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ABSTRACT 

Traditional connection oriented protocols like TCP NewReno perform poorly over wireless links. The 

problem lies in their design assumptions based on loss based congestion control. Various modifications 

to loss based congestion control schemes have so far been proposed to overcome the issue. In addition, 

the comparatively newer family of delay based congestion control mechanisms like Caia-Hamilton Delay 

(CHD), offer effective solutions for wireless link loss. All these approaches aim at improving the 

performance of the target connection without considering the overall network condition. Therefore, when 

co-existing with the conventional loss-based congestion control, the performances suffer severely. 

Furthermore, for delay based schemes, it is not possible to determine the optimum value of the queuing 

threshold intuitively. In this paper, we propose a new end-to-end congestion control mechanism that we 

name as Utilization-based Congestion Control (UCC) in order to overcome the above problems. UCC 

provides a solution based on the utilization at the bottleneck link. It is free from critical parameters like 

queuing threshold and is friendly to other flows over wireless links when deployed together. Simulation 

results show that over wireless links, (i) UCC can yield a performance improvement of 150% or more 

compared to conventional loss-based schemes and (ii) it is friendly to conventional loss-based congestion 

controls. 
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1. INTRODUCTION 

Incorporation of mobile and wireless devices to the Internet has led to the need for optimizing 
major applications to perform satisfactorily over wireless link. Typically, wireless links are 
prone to a higher link error rate than their wired counterparts. Since conventional TCP protocols 
as TCP NewReno are designed to be used in wired networks with low link error rates, their 
designs do not take link errors into account. That is, they assume that segment losses occur 
solely due to congestion in networks [1]. Whenever a segment loss occurs, conventional TCP 
infers congestion and the sender handles the situation by reducing its sending rate as a remedial 
measure. Therefore, when conventional TCPs are used over wireless networks, they interpret 
even the losses occurring due to link error as originating from congestion and thus frequently 
lower their transmission rates unnecessarily. Therefore, deployment of conventional TCP over 
wireless links results in a decreased throughput [2]. 

Various end-to-end congestion control mechanisms have so far been proposed. In addition, the 
comparatively newer family of delay based congestion control mechanisms like Caia-Hamilton 
Delay (CHD) [3] offer effective solutions for wireless link loss. However, all these mechanisms 
aim at improving solely the performance of the connection under concern. Therefore, while 
aggressively increasing the performance of the desired connection, they affect the performance 
of other types of connections severely. 
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In this paper, we propose a new end-to-end congestion control mechanism that we name as 
Utilization-based Congestion Control (UCC), focusing on the techniques to detect the network 
congestion in order to overcome the above issues. UCC provides a solution based on the 
utilization at the bottleneck link. We estimate the utilization on the bottleneck link using 
queuing theory and apply this for end-to-end congestion control. 

From functional point of view, UCC is free from critical parameters like queuing threshold. 
Moreover, it is friendly to other flows over wireless links when deployed together. Simulation 
results show that (i) UCC can yield a performance improvement of 150% or more compared to 
conventional loss-based schemes over wireless links and (ii) it is friendly to conventional loss-
based congestion controls over wireless links. 

 The rest of this paper is organized as follows. Section 2 summarizes the most recent relevant 
research works. In section 3, we describe a method that can be used for practically calculating 
link utilization. We present our proposed scheme in section 4. In section 5, we discuss in detail 
how we have evaluated UCC. Finally we conclude in section 6. 

 

2. RELATED WORK 

A number of congestion control mechanisms using only lost packets to detect congestion exits 
to date [4, 5, 6, 7]. Since these are already quite well established mechanisms, we omit 
mentioning them in this section. To the contrary, congestion control mechanisms using delay 
parameters are getting popular recently. They are relatively new and therefore, we discuss them 
here.  

2.1. Hamilton Delay-based Congestion Control (HD) 

Leith et al. [8] describe the case for delay-based Additive Increase Multiplicative Decrease 
(AIMD) congestion control, which provides end-to-end control with high utilization, low delay 
and zero congestion related packet loss. This idea was improved by Budzisz et al. [9] for fair 
coexistence with loss-based TCP algorithms. 

On receipt of every ack, cwnd (w) is evaluated as follows: 

 

 

 

 

where g(qi) is the backoff probability function shown in Figure 1 (as reported in [9]), X∈[0,1] 
is random number, pmax is the maximum probability of backoff, qmax=RTTmax-RTTmin is an 
estimate of the maximum observed queuing delay, qmin is a target minimum queuing delay, and 
qth is a threshold that divides regions A and B. 

When loss-based flows are on the link, the queue is pushed into region B. The delay-based 

flows have a lower probability of backoff in this region, enabling them to receive a fairer share 

of the available bandwidth. When loss-based flows are no longer on the bottleneck link region B 

is unstable, ensuring delay-based flows converge to a low delay state in region A. 

2.2. Caia-Hamilton Delay-based Congestion Control (CHD) 

Caia-Hamilton Delay-based congestion control (CHD) uses the same probability function 
shown in Figure 1, but with three key modifications. 

� Delay-based cwnd operations are performed only once per RTT 

� CHD infers (and tolerates) packet losses that are likely to be unrelated to congestion 

� CHD improves coexistence with loss-based TCP algorithms 
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As with HD, CHD only modifies the TCP sender's behavior. No change is required at the 
existing TCP receivers. 

 

 

 

 

 

 

 

 

 

Figure 1. Per-packet backoff probability function [9] 

 

2.2.1. Delay-based window updates 

CHD operates on cwnd in a similar way to equation (2), except that CHD updates once every 
RTT and uses the maximum queuing delay experienced during the last RTT. In other words, if 
hr=maxr(qi) is the maximum queuing delay observed in RTT r, CHD updates w per RTT as 
follows: 

 

 

 

 

The case X<g(hr) represents a delay triggered window reduction. 

 

2.2.2. Loss-based window updates 

CHD's ability to compete fairly with loss-based flows involves the use of a shadow window. 

 

 

 

 

 

where A=hr<qth∧hr>hb and hb is the value of hr when the last delay triggered w reduction 
occurred. 

When s≠0, if the last recorded h is in region B, a packet loss will trigger a NewReno like 
behavior. To the contrary, if a packet loss occurs in region A, w remains unchanged. The later 
behavior corresponds to the assumption that a loss in region A is non-congestion loss. CHD's 
rule for updating w on packet loss is: 
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2.3. Caia Delay-Gradient Congestion Control (CDG) 

RTT is a noisy signal - a cleaner signal is required for inferring congestion from the gradient of 
RTT over time. CDG uses the maximum RTT (τmax) seen in a measured RTT interval, along 
with the minimum RTT (τmin) seen within a measured RTT interval. Based on these, two 
measures of gradient (change in RTT measurement per RTT interval) are kept, where n is the n-
th RTT interval: 

 

 

 

 

The maximum and minimum measurements are less noisy than per packet RTT measurements. 
Nevertheless they apply the moving average smoothing of Equation (7), which may be 
calculated iteratively using Equation (8)(where a is the number of samples in the moving 
average window). 

 

 

 

 

 

 

where gi=gmin,i for calculating  g
─

min,n or gi=gmax,i when caluclating g
─

max,n. 

 

An alternative to the moving average would be exponential smoothing. However, if the 
measured τmax,n ceased to grow because a queue along the path was full, an exponential average 
would only approach g

─

max,n=0 in the limit. A moving average would achieve g
─

max,n=0 in a 
samples. 

 

In order to tolerate the kinds of packet loss common in, say, wireless environments, they must 
infer whether or not packet loss is related to congestion. For simple drop tail queues, congestion 
related loss is due to overflow of a queue along the packet's path. To infer such events CDG 
uses both g

─

min and g
─

max. 

 

 

 

 

 

 

 

 

 

Figure 2.  Idealized RTT dynamics for queue full and empty events [10] 
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Figure 3. Idealised gradient dynamics for queue full and empty events [10] 

 

Figure 2 illustrates their assumption that when a queue fills to capacity, τmax stops increasing 
before τmin stops increasing, and that the reverse is true for a queue moving from full to empty. 
Figure 3 shows the idealised gradients for these two conditions (with the lines for g

─

min and g
─

max 
offset slightly for clarity). Based on this CDG estimates the state of the path queue to be 
Q∈{full, empty, rising, falling, unknown}. Only when Q=full are packet losses treated as 
congestion signals. 

 

2.3.1. RTT independent backoff and Shadow window 

CDG introduces the RTT independent backoff algorithm to achieve fairness between flows 
having different base RTT [10]. Also, CDG recovers some of its lost sending capability by 
utilising the shadow window idea from [3] to mimic the loss based backoffs of TCP NewReno 
[10]. 

 

2.3.2. Loss-based window updates 

If a packet loss occurs, the congestion window (w) is updated as follows: 

 

 

 

 

 

 

 

In the case of packet losses, the multiplicative decrease factor is 0.5 (as in NewReno), and w is 
set to half the bigger of s (the shadow window) and w.  Using the shadow window concept from 
[3] improves CDG's coexistence with loss based flows. They do not reclaim the lost 
transmission opportunities, but this approach does lessen the impact of the extra delay-gradient 
based backoffs. 

 

3. ESTIMATION OF UTILIZATION ON BOTTLENECK LINK 

The following equation is true in each queuing model M/M/1, M/D/1, M/G/1, G/M/1, G/G/1, 
where ρ is the link utilization, p0 is the probability when the queuing delay is 0 at the link [11]. 
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Here, 1-p0 is equal to the probability when the queuing delay is not 0. Suppose out of N packets 
that were transmitted, Nmin experienced a round trip time, RTT=RTTmin (the minimum RTT). The 
utilization ρ on the bottleneck link can then be expressed as follows [12]. 

 

 

 

However, in the presence of TCP SACK option, the sizes of the ACKs are not constant, that is, 
the processing time of the ACKs at the intermediate nodes will be different. This will make 
equation (11) invalid under the above assumptions.  

Therefore, a more general way of calculating ρ is required. Rather than using RTT, we base our 
proposed mechanism on one way delay while measuring Nmin. This is achieved through the use 
of TCP timestamp option. As in [13], the UCC sender puts its current clock value in the TSval 
field of the timestamp option. The receiver, while returning the ACK, follows RFC 1323, and 
echo replies it in the TSecr field along with attaching its own clock value. This is sufficient to 
yield one way delay. It should be noted that there is no need for synchronizing the sender and 
receiver clocks because the relative time difference is enough for our calculations. Now, in our 
scheme, Nmin is measured as the number of times that the value of the one way delay equals to 
the minimum one way delay among the N transmitted packets. 

 

4. OUR PROPOSAL: UTILIZATION-BASED CONGESTION 

CONTROL 

In this section we propose a new end-to-end congestion control based on link utilization for 
wireless networks. We name this new congestion control mechanism as utilization-based 
congestion control or UCC.  

Conventional and many newer congestion control schemes work on a reactive approach 
triggered by the loss of transmitted data and/or measurement of queuing delay. Many of them 
have been quite effective in handling instantaneous congestion scenarios in the network. 
However, these schemes basically aim solely at keeping the performance of the connections 
under consideration high while ignoring the overall condition of the network. To the contrary, 
UCC considers congestion from a global perspective. In UCC, congestion control is performed 
by taking into account (i) the loss of a data segment and (ii) the link utilization as a long term 
condition of the bottleneck link. As a result, despite keeping own performance high enough, 
UCC can avoid undesirable performance degradation of co-existing conventional congestion 
controls mechanisms through sensing an incipient congestion and shrinking its congestion 
window early enough.  

 

4.1 Loss-based Window Update 

We assume that n×RTT is the time after detecting a packet loss until detecting the next packet 
loss. UCC estimates the utilization ρ using equation (11), measuring one way delays by the 
transmitted data packet and the ACK during the n×RTT. 

CHD shrinks the congestion window (or, shadow window) to half when it decides that the 
packet loss is by congestion using queuing delay. On the other hand, UCC controls the 
congestion window based on the utilization on the bottleneck link of equation (11). UCC 
shrinks the congestion window to half, deciding that the potential congestion occurs if the 
utilization ρ on the bottleneck link is more than a tuning parameter α (for example, α=0.99) 
when detecting a packet loss by duplicate ACKs. 

That is, when detecting a packet loss by duplicate ACKs, UCC updates the congestion window 
as follows. 

)11(min
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The following conditions are necessary for equation (11) to hold. 

1) UCC should know the accurate minimum value of RTT (or, the one way delay). 

2) The minimum value of RTT (or, the one way delay) should not change. 

3) When the queuing delay is 0 on the bottleneck link, the queuing delays on other links in the 
same path should be 0. 

 

Regarding the condition 1) above, from queuing theory, the probability that queuing delay is 0 
is p0=1-ρ. Then, even when ρ=0.95, if the sender transmits 100 data packets, the minimum 
RTT (or, the minimum one way delay) is measured about 5 times. (Here we do not take account 
of the queuing delay under non-bottleneck link.) That is, if many data packets are transmitted, 
the minimum RTT (or, the minimum one way delay) is measured. Then, the assumption that the 
minimum RTT (or, the minimum one way delay) is measured in long-range holds. 

As per condition 2), the minimum RTT (or, the minimum one way delay) should not change in 
long-range. If the minimum RTT (or, the minimum one way delay) changes, UCC should 
update the value. For example, UCC updates the minimum RTT (or, the minimum one way 
delay) periodically. 

As regards to condition 3), it is possible that the queuing delay occurs in non-bottleneck links. 
When the queuing delay occurs in non-bottleneck links, the utilization ρ has upper errors from 
equation (11). When ρ is measured more than the actual value, the congestion window updated 
by equation (12) is smaller than the ideal value. It is not optimal in terms that the throughput of 
the congestion control decreases, but secure in terms that congestion does not occur. 

 

The other algorithms deployed in UCC are as follows. 

� When the packet loss is detected by timeout, the sender retransmits the data packet, updates 
the congestion window to 1 packet, and moves to the Slow Start phase. (To deal with 
serious congestion.) 

� At Slow Start phase, the sender adds 1 packet to the congestion window upon receiving an 
ACK. 

� At Congestion Avoidance phase, the sender adds 1 packet to the congestion window by one 
RTT. 

Our proposed scheme, UCC, has one major functional advantage over its counterparts. That is, 
it does not have the requirement of any critical parameter. The only parameter that needs to be 
decided is the utilization threshold, α, which can be decided intuitively. In other cases like CHD, 
the need for deciding the queuing threshold qth that depends on the buffer size of the bottleneck 
link poses a very difficult deployment problem. 

Congestion window dynamics of UCC is shown in Figure 4. 
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Figure 4. Congestion window dynamics of UCC 

 

5. EVALUATION 

5.1. Simulation Configuration 

We evaluate UCC and three other existing congestion control mechanisms through simulation. 

Besides UCC, the congestion control mechanisms under concern are as follows: 

� TCP NewReno 

� CHD 

� CDG 

TCP New Reno serves as the baseline congestion control mechanism as it has been widely used 

and also referenced as the baseline protocol by many TCP studies. The objective is to estimate 

the following: 

1) the performance of each congestion control scheme 

2) how they affect TCP NewReno, and 

3) how well the overall network behaves as a whole because of their usages. 

We use Scenargie [14], a high fidelity commercial simulator for our evaluation. The latest 

version of Scenargie can execute various TCP codes implemetend in FreeBSD 9.0 directly 

within its simulation framework. As operational codes for CHD and CDG are currently 

implemented only in Free BSD 9.0, the use of Scenargie can eliminates our effort to build 

multiple alternative congestion control mechanisms for this comparative study. Further, it can 

run various protocol models under realistic simulation scenarios, as it provides a rich set of 

peripheral model library including a variety of wireless propagation, mobility and user 

behaviour models. We use a very simple evaluation scenario in this simulation study such that 

the causes of performance differences among these congestion control mechanisms can be 

easily inferred, but such a feature leaves us open for more realistic and comprehensive 

evaluation as our future work without much modelling effort at our end. 

We create a simulation scenario whose network topology is depicted in Figure 4. The 
configuration of network parameters is summarized in Table 1. 
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Table1. Simulation configuration 

Capacity for Links N1 – R and N2 – R 100 Mbps 

Capacity for Link R – N3 10 Mbps 

Delay for Links N1 – R and N2 – R 0 ms 

Delay for Link R –N3 20 ms 

Drop rate (random) for Link R –N3 0.00 – 0.05 /packets 
(varied) 

Buffer size for Link R –N3 50 packets 

Segment size 1000 bytes 

IP Version 4 

Simulation duration 100 s 

 

5.2. Performance Metrics 

We evaluate UCC and other mechanisms in terms of throughput. Throughput is a measure of 
the amount of data transferred. We choose a conservative definition of throughput that is 
equivalent to the definition of effective throughput in [1]. That is, Throughput is defined as: 

 

 

 

, where AmountOfCumulativelyAcknowledgedData is the number of bytes acknowledged at 
senders (i.e., excluding retransmitted data and SACKed data). 

 

 

 

 

 

 

 

Figure 5. Simulation scenario 

5.3. Simulation Results  

At first, we evaluate the performance of each congestion control scheme while competing with 
the same type of flow for the channel. In the simulation scenario of Figure 5, we achieve this by 
setting the senders of the same congestion control on both nodes N1 and N2. The receiver that 
supports SACK is set on node N3. We evaluate the total throughput of 2 flows on N1 and N2. 
We assume that the link capacity from router R to N3 is 10Mbps (both up and down), the 
propagation delay of the link to 20msec (both up and down; i.e., round trip 40msec), the buffer 
size of the router R is 50 segments, and the size of each data segment is 1,000 bytes. The value 
of qth of CHD has been set to 20msec, and α of UCC has been set to 0.99.  Every congestion 
control supports SACK option. The simulation time is 100sec. 

Figure 6 shows the results of total throughput of N1 and N2. The curves confirm that UCC can 
achieve very high performance over wireless link which can be 150% or higher than TCP 
NewReno. 

TimeConnection

edDataAcknowledgmulativelyAmountOfCu
Throughput =
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In next experiment, we set the sender of a target congestion control on N1, the sender of TCP 
NewReno on N2, and the receiver of TCP on N3 in the simulation scenario of Figure 5. We 
evaluate the effects of the target congestion control at N1 and TCP NewReno at N2 each other. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Throughput Comparison 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Variation of TCP NewReno Throughput with different flows 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Throughput while deployed together with TCP NewReno 
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Figure 7 shows corresponding throughput yield for TCP NewReno at N2. It should be noted that 
the curve that corresponds to connecting a UCC flow at N1 is quite comparable with the curve 
that corresponds to connecting a TCP NewReno at N1 for practical operational value of link 
error. To the contrary, the curves corresponding to connecting a CHD flow at N1 and a CDG 
flow at N1 show much higher TCP NewReno throughput when link error is 0, that is, in wired 
networks. This implies that CHD flow and CDG flow are pressed by TCP NewReno flow at N2. 
UCC is friendly to TCP NewReno while CHD and CDG are not. 

In Figure 8, we observe that the overall throughput is reasonably high while UCC is deployed at 
N1 together with New Reno at N2. Hence it can be inferred that UCC yields high throughput 
without affecting the co-existing TCP NewReno connection. 

 

6. CONCLUSIONS 

Performance of conventional congestion control mechanisms like TCP NewReno suffers due to 
incorrect interpretation of losses resulting from link errors. Various modifications, both loss 
based and delay based approaches, have been proposed to overcome the corresponding 
performance degradation. Since all these mechanisms aim at improving solely the performance 
of connections under consideration, they do not take the performance of other connections into 
account. Therefore, when co-existing with the conventional loss-based congestion control, the 
performance suffers drastically. In this paper, we proposed a new end-to-end congestion control 
mechanism that we named as Utilization-based Congestion Control (UCC) in order to overcome 
the above issues. UCC provides a solution based on the utilization at the bottleneck link. It is 
free from critical parameters like queuing threshold and is friendly to other flows over wireless 
links when deployed together. Simulation results show that (i) UCC can yield a performance 
improvement of 150% or more compared to conventional loss-based schemes over wireless 
links and (ii) it is friendly to conventional loss-based congestion controls over wireless links. 
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