived recently in [14] involves triple
summation terms involving kth derivative of the product of Whittaker functions with
complicated arguments, which is not easily evaluated using a general computing platform,
besides being restrictive to positive integer fading index m. Other “exact” formulas (based on
the half-harmonic mean (HM) tight bound of exact end-to-end SNR) for the PDF or the MGF
of SNR in CAF relay networks can be found in [5]-[7] (for Rayleigh fading), [8] (for
Nakagami-m environment with independent and identically distributed (i.i.d) fading statistics)
and [16]. Although the development in [16] is interesting and their MGF approach can be
applied to a wide range of fading environments, the resulting integral expressions are often too
complicated to compute or very time-consuming (due to the need to evaluate a nested two-fold
integral term with complicated arguments that includes infinite series in some cases). To
circumvent this difficulty, some authors have developed bounds for the half-harmonic mean
(HM) MGF of end-to-end SNR of CAF multi-relay networks in Rayleigh [6][10], Nakagami-m
[11][12] and Rice [13] fading environments. In [9], Ribeiro et. al. developed an asymptotic
expression for multi-relay CAF diversity system that employs BPSK modulation in Rayleigh
and Rice fading channels (although all their results were limited to only Rayleigh channels)
using an asymptotic analysis technique similar to that developed in [26] and [27] for non-
cooperative diversity systems. In [15], the asymptotic analysis result of [9] was extended to a
Nakagami-m fading channel.

In this article, we develop a new unified approximate MGF expression for the SNR of two-hop
relayed path which is then used to derive a tight approximate MGF of end-to-end SNR for
multi-relay networks. Unlike the contributions from related works found in the literature, our
closed-form MGF formula requires only the knowledge of the MGF of SNR of individual links,
which makes it readily applicable to mixed fading and composite multipath/shadowing (e.g.,
Suzuki distribution, K-distribution, G-distribution, etc.) environments. The efficiency and
accuracy of our proposed solution is compared to existing closed-form and/or integral
expressions (when available) to demonstrate its utility and versatility. Several important
performance metrics of 2-hop CAF relay networks are considered such as average symbol error
rate (ASER), outage probability and ergodic capacity. In addition, our MGF expression may be
exploited for efficient evaluation of ASER and/or average packet error rate (APER) with
discrete-rate adaptive modulation and/or computation of the average detection probability of
relay-assisted energy detector over generalized fading channel. Numerical results indicate that
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our MGF expression is much closer to the exact MGF compared to the widely used upper and
lower bounds  for the MGF of half harmonic mean SNR (e.g., [10]-[13]) despite its simplicity
and generality. While our unified MGF formula is slightly less accurate compared to the MGF
of the half-harmonic mean SNR (only available for specific fading scenarios) in [5]-[8] and
[16], it is still very close to the exact MGF expression derived in  [14] and [18] (also available
for only specific fading environments) while ensuring numerically stable and low
computational cost. In fact, our proposed solution is perhaps the only accurate closed-form
MGF expression that can effectively capture the independent and non-identical distributed
(i.n.d) fading statistics across distinct wireless links of a route path in a unified manner. It is
important to note that although the mathematical framework developed in [16] is applicable to
generalized fading channels, it is quite cumbersome and/or numerically unstable for computing
the MGF of end-to-end SNR in certain cases such as Rice and Nakagami-q environments
because it requires the evaluation of an integral whose integrand is a product of infinite series
containing Bessel functions with complicated arguments.

Moreover, for the specific case of ASER analysis of CAF relay networks, we express the final
ASER in closed-form (i.e., as a weighted sum of MGF of end-to-end SNR). This is
accomplished by using the second-order exponential approximation for the conditional error
probability (CEP) of M-ary phase shift keying (MPSK) and/or M-ary quadrature amplitude
modulation (MQAM) digital modulation schemes (e.g., 2( | ) b b

sP ae ce   − −≈ + ) derived in [19].

The resulting “unified” ASER expressions are much more general, and more accurate over a
wide range of channel SNRs (especially at larger values of fading severity index than the
corresponding asymptotic ASER formulas presented in [9] and [15] while ensuring a low
computational cost for evaluating the desired ASER (since they are in closed-form). It is also
important to highlight that the simplicity of our final approximate ASER formula may facilitate
further system level optimization tasks (e.g., optimal power assignment and/or relay placement
in CAF multi-relay networks) although such investigations are beyond the scope of this article.

The remainder of this paper is organized as follows. In Section II, we briefly review the system
model and discuss the key steps in our development of a tight approximation for the MGF of
end-to-end SNR. Several applications of our proposed MGF formula are discussed in Section
III along with selected numerical results to highlight its utility (e.g., comparisons with related
results in the literature) followed by some concluding remarks in Section IV.

2. TIGHT APPROXIMATION FOR THE MGF OF SNR IN CAF RELAY

NETWORKS

Consider a cooperative wireless network model that comprises of a source node S which
communicates with a destination node D via a direct-link and through N amplify-and-forward
relays, Ri, ,{1,2,...., }i N∈ in two transmission phases. During the initial Phase I, S broadcasts a
signal to D and to the relays Ri, where the channel fading coefficients between S and D, S and
the i-th relay node Ri, Ri and D are denoted by ,s dh , ,s ih and ,i dh respectively. During the second

phase of cooperation, each of the N relays transmits the received signal after amplification via
orthogonal transmissions. If a maximum ratio combiner (MRC) is employed at the destination
node D to coherently combine all the signals received during these two transmission phases, the
effective end-to-end SNR is given by [1], [10]-[14],
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, ma,b and ,a bΩ are the Nakagami-m

fading index and average received SNR of wireless link a-b, respectively, and W(.,.) denotes
the Whittaker function [29]. Although Eq. (3) has only finite summation terms, it involves the
evaluation of kth derivatives of product of Whitaker functions which is not necessarily a trivial
task (i.e., one may have to resort to a suitable computing platform such as MAPLE software to
compute the above MGF using a symbolic differentiation tool).  Due to this limitation, several
researchers have considered a more tractable MGF for half-harmonic mean SNR i (i.e., c = 0)

which has been shown to be very accurate at moderate and high SNR [5]-[8]. Even in this case,
the obtained closed-form results are still limited to i.n.d Rayleigh [5]-[7] (seemingly different
expressions but numerically same), i.i.d [8] and i.n.d Nakagami-m channels (for positive
integer fading index m) [14]. These results are summarized in (4)-(8) for readers’ convenience.

Rayleigh Fading: [4, Eq. (20)], [5, Eq. (7)], [6, Eq. (52)]

1
Most prior work computes the PDF or MGF of

, , , ,( )i s i k d s i i d    = + which becomes accurate for moderate and large SNR

values.
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It is also evident from Eq. (9) that the generalized MGF formula developed in [16] requires an
evaluation of a double nested integral, viz., [16, Eq. (5)]
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first-order Bessel function of the first kind. Although the above expression is tractable for
Rayleigh and Nakagami-m channels (e.g., when ( )1/ i

s is available in closed-form), it can be

quite tedious or numerically unstable for certain fading environment (e.g., Rice and Nakagami-
q fading environments). This is because ( )1/ i

s is expressed as an infinite series consisting of

special functions (e.g. Bessel function) with complicated arguments.

In order to further improve the mathematical tractability, bounds like ( ) ( )LB HM UB
i i i  ≤ ≤ where

( ) 1
, ,2 min( , )LB

i s i i d  = and ( )
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i s i i d  = have also been developed to minimize the complexity

of the problem in Nakagami-m [11], [12] and Rice channels with i.n.d diversity paths [13].
These expressions are summarized in (10) and (11), respectively.

Nakagami-m Fading: [12, Eq. (11)]
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The corresponding MGF of the lower bound of HM SNR of relay path can be obtained by
replacing s in (10) and (11) by s/2, i.e. ( ) ( )( ) ( / 2)LB UB

i i
s s  = .

It should be evident by now that the evaluation of the MGF of end-to-end SNR even for two-
hop CAF relay networks can be cumbersome, which limits a comprehensive characterization of
cooperative diversity networks over generalized fading environments. This also motivates the

development of a computationally efficient MGF formula for i without compromising on the
accuracy over a wide range of channel SNRs. Furthermore, it will be of interest to have an
MGF expression that can easily capture the mixed-fading and composite fading environments.
This article highlights the derivation of a MGF of end-to-end SNR for CAF relay networks that
meets the above attributes. We would also like to point out that although the “asymptotic” MGF
of SNR proposed in [17, Eq. (10)] yields a good ASER approximation, that expression is not a
valid MGF because its numerical value ranges between 0 and 2 (instead of between 0 and 1).
Besides, a rigorous proof for the derivation of the asymptotic MGF is lacking. These issues are
also addressed in this article. Specifically, we derive a very tight approximation for the MGF of

i (hereafter, referred to as ( ) ( )A

i
s ) which possesses all the attributes of a valid MGF formula.

Let us first consider a CAF diversity network with a single cooperative relay (N = 1). In this
case, the end-to-end SNR (with MRC combining of signal replicas at the destination node) is
given by
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In the following, we will derive a tight approximation for the MGFs of 1 and T .

Proposition: Let us consider four non-negative independent random variables W, X, Y and Z
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( ) ( ) ( ) ( ) ( )W X Y X Ys s s s s    ≈ + − (13)

Before providing a proof for (13), we prove the following two lemmas for the CDF of W.

Lemma 1: The CDF of
1
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W

X Y
=

+ +
is given by

( 1)
( ) ( ) ( )W Y X Y

w

w y
F w F w F f y dy

y w
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Proof: See Appendix A.

Lemma 2: A tight lower bound for the CDF and MGF of W are given by (13) and (14),
respectively:

( ) ( ) ( ) ( ) ( )W X Y X YF w F w F w F w F w≥ + − (15)

( ) ( )W Zs s ≥ (16)

where [ ]
0

( ) ( ) ( ) ( ) ( ) ( ) ( ) .sx
Z X Y X Y Y Xs s s e f x F x f x F x dx  

∞ −= + − +∫
Proof: See Appendix B.

Thus, the exact MGF of T in (1) can be tightly approximated (using Eq. (13)) as

( ), ,1 1, ,1 1,

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
i i s d s d s d

E As s s s s s            ≈ = + −
(17)

since ,s d and 1 are assumed to be independent random variables (i.e., a reasonable

assumption because the nodes are spatially distributed over a large geographical area).

It is also important to highlight that the new approximate MGF expression (B.5) is much more
compact and can be easily generalized to more sophisticated channel models (including mixed-
fading scenarios and shadowing) compared to (B.4) (corresponding to the MGF of

( )
, ,min( , )UB

k s k k d  = ), ( ) ( )( ),  and ( )E HM

i i
s s   (i.e., can be derived from (A.1)) which may not

necessarily yield a closed-form expression in a generalized fading environment. Besides, it only
requires the knowledge of MGF of individual links in closed-form, which is readily available in
the literature [28, Table 2.2, pp. 21].

It is also straight-forward to generalize (17) to multi-relay CAF networks. In this case, the
approximate MGF of T as shown in (2) is given by
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Fig. 1 shows a comparison of the exact, approximate, HM bound, upper and lower HM bound
MGFs of SNR for a two-hop relayed path over i.i.d and i.n.d Nakagami-m channel. The curve
corresponding to MGF of ( )

1
HM is generated using the HM MGF given in (7) [8, Eq. (26)] and

[16, Eq. (5) and Table 1] for Nakagami-m fading channels. The corresponding MGF of
( )

1 ,1 1,min( , )UB
s d  = (i.e., can be evaluated using (B.4)) and ( ) ( )

1 1 2LB UB = are given in [12, Eqs.

(9) - (11)]. We observe at a very small mean SNR value, the exact MGF is closer to the lower
bound (LB) than any other curves. However as the mean SNR and/or channel fading index
increases, the exact end-to-end SNR approaches the HM and upper bound (UB) of HM, as
expected. More importantly, at higher SNR, our approximation is much closer to the exact and
HM MGF of 1 compared to the bounds (MGF of ( )

1
LB or ( )

1
UB ) over a wide range of its

argument s. We would also like to point out that the MGF of HM SNR in (4)-(8) [5]-[8] and
[14] are channel specific (i.e., limited to only i.n.d. Rayleigh and i.n.d Nakagami-m channels)
while the corresponding MGF formula in (9) [16] is more general, but it involves the
computation of a nested double integral term, and may be numerically unstable or too complex
for some fading environments (e.g., Rice fading). On the contrary, our approximation (18) is
both simple and can readily handle complex fading channel models. In fact, it requires only the
knowledge of MGF of individual link SNRs, which are readily available in closed-form for a
myriad of stochastic channel models (see [28, Table 2.2, pp. 21]). In Section III, we will
highlight the utility of our new MGF formula for efficient analysis of multi-relay CAF
networks and computation of the average detection probability in relay-assisted spectrum
sensing application.

Fig. 1 Comparison between the exact, approximate and bounds for the MGF of effective SNR of relay path over
i.i.d and i.n.d Nakagami-m channels; (Eq.(10*) indicates evaluation by replacing s in (10) by s/2).
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3. APPLICATIONS OF CLOSED-FORM MGF OF END-TO-END SNR IN CAF
RELAY NETWORKS

3.1 Unified Closed-Form ASER Expression for 2-Hop CAF Multi-Relay Networks

In general, the ASER of CAF multi-relay networks can be computed by averaging the CEP

( | )sP   over the PDF of T as

0
( | ) ( )

Ts sP P f d   
∞

= ∫ (19)

If the CEP can be expressed in a “desirable exponential form”, then the averaging task in (19)
can be simplified dramatically. In this article, we exploit an accurate second-order exponential-
type approximation for  the CEP [19] as summarized in Table I for MPSK and MQAM digital
modulations with a fixed set of coefficients a1 = 0.2938, b1 = 1.0483, and c1 = 0.5070. This
approximation has been shown to be slightly more accurate than the exponential-type
approximations in [17] and [30], and practically same as the exact Q-function representation in
[31]. If we replace the CEP in (19) with its exponential approximation (as shown in Table I),
then (19) simplifies into a closed-form formula (i.e., can be expressed as a weighted sum of
MGF of T alone). For instance, the ASER of CAF multi-relay network with MPSK
modulation is given by

( ) ( )1 1 1 1
2 2( sin ) (2 sin )

T TsP a b M c b M    = + (20)

where (.)
T
 is defined in (18). Similar expressions can be obtained easily for other digital

modulation schemes (i.e., MQAM). It should be emphasized that there are two sources of
approximation errors in our unified closed-form ASER expression (20), with the first stemming
from the approximation of the MGF of SNR in (18) and the other from CEP approximation via

2 2
1 12

1 1erfc( ) b x b xx a e c e− −= + . Even with these approximation errors, we will show that (20) still

performs better than the ASER obtained using the upper/lower bounds for the MGF of end-to-
end SNR (i.e., Eqs. (B.4), (10)-(11)) in conjunction with an exact single finite-range integral
expression for the CEP or asymptotic analysis [9][15].

In Fig. 2, the ASER of MQAM with our proposed approximation (using (18) in conjunction
with (20)) is compared to the finite-range integral expression using the HM MGF given in (7)
[8, Eq. (26)] in a Nakagami-m channel with i.i.d fading statistics as

2/2 /4

2 20 0

4 3 4 3

2( 1)sin 2( 1)sinT Ts

k k
P d d

M M

 

    
  

   
= −   − −   ∫ ∫ where M denotes the digital

constellation size and ( )1k M M= − . This figure shows that our approximate ASER formula

(in closed-form) yields a very good estimate of the actual ASER performance of the CAF relay
network over a wide range of mean channel SNR, different fading severity indices and for
different constellation sizes. In fact, our closed-form ASER formula performs slightly better
than the upper bound MGF case and much better than the lower bound MGF case (even with
additional approximation errors for the CEP in our case). However, the gap between the “HM
bound” (i.e., the ASER is still expressed in the form of a finite-range integral) and
“approximate” ASER performance curves widens as the channel experience less severe fading.
This is mainly attributed to the approximation error in the MGF and not the CEP. Although not
shown in this article, we also noticed that a similar trend for MPSK digital modulation.
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Table I. Q-Function and Exponential-type Representations of the CEP for MQAM and
MPSK Digital Modulations ( s denotes the symbol SNR while M corresponds to the signal
constellation size)

Modulation
scheme

Q-Function Representation of CEP Exponential Representation of CEP

BPSK ( )2 sQ  1 12
1 10.5 0.5s sb ba e c e − −+

MPSK ( )( )2 2 sin , 4sQ M M  ≥ ( ) ( )2 2
1 1sin 2 sin

1 1
s sb M b Ma e c e   − −+

MQAM
( )( ) ( )( )2 24 3 1 4 3 1 ,s skQ M k Q M − − −

( )where 1k M M= −

( )
1 1

2 1

33
2 22 1 1

1 1 1

6 9
2 2 21 2 1

1 1 1

2 2

2

s s

s s

b b

M M

b b

M M

ka e kc k a e

k c e k a c e

 

 

− −
− −

− −
− −

+ −

− −

Fig. 2 ASER of MQAM over i.i.d Nakagami channels (m = 1 and 3) with single cooperative relay.

Next, we will discuss the efficacy of our new approximation technique for the ASER of CAF
networks by comparing it with exact analysis, asymptotic formulas and bounding methods for
coherent BPSK  modulation (only chosen for illustrative purpose) in Rayleigh and Nakagami-m

channels with i.n.d fading statistics via
2( 1) /

20

1 sin ( / )

sinT

M M

s

M
P d




 

 
−  

=  
 

∫ with M = 2 [28]. The

closed-form HM i.n.d MGF expression ( ) ( )HM

i
s for Rayleigh (m = 1) fading is given by (6) [7,

Eq. (7)] while the ( ) ( )HM

i
s for i.n.d Nakagami-m channel is computed with the aid of (9) [16, Eq.

(5) and Table 1]. Bounding technique based on upper and lower bounds of the effective SNR
[10]-[13] will also be presented to validate the accuracy of our approach. The MGF of lower
bound ( ) ( )LB

i
s and upper bound ( ) ( )UB

i
s on the effective SNR of two-hop relayed path is

obtained from [12, Eq. (11)]. The asymptotic analysis curve is generated using [15 Eq. (15)].
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Fig. 3 provides a comparison between the curves corresponding to all the bounding and
asymptotic analyses techniques discussed above over i.n.d Nakagami-m channel (m = 1 and 3)
with two relays. It is apparent that our proposed approximation method performs better than
that of the asymptotic analysis in [15] especially at higher values of the fading severity index.
Moreover, our approximation (while much closer to the “upper bound” case) performs
considerably better than any other approximation or asymptotic analysis at lower SNR regime.
Besides, our result (20) is in closed-form.

In Fig. 4, the performance of a CAF relay network (with two cooperating relays) that employ
BPSK modulation in Rice (also known as Nakagami-n channel) fading environment is
considered. In this case, we noticed that the solution for the HM MGF of SNR for the relayed
path presented in [16, Eq. (5) and Table 1] is neither computationally efficient nor numerically
stable due to the need to perform numerical integration of product of two infinite series. Thus,
the bounding technique [13] and asymptotic analysis [9] are the only viable analytical tools for
ASER analysis.

Fig. 3 ASER of BPSK CAF relay networks (N = 2) over i.n.d Nakagami-m channels with , 0 .4s d TΩ = Ω ,

,1s TΩ = Ω , ,2s TΩ = Ω , 1, 0 .4 3d TΩ = Ω and 2 , 0 .4 3d TΩ = Ω .
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Fig. 4 ASER of BPSK CAF relay networks (N = 2) over i.n.d Rice and Rayleigh channels with , 0 .4s d TΩ = Ω ,

,1s TΩ = Ω , ,2s TΩ = Ω , 1, 0.43d TΩ = Ω and 2 , 0.43d TΩ = Ω .

However, in order to provide a comprehensive performance comparison, we also performed
Monte Carlo simulation for the ASER of CAF relay system over Rice channel (denoted as
“exact” in Fig. 4 for Rice factor K = 3). Closed-form formulas for the MGF of ( )LB

i and ( )UB
i

have been derived in [13] while the asymptotic analysis curve is generated using [9, eq. (32)]
(after correcting2 a typo).  Fig. 4 compares various approximations and bounds for the ASER of
CAF relay networks in Rayleigh (K = 0) and Rice channels (K = 3) with non-identical fading
statistics. The general trends (in terms of the tightness of our approximate ASER expression)
depicted in Fig. 4 are similar to those observed for the Nakagami-m environment. The
asymptotic analysis method [9] or [15] is not very useful in our context since its ASER
performance prediction is grossly inadequate in the low SNR regime (for both Rice and
Nakagami-m fading channels), although this is the region where cooperative relaying strategies
will be typically employed.

3.2 Outage Probability

The outage probability Pout is defined as the probability that the instantaneous SNR falls below
a specified threshold value th and can be calculated using the MGF of SNR as

( )1 1

0
( ) ( ) /

th

T T
th

outP s d s s


 


  − −   = ℑ = ℑ   ∫ (21)

where 1−ℑ (.) denotes the inverse Laplace transform operator. In fact, (21) can be evaluated
efficiently using numerical methods as discussed in [32]-[33]. However, if closed-form solution

2 In [9, Eq. (33)], the exponential term ( 1)N Ke− + was missing and this explains why only the Rayleigh fading case (K =0) can be
evaluated correctly.
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is desired, our MGF expression in (18) also facilitates the analytical Laplace inversion for some
certain fading environments. As an example, consider a single CAF relay in Nakagami-m
fading environment (positive integer fading index). In this case, the MGF of end-to-end SNR
can be easily decomposed by partial fraction expansion as

( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , , , ,

1 1 1 1 1 1 1

( )
( )

1 11 1 11 1

s d s i s d i d s d s i i d
m m m m m m m

p q w t vr z

p q r w t z v
p q r w t z v

A

r zw t vp q

s
s ss s ss s



     


    = = = = = = =

= + + + − + +
+ ++ + ++ +

 
 
 

∑ ∑ ∑ ∑ ∑ ∑ ∑ (22)

where
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Then it is not very difficult to derive its corresponding CDF (i.e., Pout) in closed-form, viz.,

, , , , , , ,

1 1 1 1 1 1 1

( )
( ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )

s d s i s d i d s d s i i d
m m m m m m m

p p q q r r w w t t z z v v

p q r w t z v

AF I p I q I r I w I t I z I v                     
= = = = = = =

= + + + − + +
 
 
 

∑ ∑ ∑ ∑ ∑ ∑ ∑ (23)

where ( )
( )
,

( , , )
G k

I k
k

 
  =

Γ
and 1

0
( , )

x
a tG a x t e dt− −= ∫ denotes the lower incomplete Gamma function.

Nevertheless, a numerical approach is recommended for the computation of the outage
probability over generalized fading channel as it is much easier to program especially for multi-
relay networks.

Fig. 5 further demonstrates the utility and versatility of our proposed method for evaluating the
outage probability of CAF relay networks in an i.n.d Rice fading environment. It is evident that
our solution predicts the outage probability performance reasonably well over a wide range of
SNRs and exhibits similar trends to that observed in Figure 3 and Figure 4 (i.e., our solution is
much more accurate than using the MGF of lower and/or upper bound for end-to-end SNR). It
is also important to highlight that most mathematical software packages (e.g., MATLAB,
MAPLE, etc.) do not have a built-in generalized Marcum Q-function for its complex
arguments. As a consequence, one could not directly evaluate the desired outage probability
using a numerical Laplace or Fourier inversion technique (e.g., [32]-[33]]) with the closed-form
MGF depicted in (11). We circumvent this difficulty by exploiting an alternative, rapidly
converging series representation for the generalized Q-function in [34]. More importantly, our
MGF formula (18) does not contain any special mathematical functions, and thus circumvents
this problem all together. This example in turn highlights the usefulness of our approximation
(18) to characterize the performance of CAF relay networks in many fading environments that
heretofore had resisted simple solutions.
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Fig. 5 Outage probability, Pout of CAF relay networks for 5th dB = over i.n.d Rice channels (K=3) with

, 0 .2s d TΩ = Ω , ,1s TΩ = Ω , ,2 0.3s TΩ = Ω , 1, 0.8d TΩ = Ω and 2, 0.56d TΩ = Ω .

3.3 Ergodic Capacity of CAF Relay Networks with Limited CSI

Our proposed MGF formula (18) can also be employed to compute the ergodic capacity of CAF
relay networks more accurately and efficiently. Similar to [10], [12]-[13], we consider the
problem of source adaptive transmission for 2-hop CAF multi-relay networks with limited CSI
feedback in which rate at the source node is adapted according to prevailing channel condition
(i.e., only the knowledge of the end-to-end SNR T at the destination node, and not all links is

needed at the source node) while the relays simply amplify and forward the signals that they
receive. However, the existing results were based on the upper and lower bounds for the MGF
of T . By exploiting a “desirable” exponential integral representation for ln (.) function [12], it
is straight-forward to show that the normalized ergodic capacity (with respect to bandwidth B)
of CAF relay networks is given by

0 0

1

2

1
ln(1 ) ( )  =

1 ln 2

1 1
1 ( )

1 ln T

ORA
y

N

C
f d

B N

e
y dy

y    
∞ −∞

 = +  +
−

+∫ ∫ (24)

Following the development similar to (22), it is also possible to evaluate (24) in closed-form for
Rayleigh and Nakagami-m channels (positive integer m). For instance, it is not difficult to show
that normalized ergodic capacity with a single cooperative relay over an i.n.d Nakagami-m
channel is given by

, , , , , , ,

1 1 1 1 1 1 1

1
( , ) ( , ) ( , ) ( , ) ( , , ) ( , ) ( , )

2ln 2

s d s i s d i d s d s i i d
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B
             

= = = = = = =

= + + + − + +
  
  
   
∑ ∑ ∑ ∑ ∑ ∑ ∑ (25)

Where 1

0
( , ) ln(1 ) (1 / )
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k k
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kH k e d Q
k k


     

− −∞ −
−= + =
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0
( ) ln( 1) , 0, 1,2,3...,n t

nQ t t e dt n 
∞

− −= + > =∫
is an integral defined in [28, Eq. (15B.7)] which can be evaluated in closed-form as
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1
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( ) ( )

n

n

n
Q n e




 
=

Γ − += Γ ∑ . However, numerical evaluation of (24) (in conjunction with (18)) is

recommended for its simplicity and applicability to a wide range of fading environments.

The usefulness of our approximate MGF (18) in the computation of the ergodic capacity is also
demonstrated in Fig. 6 for a single CAF relay over an i.n.d Rayleigh fading channel. It is
evident that our solution tightly approximates the exact performance curve for a wide range of
mean link SNR, and considerably tighter than both the upper and lower bounds (i.e., Eq. (10) or
Eq. (11)) considered in [10] and [12]. Thus, (24) (in conjunction with (18)) can be viewed both
as an improvement and generalization of prior related works on ergodic capacity analysis for
CAF relay networks.

3.4 Link-Adaptive CAF Relay Networks

Another important application of our MGF formula (18) is the joint-design of cooperative
diversity with discrete-rate adaptive modulation. In fact, (18) could dramatically speed-up the
evaluation of performance metrics of interest such as the achievable average spectral efficiency
and the average bit error rate (ABER) for CAF multi-relay networks that employ adaptive
modulation via the analytical framework employed in [22]-[25]. The average normalized

spectral efficiency AMC and ABER with adaptive modulation AMBER with T modulation
switching modes are given by (26) and (27), respectively:

21 1
log ( )n n n

T T
AM

n n
C M P nP

= =
= =∑ ∑

(26)

1

1

n n

n

T

n
AM T

n

nP BER
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nP

=

=

=
∑

∑
(27)

Fig. 6 Normalized ergodic capacity of single CAF relay networks over i.n.d Rayleigh fading channel with

, 0 .2s d TΩ = Ω , ,1s TΩ = Ω , 1, 0.5d TΩ = Ω .
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where
1

1( ) ( ) ( )
n

n n nT T T
n

P f d F F


  


   
+

+= = −∫ is the probability of selecting mode n for transmission,

2 n

nM = corresponds to modulation constellation size during transmission mode n, ,
11
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n n T
nn

BER BER f d
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+

= ∫ is the average BER in mode n while the CDF ( )
T

F  can be

evaluated numerically as in [32]-[33] using the MGF of T depicted in (18). Moreover, since

the BER of MPSK with Gray coding can be closely approximated as /n nBER SER n= [28,

Eq. (8.33)] (where nSER denotes the symbol error rate of nM -PSK), it is not difficult to show

that nBER for discrete-rate M-PSK can be expressed as (using the CEP approximation in Table
1)
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where ( ) exp( ) ( ),
T T

b
a f da b    

∞

= −∫ is the marginal MGF of T . As pointed out in [24]-[25],

the marginal MGF of T can also be computed very efficiently (complexity similar to

evaluating the CDF of T from its MGF) using the Laplace inversion technique [32]-[33] if the

MGF of T is available in closed-form, which is true in our case (i.e., (18)). As pointed out in
the preceding sections, it is also possible to derive a closed-form expression for the marginal
MGF in Rayleigh and Nakagami-m fading environments using (18). Furthermore, the fixed

switching thresholds n can be easily obtained for any arbitrary target instantaneous BER (i.e.,

TBER ) by inverting the approximate BER formula (i.e., with the corresponding CEP
expression in Table 1). For instance, the switching thresholds for the M-PSK modulation is
given by

( )
2

1 1 1

2
11

41
ln

2sin 2
T

nn

a a nc BER

cb




 − + +
 = −
  

(29)

Sometimes, it is more appropriate to consider average packet error rate as in [24]-[25] (instead
of ABER) for adaptive modulation especially for slow fading channels since the bit-to-bit
independence assumption no longer holds and more importantly, adaptive modulation
switching in practical systems cannot implemented at the “bit-level”. Regardless of whether
APER or ABER is used for performance comparison, our MGF expression (18) can always
provide a more general and tractable solution with better accuracy than the upper or lower
bound MGF of end-to-end SNR employed in earlier studies [24]-[25].
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4. CONCLUSION

In this article, we have derived a novel approximate MGF of MRC combiner output
SNR for multi-relay CAF networks in closed-form (i.e., Eq. (18)) that will facilitate
efficient performance analysis of such networks over generalized fading channels
(including composite-fading and mixed-fading scenarios). Numerical results indicate
that our MGF expression is generally tighter than the widely used MGF of upper and
lower bound of half harmonic mean SNR (even for the specific cases when a closed-
form solution for the latter is available) over a broad range of mean SNRs despite its
simplicity and generality. Furthermore, our ASER expressions (also in closed-form)
may be further exploited for system-level optimization such as finding the optimal
power assignment among the cooperating nodes that minimizes the error rate, optimal
relay placement, and so on. These extensions along with the application of the proposed
approach in analysis of multi-hop multi-relay cooperative wireless networks is beyond
the scope of this article but will be pursued as part of our future work.

APPENDIX A

[Proof of Lemma 1] The complementary cumulative CDF of
1

XY
W

X Y
=

+ +
is given by

( 1)
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w yw
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∫

(A.1)

Substituting ( ) 1 ( )Y Y
w

f y dy F w
∞

= −∫ in (A.1) and re-arranging the resulting expression, we get (14).

This completes the proof.

APPENDIX B

[Proof of Lemma 2 and Eq. (17)] Noting that ( 1)w y
w

y w

+ ≥
−

for any non-negative y w> and (.)F is

a monotonically increasing function (i.e., ( 1)
( )X X

w y
F F w

y w

 + ≥ − 
), it is straight forward to show to

(14) can be lower bounded as

( )( ) ( ) ( ) ,W Y X Y
w

F w F w F w f y dy
∞

≥ + ∫ (B.1)

which can be further simplified as

( )( ) 1 [1 ( )][1 ]W Y XF w F w F w≥ − − − (B.2)

Expanding the product term of the right side of (B.2) and simplifying the resulting expression,
we obtain (15). Also notice that the right side of (B.2) is simply the CDF of the first order
statistics, viz., min( , )Z X Y= . Thus the MGF of Z can be determined by differentiating the right
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side of (B.2) with respect to w, and then evaluating the Laplace transform of the resulting
expression, viz.,

( ) ( )
0

( ) ( ) ( ) ( ) ( )sw
Z X Y X Y Y Xs s s e f w F w f w F w dw  

∞ −  = + − + ∫ (B.3)

Interestingly, the last term of (B.3) resembles the MGF of output SNR for a dual diversity
selection combining, and therefore (B.3) can be re-stated as

( )( ) ( ) ( )
SDCW Y Xs s s s   ≥ + − (B.4)

Next, recognizing that ( ) ( ),
SDC MRC

s s  > we can tightly approximate (B.4) as

( ) ( )( ) ( ) ( )W Y X X Ys s s s s    ≈ + − (B.5)

since ( )( ) ( ) .
MRC X Ys s s  = This completes the proof of (17).
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