
International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

DOI : 10.5121/ijcnc.2012.4507 101

UTILIZATION-BASED CONGESTION CONTROL

Satoshi Utsumi
1
 and Salahuddin Muhammad Salim Zabir

2

1
 Department of Control and Information System Engineering, Tsuruoka National

College of Technology, Yamagata, Japan

u-satoshi@tsuruoka-nct.ac.jp
2
 Orange Labs, France Telecom Japan, Tokyo, Japan

szabir@ieee.org

ABSTRACT

Traditional connection oriented protocols like TCP NewReno perform poorly over wireless links. The

problem lies in their design assumptions based on loss based congestion control. Various modifications

to loss based congestion control schemes have so far been proposed to overcome the issue. In addition,

the comparatively newer family of delay based congestion control mechanisms like Caia-Hamilton Delay

(CHD), offer effective solutions for wireless link loss. All these approaches aim at improving the

performance of the target connection without considering the overall network condition. Therefore, when

co-existing with the conventional loss-based congestion control, the performances suffer severely.

Furthermore, for delay based schemes, it is not possible to determine the optimum value of the queuing

threshold intuitively. In this paper, we propose a new end-to-end congestion control mechanism that we

name as Utilization-based Congestion Control (UCC) in order to overcome the above problems. UCC

provides a solution based on the utilization at the bottleneck link. It is free from critical parameters like

queuing threshold and is friendly to other flows over wireless links when deployed together. Simulation

results show that over wireless links, (i) UCC can yield a performance improvement of 150% or more

compared to conventional loss-based schemes and (ii) it is friendly to conventional loss-based congestion

controls.

KEYWORDS

Congestion Control, Queuing Theory, Link Utilization, Bottleneck Link, Queuing Delay

1. INTRODUCTION

Incorporation of mobile and wireless devices to the Internet has led to the need for optimizing
major applications to perform satisfactorily over wireless link. Typically, wireless links are
prone to a higher link error rate than their wired counterparts. Since conventional TCP protocols
as TCP NewReno are designed to be used in wired networks with low link error rates, their
designs do not take link errors into account. That is, they assume that segment losses occur
solely due to congestion in networks [1]. Whenever a segment loss occurs, conventional TCP
infers congestion and the sender handles the situation by reducing its sending rate as a remedial
measure. Therefore, when conventional TCPs are used over wireless networks, they interpret
even the losses occurring due to link error as originating from congestion and thus frequently
lower their transmission rates unnecessarily. Therefore, deployment of conventional TCP over
wireless links results in a decreased throughput [2].

Various end-to-end congestion control mechanisms have so far been proposed. In addition, the
comparatively newer family of delay based congestion control mechanisms like Caia-Hamilton
Delay (CHD) [3] offer effective solutions for wireless link loss. However, all these mechanisms
aim at improving solely the performance of the connection under concern. Therefore, while
aggressively increasing the performance of the desired connection, they affect the performance
of other types of connections severely.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

102

In this paper, we propose a new end-to-end congestion control mechanism that we name as
Utilization-based Congestion Control (UCC), focusing on the techniques to detect the network
congestion in order to overcome the above issues. UCC provides a solution based on the
utilization at the bottleneck link. We estimate the utilization on the bottleneck link using
queuing theory and apply this for end-to-end congestion control.

From functional point of view, UCC is free from critical parameters like queuing threshold.
Moreover, it is friendly to other flows over wireless links when deployed together. Simulation
results show that (i) UCC can yield a performance improvement of 150% or more compared to
conventional loss-based schemes over wireless links and (ii) it is friendly to conventional loss-
based congestion controls over wireless links.

 The rest of this paper is organized as follows. Section 2 summarizes the most recent relevant
research works. In section 3, we describe a method that can be used for practically calculating
link utilization. We present our proposed scheme in section 4. In section 5, we discuss in detail
how we have evaluated UCC. Finally we conclude in section 6.

2. RELATED WORK

A number of congestion control mechanisms using only lost packets to detect congestion exits
to date [4, 5, 6, 7]. Since these are already quite well established mechanisms, we omit
mentioning them in this section. To the contrary, congestion control mechanisms using delay
parameters are getting popular recently. They are relatively new and therefore, we discuss them
here.

2.1. Hamilton Delay-based Congestion Control (HD)

Leith et al. [8] describe the case for delay-based Additive Increase Multiplicative Decrease
(AIMD) congestion control, which provides end-to-end control with high utilization, low delay
and zero congestion related packet loss. This idea was improved by Budzisz et al. [9] for fair
coexistence with loss-based TCP algorithms.

On receipt of every ack, cwnd (w) is evaluated as follows:

where g(qi) is the backoff probability function shown in Figure 1 (as reported in [9]), X∈[0,1]
is random number, pmax is the maximum probability of backoff, qmax=RTTmax-RTTmin is an
estimate of the maximum observed queuing delay, qmin is a target minimum queuing delay, and
qth is a threshold that divides regions A and B.

When loss-based flows are on the link, the queue is pushed into region B. The delay-based

flows have a lower probability of backoff in this region, enabling them to receive a fairer share

of the available bandwidth. When loss-based flows are no longer on the bottleneck link region B

is unstable, ensuring delay-based flows converge to a low delay state in region A.

2.2. Caia-Hamilton Delay-based Congestion Control (CHD)

Caia-Hamilton Delay-based congestion control (CHD) uses the same probability function
shown in Figure 1, but with three key modifications.

� Delay-based cwnd operations are performed only once per RTT

� CHD infers (and tolerates) packet losses that are likely to be unrelated to congestion

� CHD improves coexistence with loss-based TCP algorithms

)1(
1

)(
2

1










+

<

=
+

otherwise
w

w

qgX
w

w

i

i

i
i

i

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

103

As with HD, CHD only modifies the TCP sender's behavior. No change is required at the
existing TCP receivers.

Figure 1. Per-packet backoff probability function [9]

2.2.1. Delay-based window updates

CHD operates on cwnd in a similar way to equation (2), except that CHD updates once every
RTT and uses the maximum queuing delay experienced during the last RTT. In other words, if
hr=maxr(qi) is the maximum queuing delay observed in RTT r, CHD updates w per RTT as
follows:

The case X<g(hr) represents a delay triggered window reduction.

2.2.2. Loss-based window updates

CHD's ability to compete fairly with loss-based flows involves the use of a shadow window.

where A=hr<qth∧hr>hb and hb is the value of hr when the last delay triggered w reduction
occurred.

When s≠0, if the last recorded h is in region B, a packet loss will trigger a NewReno like
behavior. To the contrary, if a packet loss occurs in region A, w remains unchanged. The later
behavior corresponds to the assumption that a loss in region A is non-congestion loss. CHD's
rule for updating w on packet loss is:

)2(

1

)(
21








+

<
=

+

otherwisew

hgX
w

w

i

r
i

i

)3(

0

)(),max(

)(),max(

1









>∧<

∧<

=
+

otherwise

qhhgXsw

AhgXsw

s thrrii

rii

i

)4(2

),max(

1







>∧

=
+

otherwisew

qhpacketloss
sw

w

i

thr
ii

i

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

104

2.3. Caia Delay-Gradient Congestion Control (CDG)

RTT is a noisy signal - a cleaner signal is required for inferring congestion from the gradient of
RTT over time. CDG uses the maximum RTT (τmax) seen in a measured RTT interval, along
with the minimum RTT (τmin) seen within a measured RTT interval. Based on these, two
measures of gradient (change in RTT measurement per RTT interval) are kept, where n is the n-
th RTT interval:

The maximum and minimum measurements are less noisy than per packet RTT measurements.
Nevertheless they apply the moving average smoothing of Equation (7), which may be
calculated iteratively using Equation (8)(where a is the number of samples in the moving
average window).

where gi=gmin,i for calculating g
─

min,n or gi=gmax,i when caluclating g
─

max,n.

An alternative to the moving average would be exponential smoothing. However, if the
measured τmax,n ceased to grow because a queue along the path was full, an exponential average
would only approach g

─

max,n=0 in the limit. A moving average would achieve g
─

max,n=0 in a
samples.

In order to tolerate the kinds of packet loss common in, say, wireless environments, they must
infer whether or not packet loss is related to congestion. For simple drop tail queues, congestion
related loss is due to overflow of a queue along the packet's path. To infer such events CDG
uses both g

─

min and g
─

max.

Figure 2. Idealized RTT dynamics for queue full and empty events [10]

)6(

)5(

1max,max,max,

1min,min,min,

−

−

−=

−=

nnn

nnn

g

g

ττ

ττ

∑
−=

=

n

ani

i
n

a

g
g)7(

)8(1
a

gg
gg ann

nn
−

−

−
+=

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

105

Figure 3. Idealised gradient dynamics for queue full and empty events [10]

Figure 2 illustrates their assumption that when a queue fills to capacity, τmax stops increasing
before τmin stops increasing, and that the reverse is true for a queue moving from full to empty.
Figure 3 shows the idealised gradients for these two conditions (with the lines for g

─

min and g
─

max
offset slightly for clarity). Based on this CDG estimates the state of the path queue to be
Q∈{full, empty, rising, falling, unknown}. Only when Q=full are packet losses treated as
congestion signals.

2.3.1. RTT independent backoff and Shadow window

CDG introduces the RTT independent backoff algorithm to achieve fairness between flows
having different base RTT [10]. Also, CDG recovers some of its lost sending capability by
utilising the shadow window idea from [3] to mimic the loss based backoffs of TCP NewReno
[10].

2.3.2. Loss-based window updates

If a packet loss occurs, the congestion window (w) is updated as follows:

In the case of packet losses, the multiplicative decrease factor is 0.5 (as in NewReno), and w is
set to half the bigger of s (the shadow window) and w. Using the shadow window concept from
[3] improves CDG's coexistence with loss based flows. They do not reclaim the lost
transmission opportunities, but this approach does lessen the impact of the extra delay-gradient
based backoffs.

3. ESTIMATION OF UTILIZATION ON BOTTLENECK LINK

The following equation is true in each queuing model M/M/1, M/D/1, M/G/1, G/M/1, G/G/1,
where ρ is the link utilization, p0 is the probability when the queuing delay is 0 at the link [11].

)9(2

),max(

1







=∧

=
+

otherwisew

fullQpacketloss
sw

w

i

ii

i

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

106

)10(1 0p−=ρ

Here, 1-p0 is equal to the probability when the queuing delay is not 0. Suppose out of N packets
that were transmitted, Nmin experienced a round trip time, RTT=RTTmin (the minimum RTT). The
utilization ρ on the bottleneck link can then be expressed as follows [12].

However, in the presence of TCP SACK option, the sizes of the ACKs are not constant, that is,
the processing time of the ACKs at the intermediate nodes will be different. This will make
equation (11) invalid under the above assumptions.

Therefore, a more general way of calculating ρ is required. Rather than using RTT, we base our
proposed mechanism on one way delay while measuring Nmin. This is achieved through the use
of TCP timestamp option. As in [13], the UCC sender puts its current clock value in the TSval
field of the timestamp option. The receiver, while returning the ACK, follows RFC 1323, and
echo replies it in the TSecr field along with attaching its own clock value. This is sufficient to
yield one way delay. It should be noted that there is no need for synchronizing the sender and
receiver clocks because the relative time difference is enough for our calculations. Now, in our
scheme, Nmin is measured as the number of times that the value of the one way delay equals to
the minimum one way delay among the N transmitted packets.

4. OUR PROPOSAL: UTILIZATION-BASED CONGESTION

CONTROL

In this section we propose a new end-to-end congestion control based on link utilization for
wireless networks. We name this new congestion control mechanism as utilization-based
congestion control or UCC.

Conventional and many newer congestion control schemes work on a reactive approach
triggered by the loss of transmitted data and/or measurement of queuing delay. Many of them
have been quite effective in handling instantaneous congestion scenarios in the network.
However, these schemes basically aim solely at keeping the performance of the connections
under consideration high while ignoring the overall condition of the network. To the contrary,
UCC considers congestion from a global perspective. In UCC, congestion control is performed
by taking into account (i) the loss of a data segment and (ii) the link utilization as a long term
condition of the bottleneck link. As a result, despite keeping own performance high enough,
UCC can avoid undesirable performance degradation of co-existing conventional congestion
controls mechanisms through sensing an incipient congestion and shrinking its congestion
window early enough.

4.1 Loss-based Window Update

We assume that n×RTT is the time after detecting a packet loss until detecting the next packet
loss. UCC estimates the utilization ρ using equation (11), measuring one way delays by the
transmitted data packet and the ACK during the n×RTT.

CHD shrinks the congestion window (or, shadow window) to half when it decides that the
packet loss is by congestion using queuing delay. On the other hand, UCC controls the
congestion window based on the utilization on the bottleneck link of equation (11). UCC
shrinks the congestion window to half, deciding that the potential congestion occurs if the
utilization ρ on the bottleneck link is more than a tuning parameter α (for example, α=0.99)
when detecting a packet loss by duplicate ACKs.

That is, when detecting a packet loss by duplicate ACKs, UCC updates the congestion window
as follows.

)11(min

N

NN −
=ρ

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

107

The following conditions are necessary for equation (11) to hold.

1) UCC should know the accurate minimum value of RTT (or, the one way delay).

2) The minimum value of RTT (or, the one way delay) should not change.

3) When the queuing delay is 0 on the bottleneck link, the queuing delays on other links in the
same path should be 0.

Regarding the condition 1) above, from queuing theory, the probability that queuing delay is 0
is p0=1-ρ. Then, even when ρ=0.95, if the sender transmits 100 data packets, the minimum
RTT (or, the minimum one way delay) is measured about 5 times. (Here we do not take account
of the queuing delay under non-bottleneck link.) That is, if many data packets are transmitted,
the minimum RTT (or, the minimum one way delay) is measured. Then, the assumption that the
minimum RTT (or, the minimum one way delay) is measured in long-range holds.

As per condition 2), the minimum RTT (or, the minimum one way delay) should not change in
long-range. If the minimum RTT (or, the minimum one way delay) changes, UCC should
update the value. For example, UCC updates the minimum RTT (or, the minimum one way
delay) periodically.

As regards to condition 3), it is possible that the queuing delay occurs in non-bottleneck links.
When the queuing delay occurs in non-bottleneck links, the utilization ρ has upper errors from
equation (11). When ρ is measured more than the actual value, the congestion window updated
by equation (12) is smaller than the ideal value. It is not optimal in terms that the throughput of
the congestion control decreases, but secure in terms that congestion does not occur.

The other algorithms deployed in UCC are as follows.

� When the packet loss is detected by timeout, the sender retransmits the data packet, updates
the congestion window to 1 packet, and moves to the Slow Start phase. (To deal with
serious congestion.)

� At Slow Start phase, the sender adds 1 packet to the congestion window upon receiving an
ACK.

� At Congestion Avoidance phase, the sender adds 1 packet to the congestion window by one
RTT.

Our proposed scheme, UCC, has one major functional advantage over its counterparts. That is,
it does not have the requirement of any critical parameter. The only parameter that needs to be
decided is the utilization threshold, α, which can be decided intuitively. In other cases like CHD,
the need for deciding the queuing threshold qth that depends on the buffer size of the bottleneck
link poses a very difficult deployment problem.

Congestion window dynamics of UCC is shown in Figure 4.

)12(21







>∧

=
+

otherwisew

packetloss
w

w

i

i

i

αρ

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

108

Figure 4. Congestion window dynamics of UCC

5. EVALUATION

5.1. Simulation Configuration

We evaluate UCC and three other existing congestion control mechanisms through simulation.

Besides UCC, the congestion control mechanisms under concern are as follows:

� TCP NewReno

� CHD

� CDG

TCP New Reno serves as the baseline congestion control mechanism as it has been widely used

and also referenced as the baseline protocol by many TCP studies. The objective is to estimate

the following:

1) the performance of each congestion control scheme

2) how they affect TCP NewReno, and

3) how well the overall network behaves as a whole because of their usages.

We use Scenargie [14], a high fidelity commercial simulator for our evaluation. The latest

version of Scenargie can execute various TCP codes implemetend in FreeBSD 9.0 directly

within its simulation framework. As operational codes for CHD and CDG are currently

implemented only in Free BSD 9.0, the use of Scenargie can eliminates our effort to build

multiple alternative congestion control mechanisms for this comparative study. Further, it can

run various protocol models under realistic simulation scenarios, as it provides a rich set of

peripheral model library including a variety of wireless propagation, mobility and user

behaviour models. We use a very simple evaluation scenario in this simulation study such that

the causes of performance differences among these congestion control mechanisms can be

easily inferred, but such a feature leaves us open for more realistic and comprehensive

evaluation as our future work without much modelling effort at our end.

We create a simulation scenario whose network topology is depicted in Figure 4. The
configuration of network parameters is summarized in Table 1.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

109

Table1. Simulation configuration

Capacity for Links N1 – R and N2 – R 100 Mbps

Capacity for Link R – N3 10 Mbps

Delay for Links N1 – R and N2 – R 0 ms

Delay for Link R –N3 20 ms

Drop rate (random) for Link R –N3 0.00 – 0.05 /packets
(varied)

Buffer size for Link R –N3 50 packets

Segment size 1000 bytes

IP Version 4

Simulation duration 100 s

5.2. Performance Metrics

We evaluate UCC and other mechanisms in terms of throughput. Throughput is a measure of
the amount of data transferred. We choose a conservative definition of throughput that is
equivalent to the definition of effective throughput in [1]. That is, Throughput is defined as:

, where AmountOfCumulativelyAcknowledgedData is the number of bytes acknowledged at
senders (i.e., excluding retransmitted data and SACKed data).

Figure 5. Simulation scenario

5.3. Simulation Results

At first, we evaluate the performance of each congestion control scheme while competing with
the same type of flow for the channel. In the simulation scenario of Figure 5, we achieve this by
setting the senders of the same congestion control on both nodes N1 and N2. The receiver that
supports SACK is set on node N3. We evaluate the total throughput of 2 flows on N1 and N2.
We assume that the link capacity from router R to N3 is 10Mbps (both up and down), the
propagation delay of the link to 20msec (both up and down; i.e., round trip 40msec), the buffer
size of the router R is 50 segments, and the size of each data segment is 1,000 bytes. The value
of qth of CHD has been set to 20msec, and α of UCC has been set to 0.99. Every congestion
control supports SACK option. The simulation time is 100sec.

Figure 6 shows the results of total throughput of N1 and N2. The curves confirm that UCC can
achieve very high performance over wireless link which can be 150% or higher than TCP
NewReno.

TimeConnection

edDataAcknowledgmulativelyAmountOfCu
Throughput =

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

110

In next experiment, we set the sender of a target congestion control on N1, the sender of TCP
NewReno on N2, and the receiver of TCP on N3 in the simulation scenario of Figure 5. We
evaluate the effects of the target congestion control at N1 and TCP NewReno at N2 each other.

Figure 6. Throughput Comparison

Figure 7. Variation of TCP NewReno Throughput with different flows

Figure 8. Throughput while deployed together with TCP NewReno

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

111

Figure 7 shows corresponding throughput yield for TCP NewReno at N2. It should be noted that
the curve that corresponds to connecting a UCC flow at N1 is quite comparable with the curve
that corresponds to connecting a TCP NewReno at N1 for practical operational value of link
error. To the contrary, the curves corresponding to connecting a CHD flow at N1 and a CDG
flow at N1 show much higher TCP NewReno throughput when link error is 0, that is, in wired
networks. This implies that CHD flow and CDG flow are pressed by TCP NewReno flow at N2.
UCC is friendly to TCP NewReno while CHD and CDG are not.

In Figure 8, we observe that the overall throughput is reasonably high while UCC is deployed at
N1 together with New Reno at N2. Hence it can be inferred that UCC yields high throughput
without affecting the co-existing TCP NewReno connection.

6. CONCLUSIONS

Performance of conventional congestion control mechanisms like TCP NewReno suffers due to
incorrect interpretation of losses resulting from link errors. Various modifications, both loss
based and delay based approaches, have been proposed to overcome the corresponding
performance degradation. Since all these mechanisms aim at improving solely the performance
of connections under consideration, they do not take the performance of other connections into
account. Therefore, when co-existing with the conventional loss-based congestion control, the
performance suffers drastically. In this paper, we proposed a new end-to-end congestion control
mechanism that we named as Utilization-based Congestion Control (UCC) in order to overcome
the above issues. UCC provides a solution based on the utilization at the bottleneck link. It is
free from critical parameters like queuing threshold and is friendly to other flows over wireless
links when deployed together. Simulation results show that (i) UCC can yield a performance
improvement of 150% or more compared to conventional loss-based schemes over wireless
links and (ii) it is friendly to conventional loss-based congestion controls over wireless links.

ACKNOWLEDGEMENTS

We evaluated our scheme using network simulator Scenargie presented by Space-Time
Engineering. We thank Space-Time Engineering for their kind support.

REFERENCES

[1] V. Jacobson, (1988) “Congestion avoidance and control”, Proc.ACM Special Interest Group on

Data Communications (SIGCOMM).

[2] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz (1997) “A comparison of

mechanisms for improving TCP performance over wireless links”, IEEE/ACM Trans.

Networking, Vol.5, No.6,pp.756-769.

[3] D. A. Hayes, and G. Armitage, (2010) “Improved co-existence and loss tolerance for delay based

TCP congestion control”, 35th Annual IEEE Conference on Local Computer Networks

(LCN2010), Denver, Colorado.

[4] R. Ludwig, and R. H. Katz, (2000) “The Eifel Algorithm: Making TCP Robust Against Spurious

Retransmissions”, ACM Computer Communication Review, Vol. 30, No.1.

[5] S. Utsumi, S. M. S. Zabir, and N. Shiratori, (2008) “TCP-Cherry: A new approach for TCP

congestion control over satellite IP networks”, Computer Communications, Elsevier, vol.31, pp.

2541-2561.

International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.5, September 2012

112

[6] S. Utsumi, S. M. S. Zabir, and N. Shiratori, (2009) “TCP-Cherry for satellite IP networks:

Analytical model and performance evaluation”, Computer Communications, Elsevier, vol. 32,

issue 12, pp. 1377-1383.

[7] M. Sakar, K. K. Shukla, and K. S. Dasgupta, (2010) “Network State Classification based on the

Statistical Properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for

Satellite based Networks”, International Journal of Computer Networks & Communications

(IJCNC), vol. 2, No. 6, Nov. 2010.

[8] D. Leith, R. Shorten, G. McCullagh, J. Heffner, L. Dunn, and F. Baker, (2007) “Delay-based

AIMD congestion control”, in Proc. Protocols for Fast Long Distance Networks, California.

[9] L. Budzisz, R. Stanojevic, R. Shorten, and F. Baker, (2009) “A Strategy for Fair Coexistence of

Loss and Delay-Based Congestion Control Algorithms”, IEEE Communications Letters, vol. 13,

no. 7, pp.555-557.

 [10] D. A. Hayes, and G. Armitage, (2011) “Revisiting TCP Congestion Control using Delay

Gradients”, IFIP/TC6 Networking, Valencia, Spain.

[11] Jain, R. (1991) “The Art of Computer Systems Performance Analysis”, John Wiley and Sons

Inc., USA.

[12] K. Igai, and E. Oki, (2011) “A Simple Estimation Scheme for Upper Bound of Link Utilization

Based on RTT Measurement”, Cyber Journals: Multidisciplinary Journals in Science and

Technology, Journal of Selected Areas in Telecommunications (JSAT), pp. 10-16.

[13] A. Kuzmanovic, and E. W. Knightly, (2006) “TCP-LP: low-priority service via end-point

congestion control”, IEEE/ACM Transactions on Networking, Volume 14 Issue 4.

[14] M. Takai, Y. Owada, and K. Seki, (2009) “A Comparative Study on Network Simulators for

ITS Simulation: IEEE802.11 Media Access Control (MAC) models”, 19
th

 ITS World Congress.

Authors

Satoshi Utsumi received his B.E., M.S. and Ph.D. degrees in information science from Tohoku

University, Japan, in 2000, 2003 and 2009 respectively. He worked in Advantest Corporation from April

2003 to October 2006. He worked as a postdoctoral fellow of Japan Society for the Promotion of Science

from April 2009 to March 2011. He joined Tsuruoka National College of Technology, Japan at 2011. He

is researching about Internet congestion controls and so on. He received the JC-SAT Award at 2011.

Salahuddin Muhammad Salim Zabir received his B.E. degree in computer science and engineering

from Bangladesh University of Engineering and Technology, Bangladesh, in 1994. He received his M.S.

and Ph.D. degree in information science from Tohoku University, Japan, in 2000 and 2004 respectively.

He joined France Telecom Japan, Orange Labs Tokyo at 2008. He is researching about Internet

congestion controls and so on. He is a member of IEEE.

