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ABSTRACT 

Network configuration is the assignment of network parameters necessary for a device to integrate the 

network, examples being: an IP address, netmask, the IP address of the gateway, etc ... In the case of 

Mobile Ad hoc NETworks (MANETs), the connectivity of nodes is highly dynamic and a central 

administration or configuration by the user is very difficult. This paper presents an autoconfiguration 

solution for ad hoc networks running the widely implemented version of OLSR routing protocol, the 2003 

RFC 3626 [1].  This solution is based on an efficient Duplicate Address Detection (DAD) algorithm, 

which takes advantage of the genuine optimization of the OLSR routing protocol. The proposed 

autoconfiguration algorithm is proved to operate correctly in a multiple interfaces OLSR network.  

KEYWORDS 

MANET, Autoconfiguration, Routing protocols, Multiple interfaces 

1. INTRODUCTION 

Most MANET (Mobile Ad hoc NETwork) routing protocols assume that mobile nodes in ad 

hoc networks are configured a priori with a unique address before joining a MANET. Because 

mobile nodes may frequently move from one network to another, it is desirable for them to 

obtain addresses via dynamic configuration. Automatic address allocation is more difficult in a 

MANET environment than in wired networks due to the instability of links, mobility of the 

nodes, the open nature of mobile ad hoc networks, and the lack of central administration in the 

general case. Thus performing a DAD (Duplicate Address Detection) generates more 

complexity and more overhead in ad hoc networks than in wired networks where protocols such 

as DHCP [3] and SAA [4] can be used.  

Recently, a considerable number of dynamic addressing schemes for ad hoc networks have been 

proposed. These approaches differ in a wide range of aspects, such as address format, the use of 

centralized servers or full decentralization, hierarchical structure or flat network organization 

and explicit or implicit duplicate address detection.  

The paper is structured as follows: Section 2 presents related work and positions this 

contribution. Section 3 gives an overview of the OLSR routing protocol in order to make the 

issues raised in this paper more easily understandable. Section 4 describes the duplicate address 

detection mechanism, which lies at the core of the proposed autoconfiguration protocol. A 

formal proof of correctness of this duplicate address detection algorithm is given. Section 5 

highlights the environment of the implementation of the proposed autoconfiguration protocol. 

The convergence of the proposed protocol was evaluated by simulation in Section 6. Finally, 

Section 7 concludes the paper. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.5, No.1, January 2013 

154 

 

 

 

2. ADDRESS AUTOCONFIGURATION IN AD HOC NETWORKS 

2.1. Related Works 

Numerous autoconfiguration protocols in ad hoc networks have been proposed. These protocols 

can be divided into the three following categories:  

– Conflict-free algorithms : In this approach, a set of nodes in the network are responsible for 

address allocation. The nodes taking part in address allocation have disjoint address pools to 

avoid duplications. The Dynamic Configuration and Distribution Protocol (DCDP) [6] is a 

conflict-free allocation algorithm. When a new mobile node joins the MANET, an address pool 

is divided into halves between itself and a configured node. Another conflict-free allocation 

algorithm, called the ’prophet allocation protocol’ has been proposed [7] for large scale 

MANETs. The idea is that every mobile node executes a stateful function f(n) to get a unique IP 

address.  

– Best-effort algorithms : In these schemes, when a new node joins the network, one of its 

neighbors chooses an unused address for it – unused, that is, to the best of their knowledge. The 

Distributed Dynamic Host Configuration Protocol (DDHCP) [8] is one example of best-effort 

allocation algorithms. DDHCP maintains a global addresses allocation state, so IP addresses 

which have been used, and addresses which have not yet been allocated, are in principle known.  

– Conflict-detection algorithms : The algorithms related to this approach perform a DAD 

(Duplicate Address Detection) to ensure the uniqueness of the allocated IP address. The general 

procedure is that a node generates a tentative address and then performs DAD within its 

neighborhood (radio range of the node). If the address is unique, the DAD is performed again 

over the whole network and a unique IP address is constructed. Examples of such approaches 

include [11], [9] and [10]. Conflict-detection algorithms can also be divided into two categories 

which differ in when, and how duplicate addresses are detected. ADAD (Active Duplicate 

Address Detection) mechanisms distribute additional control information in the network to 

prevent address duplication as, for instance, in [9] and [10]. In contrast, PDAD (Passive 

Duplicate Address Detection) algorithms [5], try to detect duplicates without disseminating 

additional control information in the network. The idea behind this approach is to continuously 

monitor routing protocol traffic to detect duplicates rather than sending additional control 

packets for this purpose. However, in [5] a so-called Address Conflict Notification (ACN) 

message is introduced for the purpose of conflict resolution. 

 

2.2. Contribution of This Paper 

In [11] an initial approach for OLSR autoconfiguration based on the DAD (Duplicate Address 

Detection) procedure is presented. The proposed autoconfiguration solution uses the OLSR’s 

MPR optimization to broadcast a control packet (MAD: Multiple Address Declaration ) used by 

the DAD procedure. This autoconfiguration algorithm works with any assumptions on address 

duplications, but only in the case of a single-interface OLSR network. In this paper, an 

autoconfiguration algorithm that uses the same DAD mechanism as in [11] is proposed, but the 

rules according to which the MAD messages are relayed and processed were changed. A formal 

proof of correctness of this new autoconfiguration algorithm in a multiple interfaces OLSR 

network and in the presence of multiple conflicts is provided. 

 

3. OLSR 

This section describes the main features of OLSR (Optimized Link State Routing) protocol [1]. 

OLSR is an optimization of a pure link state routing protocol. It is based on the concept of 

multipoint relays (MPRs ) [2]. First, using multipoint relays reduces the size of the control 

messages: rather than declaring all links, a node declares only the set of links with its neighbors 

that are its “multipoint relay selectors ”. The use of MPRs also minimizes flooding of control 
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traffic. Indeed only multipoint relays forward control messages. This technique significantly 

reduces the number of retransmissions of broadcast control messages [2]. The main OLSR 

functionalities, Link Sensing, Neighbor Discovery and Topology Dissemination, are now 

detailed. 

 

3.1. Interfaces and Addresses 

In OLSR [1], a node may have several interfaces, which participate in the OLSR network. This 

situation results in more difficult algorithms, processing, and the need for more additional 

terminology (addressed in the OLSR specifications). Figure 1 is an example of a network with 

three nodes X, Y, and Z where two nodes X and Y have multiple interfaces (X1, X2 and Y1, Y2 

respectively).  

 
 

Figure 1. Example of links between neighbor nodes X, Y and Z 

 

Each OLSR node has a different address for each of its interfaces. This address is called the 

Interface Address. For instance, in Figure 1, the interface address of the interface X1 of the node 

X is @1. Each node arbitrarily chooses one unique interface address as its Main Address, which 

will be used as the originator address of the messages of the node. In Figure 1, node X has 

chosen the address of interface X 1, @1, as its main address, node Y has chosen the one from Y1, 

@2, and node Z has chosen @4 from Z
1
.  

In the rest of this paper, the same conventions will be used: nodes are denoted by letters such as 

X, interfaces are denoted by node names with indices such as X1, and addresses in general (main 

addresses or interface addresses) are denoted by the prefix @, such as address @1. 

 

3.2. Links and Neighbors 

In contrast with the situation where OLSR nodes have a unique interface, in the context of 

multiple interfaces, the distinction between “links” and “neighbors” is necessary. A Link 

represents the physical connection between two interfaces (of different nodes), i.e. the fact that 

the packets from one interface reach another interface. Links can be symmetric or asymmetric: a 

link is Symmetric when communication is possible in both directions, that is, the packets sent on 

each interface will reach the other one and vice-versa. In the opposite case, the link  

is unidirectional, communication is only possible from one given interface to the other, and the 

link is then called Asymmetric. In Figure 1, the arrows are meant to specify in which directions 

the traffic flows: the links between interfaces X
1
 and Y

1
, between Z

1
 and Y

2
 are symmetric; while 

the links (Y1, X2 ) and (X2, Z1) are asymmetric.  

Based on the existing links, the term Neighbor is used to denote the fact that one node has at 

least one interface, which has a link with one interface to the Neighbor node. It is a Symmetric 

Neighbor, when there is at least one such link, which is symmetric; otherwise it is a Not-

Symmetric Neighbor (from the terminology of [1]). In Figure 1, X and Y are symmetric 

neighbors due to the link (X
1
, Y

1
), Y and Z are symmetric neighbors with the link (Y

2
, Z

1
) while 

X and Z are not-symmetric neighbors with the asymmetric link (X2, Z1). 
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3.3. Link Sensing and Neighbor Discovery 

A node automatically detects the links and the neighbors, with two continuous tasks of the 

OLSR protocol, Link Sensing and Neighbor Discovery. For this, each node periodically 

broadcasts Hello messages, containing the list of links known to the node and their link status. 

The link status can be either symmetric, asymmetric or lost (if the link has been lost). 

Additionally, the information regarding which neighbor nodes have been selected as a 

multipoint relay (see section 3.4) is also added. The Hello messages are received by all 1-hop 

neighbors, but are not forwarded. They are typically broadcast once per refreshing period called 

the “HELLO_INTERVAL”. Thus, Hello messages enable each node to discover its 1-hop 

neighbors, and links to neighbors: this information is stored in each node in a Link Set and 

Neighbor Set. 

 

3.4. Two-Hop Neighbors and MPR Selection 

A 2-Hop Neighbor is a neighbor of a neighbor1. As part of the neighbor discovery, Hello 

messages also make it possible to detect the 2-hop neighbors of one node quite naturally. This 

information is stored in the 2-Hop Neighbor Set. On the basis of this information, each node m 

independently selects its own set of multipoint relays among its 1-hop neighbors in such a way 

that all 2-hop neighbors of m have symmetric links with MPR(m). This means that the 

multipoint relays cover (in terms of radio range) all 2-hop neighbors. One possible algorithm for 

selecting these MPRs is described in [2]. More precisely, the above presentation of MPR 

calculation is accurate for nodes with a single interface. With multiple interfaces, the MPR 

calculation and the MPR flooding algorithms are modified: an MPR set is computed on each 

interface, so as to reach all the 2-hop neighbors that this interface can see, in the same way as 

previously. The union of the MPR sets of each interface make up the MPR set for the node. A 

node should select an MPR set such that any 2-hop neighbor is covered by at least one MPR 

node. The multipoint relay set is computed whenever a change in the 1-hop or 2-hop 

neighborhood is detected. In addition, each node n maintains its “MPR selector set ”. This set 

contains the nodes which have selected n as a multipoint relay. Node n only forwards broadcast 

messages received from one of its MPR selectors. 

 

3.5. Topology Dissemination 

Each node of the network maintains topological information about the network obtained by 

means of TC (Topology control) messages. Each node n selected as a multipoint relay, 

broadcasts a TC message at least every “TC_INTERVAL”. The TC message originated from 

node n declares the MPR selectors of n. The TC messages are flooded to all nodes in the 

network and take advantage of MPRs to reduce the number of retransmissions. Thus, a node is 

reachable either directly or via its MPRs. The neighbor information and the topology 

information are refreshed periodically and the network topology changes. 

 

4. AUTOCONFIGURATION: DUPLICATE ADDRESS DETECTION 

4.1. Overview 

The proposed autoconfiguration algorithm is based on three principles:  

– Address assignment: an IP address is selected by the arriving node and the node can join the 

ad hoc network.  

– Duplicate Address Detection: each node checks that there is not another node with the same 

address.  

                                                
1
 More strictly, it should also not be at the same time the node itself 
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– Conflict resolution: when a node detects that another node is using the same address, it will 

select a new address.  

In this approach, address assignment is relatively simple: it is performed by the node itself 

without exchanging any special message with its neighbors. It can be performed by simply 

choosing one at random, or in a more elaborate way as described in [11].  

Duplicate address detection is based on a special control packet called MAD (Multiple Address 

Declaration): it is emitted by each node, and includes one identifier and all the addresses of the 

node. This message is periodically transmitted to the entire network. The identifier of each node 

is assumed to be unique. The central idea is that if there is a conflict between two nodes:  

– one of the nodes in conflict will receive the MAD message from the other node in conflict: the 

MAD message received will include the address of the receiving node but it will have the 

identifier of the other node.  

– the receiving node will deduce that the MAD message is not its own message and was sent by 

another node, hence that there is a conflict. 

Because MAD messages should be sent to the whole network, and because OLSR has an 

optimized mechanism, called MPR-flooding, to transmit information to the whole network, it is 

natural to reuse this mechanism for MAD messages. However, the presence of conflicts may 

introduce failures in the MPR selection and thus in the MPR-flooding mechanism. Hence, an 

important contribution of this work is to introduce changes to the MPR-flooding mechanism, so 

that MAD messages are propagated effectively, and, equally important, that these changes allow 

duplicate address detection in all possible cases of conflicts. 

 

4.2. MAD Relaying Rules and Multiple Interfaces 
 

In this paper, the following definitions are needed:  

Definition 1 : Two nodes are in conflict if, at least, there exists an interface address shared by 

the two nodes.  

Definition 2 : A node X has a non conflicting symmetric neighborhood if each of its symmetric 

neighbors is not in conflict with a symmetric or asymmetric neighbor of the node X .  

Due to the specific processing involved when OLSR uses multiple interfaces nodes, the relaying 

rules proposed in [11] need to be slightly modified. The following rules are proposed:  

Rule 1 : When a node X receives a MAD message and if node X has a symmetric or asymmetric 

link with a node Y with the same main address as the address contained in the MAD message, 

then node X relays this MAD message. When relaying the MAD message the Hop−Count field is 

set to one. The hop−count field is set to 1 to handle the case of wrong calculation by node Y of 

its 2-hop neighbors identifiers due to late delivery, for some reason, of MAD messages. In 

Figure 2, if h=0 this means that the MAD message is originating from node W. In such a case 

node X receives the MAD message from node Z with hop−count = 1. But node X is also a 

neighbor of node W and should, in principle, receive the MAD message directly from node W 

with hop−count = 0 and before the one relayed by node Z. The node X relays this MAD message 

to node Y with hop−count field = 2. Hence, the mapping between 2-hop neighbors main 

addresses and their corresponding identifiers may be affected within node Y. This is why it is 

necessary to set the hop−count field of a MAD message to 1 before its retransmission by a 

neighbor of the main address contained in the MAD message. 
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          Figure 2. Hop-Count field set to 1                                  Figure 3. An illustration of Rule 2 

 

Rule 2 : When a node X receives a HELLO message from a node Y , this HELLO contains 

interface addresses of 2-hop neighbors of X (1-hop neighbors of Y). To convert such addresses 

into a main address, node X uses MAD messages that are exclusively relayed by Y, and that 

originate from these 2-hop neighbors (that is, received with a Hop-Count field equal to 1)
2
. Rule 

2 will actually avoid inconsistent main address conversions for 2-hop neighbors in node X and 

hence, will lead to a correct MPR calculation of node X.  

An example illustrating Rule 2 is presented here. In Figure 3, node X receives a HELLO 

message from node Y. This HELLO contains the interface address, U
i
:@5, of the 2-hop 

neighbor of X , node U. The question here is, what is the main address of @5 since this address 

is duplicated and shared between the interfaces Ui and Sj ? To convert this address into its actual 

main address, node X should use the MAD message relayed by Y and originating from node U. 

Otherwise, node X uses the MAD message relayed by T and originating from node S and, 

therefore, the conversion will be wrong. Applying Rule 2, node X constructs a 2-hop tuple for 

the address U
i
:@5( “main address of Y → main address of U (@1)”).  

Now when node X receives a HELLO message from node T, it proceeds in the same manner to 

bind the address Sj:@5 to its actual main address. Node X uses the MAD message coming from 

T to construct a 2-hop tuple for the address S
j
:@5(“main address of T → main address of 

S(@4)”). Thus, node X can make a correct mapping of addresses Sj:@5 and Ui:@5 into their 

actual main addresses. This is important since, according to the OLSR specifications, if there is 

no conflict in the main addresses of the 2-hop neighbors of X, this node will correctly select its 

multipoint relays. 

 

4.3. DAD-MPR Flooding Algorithm and Proof of Correctness 
 

We assume that there can be an arbitrary number of nodes having multiple interfaces with a 

duplicated address in the network. We also assume that each node in the network picks a 

globally unique random identifier. To prove the correctness of the proposed algorithm, we 

consider all the cases of the distance d between the closest conflicting nodes in the network. We 

also assume that after a given instant the network is stable without changes in its connectivity. 

We will prove that the conflicts in the network will be solved in the increasing value of the 

distance between conflicting nodes. Thus all the conflicts at distance d = 1 must be solved 

before the conflicts at distance d = 2 and so on. The conflicts will be resolved by pair of nodes 

in conflict. Moreover, we assume that when a conflict is detected it will be resolved. In the 

                                                
2
 The reader will understand here the part of Rule 1 which manages the value of the MAD’s Hop−Count 
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following, we will sometimes consider the two kinds of possible conflicts: conflicts on main 

addresses or conflict on interface addresses. We define a conflict on the main addresses if two 

nodes have the same address for their main interfaces. A conflict on interface addresses occurs 

when the same address is shared between two interfaces without these two interfaces being main 

interfaces
3
. Let us now consider the distance d between the pair of nodes in conflict in 

increasing values of d. 

 

4.3.1. Distance d = 1 

It is obvious that the MAD message allows conflict to be detected (on main address or on 

interface address) when the two nodes in conflict are one hop from each other. Something less 

obvious is that the neighborhood as given by the OLSR routing protocol is actually accurate. A 

node X having, as shown in Figure 4, two asymmetric links with two nodes with a conflict on 

interface addresses could generate a Hello indicating a symmetric link with an interface with 

@1. In such a case node A will believe that it has a symmetric link with node A whereas this is 

not the case. The following lemma allows this difficulty to be overcome. 

Lemma 1 : If the neighbor table of a node A contains a symmetric neighbor X, then there exists 

physically at least one symmetric link between A and X. 

Proof of Lemma 1 :  
– Because node A has node X as a symmetric neighbor in its neighbor table, node A has 

necessarily received a HELLO message from node X indicating that A is a symmetric or 

asymmetric link node X.  

– Because X has sent such a message, it necessarily has an entry in its neighbor table for a 

symmetric or asymmetric neighbor B with an interface address @1, indicating that X has 

received a HELLO message from B. Then two cases can occur:  

 

1. Node B is actually node A and in this case the lemma is verified. 

2. Or nodes B and A are two asymmetric neighbors of node X, with the same address @1 

as explained in Figure 4. By applying the relaying rule, Rule 1, the conflict will be 

detected and in this case it is node A that changes its address. The conflict is resolved. 

          

Figure 4. Possible inconsistency in the 1-hop neighborhood 

 

Concerning the 1-hop symmetric neighborhood we have the following lemma. 

Lemma 2 : Running the DAD-MPR flooding algorithm ensures that each node in the network 

has a non conflicting 1-hop symmetric neighborhood (i.e. the detected conflicts will be 

resolved). 

Proof of Lemma 2 : We assume that a symmetric neighbor, say X1, of a node A is in conflict 

with a symmetric or asymmetric neighbor, say X2, of the same node A (Figure 5). 

                                                
3
 The main interface is the interface holding the main address 
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Figure 5. The correctness of the 1-hop symmetric neighbors 

 

– By applying Rule 1, node A receives and relays the MAD messages of node X2.  

– The symmetric neighbor X1 detects the conflict and changes its address.  

 

Hence the 1-hop neighborhood of node A contains no duplications. 

 

4.3.2. Distance d = 2 

A persistent conflict between two nodes at distance 2 implies that a node at distance 1 of these 

two nodes has a conflicting symmetric neighborhood. This is in contradiction with Lemma 2. 

 

4.3.3. Distance d = 3 

This case is shown in Figure 6. We first consider that the conflict between A and D is on the 

main address. The MAD message sent by A is relayed by B and C according to Rule 1. Thus 

node D changes its address following the duplicate address detection. We now consider that the 

conflict between A and D is on interface addresses. In such a case node, Rule 1 will not allow 

node C to relay the MAD sent by A since the main address on node A (and thus the originator 

address of its MAD) is not the main address of node D. However, since A and D do not have the 

same main address, B has to select C as a multipoint relay4 and thus the usual MPR flooding will 

deliver the MAD message sent by A to node D. The conflict will be detected and resolved.  

 

              
 

Figure 6. Distance = 3                                                      Figure 7. Distance = 4 

 

 

4.3.4. Distance d = 4 

Let us now suppose that the nodes holding some duplicated addresses are 4 hops away from 

each other. For notation convenience we call these nodes node A and node E, see Figure 7. By 

definition there is at least one path of 4 hops from node A to node E. We can assume that the 

three nodes on this path have non duplicated addresses, otherwise we will fall into the previous 

                                                
4
 B has to cover node D through a MPR node 
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cases of a distance between nodes with address duplication of 3 hops or less. We know that in 

this case the duplication is detected and then resolved. We now intend to prove that a conflict at 

distance d = 4 on interface addresses will be detected and resolved. For that purpose we will use 

the following lemma.  

Lemma 3 : If the address conflicts between A and E are not conflicts of main addresses, they do 

not introduce defaults in MPR selection of node C.  

Proof of Lemma 3 : By hypothesis, A and E have different main addresses, and they will send 

MAD messages, each with a different (originator) main address. B and D, the neighbors of, 

respectively, A and E, will send HELLO messages, which may include a conflicting interface 

address @I of A and E respectively. However, because of Rule 2, C will use the MAD coming 

from B (i.e. originating from A), to convert the address @I in HELLO messages of B into a main 

address. The address obtained is then the main address of A, and C deduces that it has a 2-hop 

neighbor with the main address of A via node B. Similarly, using MAD messages coming from 

D and HELLO messages originated by D, C will deduce that it has a 2-hop neighbor with the 

main address of E via node D. Because the 2-hop neighbors A and E have different main 

addresses, the MPR calculation in C will cover them properly, hence the lemma is proved.  

We assume that nodes A and E are in conflict on an interface address but that they have different 

main addresses. We also know that there are no other duplicated addresses on the path. 

According to the previous lemma, the MPR calculation in C will cover properly A and E, the 

MAD sent by E and relayed by D (Rule 1) will also be relayed by nodes C and B according to 

the usual MPR flooding rule. Thus, the duplication is detected and then resolved.  

We now intend to prove that a conflict at distance d = 4 on a main interface address will be 

detected and resolved. This configuration is shown on Figure 7.  For that purpose we will use 

the following lemma.  

Lemma 4 : If the conflict A ↔ E is not detected then there necessarily exists another neighbor F 

of D that D has selected as an MPR to reach a node G different from node B holding the same 

main address @2.  

Proof of Lemma 4 : If the conflict is A ↔ E is not detected then necessarily B is not covered by 

a multipoint relay (e.g. C ) selected by D otherwise the MAD sent by E will reach B and then 

node A according to Rule 1. Thus, main address @2 must held by another node (G) than node B. 

There must be an intermediate node
5
 between node D and node G called node F that D has 

selected as an MPR to reach node G. This concludes the proof of Lemma 4.  

We can now prove by contradiction that 4-hop conflicts cannot occur. Let us assume a stable 

network situation where no (more) conflicts are resolved by MAD detection, and let us assume 

there is a 4-hop conflict on a network (E,D,C,B,A).  

 

1.    Applying Lemma 4 on the network (E,D,C,B,A), there must be a node F chosen as an 

MPR by D to reach a node G with the main address @2 (and G ≠ B). 

2.    There is now a 4-hop conflict between B and G. By hypothesis, this conflict is not 

detected. Lemma 5 can be applied to the nodes (G,F,D,C,B) and hence there must be a 

node H chosen as an MPR by F to reach a node I with the main address @3. 

3.    But then because F is an MPR of D, the MAD messages from C will reach I : a conflict 

will be detected, which contradicts the hypothesis.  

This concludes of the proof for d = 4. 

4.3.5. Distance d ≥≥≥≥ 5 

Let us now suppose that the two nodes holding some duplicated addresses are at least 5 hops 

away from each other. Following the previous results, we know that all the conflicts at distance 

                                                
5
 Otherwise node B and G will be at three hops which contradicts the considered hypothesis 
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d ≤ 4 will be detected and resolved. Thus, on a shortest path between the two nodes in conflict 

there will not be any conflict in the 2-hop neighborhood of any node. Then, the MPRs will be 

accurately computed and the MPR flooding will ensure a proper propagation of the MAD 

message from a node to its node in conflict. This concludes of the proof for d ≥5 and the proof 

of the correct operation of the proposed MAD algorithm. 
 

4.4. Alternate MAD Relaying Rules 

 
Section 4.2 presented a solution for relaying MAD messages, which relied on two rules: the first 

rule was a rule for repeating the MAD messages, from and to neighbors; the second rule was a 

rule for MPR calculation. One issue with this previous approach is that 2-hop conflicts must be 

resolved before one can be sure that the MAD messages are successfully transmitted over the 

entire network. An ideal property would be that the MAD messages reach all the nodes in the 

network irrespectively of potential address duplications. This property can be achieved if the 

MPR flooding continues to work in the presence of address duplication. One solution is 

therefore to base the selection of MPRs not on addresses but on node identifiers. With the 

assumption that node identifiers are globally unique in the network, one can be sure that there 

will not be identifier duplications at two hops from a given node and thus the selection of MPRs 

will be correct. This solution can be simply implemented, the selection of the MPRs must 

follow the principle defined in the OLSR protocol except that the basis for selection must be the 

node identifiers i.e. the 2-hop coverage must be considered not on the addresses but on the node 

identifiers. This is achieved in this section by providing an alternative to the second rule. Rule 2 

is replaced by a Rule 2
bis :  

 

Rule 2
bis

 : the MPR calculation is modified, by using node identifiers. Each address is converted 

into a node identifier (using a method described later): as a result the node computing its MPR 

set, has its 1-hop and 2-hop topology represented by links between node identifiers.  

 
(a) Proof  

The previous proofs (for different distances) for Rule 1 and Rule 2, apply for Rule 1 and Rule 

2
bis

 except for the case of the distance d = 4. In the case of d = 4, however, because the MPR 

calculation is performed on node identifiers, and because node identifiers are theoretically 

unique, there can be no node identifier duplication, and no defective MPR selection. Therefore, 

the DAD messages from a conflicting node will reach the other conflicting node which is 4 hops 

away, and hence no such conflict can persist indefinitly. 

 

(b) Method of address conversion to node identifiers  

The goal is to obtain the 1-hop neighborhood and the 2-hop neighborhood with node identifiers 

in place of addresses.  

Converting main addresses of 1-hop neighbors to node identifiers is easily done: when receiving 

the MAD messages from neighbors, the main address can be identified to be the address of a 

neighbor, and the node identifier is given. Hence the node may record the information mapping 

the main addresses of neighbors to their identifiers.  

Converting main addresses of 2-hop neighbors to node identifiers is less direct: however the 

information is obtained thanks to the fact that MAD messages from 2-hop neighbors are always 

retransmitted by 1-hop neighbors. Such MAD messages are identified by the fact that they arrive 

with a hop−count field (corrected by Rule 1 if necessary), equal to 1; in the following, they are 

called 2-hop MAD messages. The receiver node can thus maintain the information 2-Hop 

Identifier Table: (1-hop neighbor main address, 2-hop neighbor addresses list, 2-hop neighbor 

identifier) in or in addition to, the MID/MAD information base. Now taking advantage of the 

fact that conflicts at distance 1 to 3 are resolved anyway by Rule 1, it is known that 1-hop 
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neighbors will retransmit the 2-hop neighbors MAD messages (2-hop MAD messages for the 

receiver) that all have different addresses: otherwise there would be a 2-hop conflict, necessarily 

resolved. Thus the mapping deduced from the 2-Hop Identifier Table, “(neighbor main address, 

2-hop neighbor main address) → 2-hop neighbor identifier” is unique (and corresponds to 

reality).  

Note, that the information contained in the 2-Hop Identifier Table, should also be used for Hello 

messages processing (converting interface addresses into main addresses) so that the 2-hop 

neighbor main address in the 2-hop tuple is the actual main address.  
 

 
 
 

Figure 8. Example of topology 
 

 
(c) Example  

An example of such a conversion method is presented here. In the topology of Figure 8, 5 

nodes, A, B, C, D, and E are present. Node A is considered. It receives:  

– MAD messages from neighbor @1 with identifier IDB 

– MAD messages from neighbor @2 with identifier IDC 

– MAD messages through neighbor @1 from originator @3 with identifier IDD (2-hop MAD    

message). 

– MAD messages through neighbor @2 from originator @3 with identifier IDE (2-hop 

MAD message).  
Now Hello messages from node B include the information: originator address @1; link with @3 

symmetric (and also interface address of A symmetric).  

When A receives such Hello messages, it understands that it has a symmetric neighbor, with 

address @1, and also that one of its 2-hop neighbors has the address @3. Because A received 

the MAD messages through @1 with identifier IDD for @3, it will assume that the identifier 

corresponding to that @3 is IDD. It also knows from previous MAD messages from B, that the 

identifier for neighbor address @1 is IDB.  

Hence it deduces that it has a 2-hop neighbor with identifier IDD through the neighbor with 

identifier IDB. Now even though E has the same address @3 as D, the same method will make A 

realize that it has a 2-hop neighbor with identifier IDE through the neighbor with identifier IDC. 

This is the basis for a safe MPR calculation on identifiers. 
 

5. IMPLEMENTATION OF DAD-MPR FLOODING PROTOCOL 

DAD-MPR flooding protocol is implemented as an extension to OLSR to support 

autoconfiguration. This implementation is based on the implementation of NOA-OLSR [15], a 

totally different autoconfiguration algorithm that was developed at Niigata University, itself 
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based on OOLSR6 the INRIA object oriented re-implementation of OLSR protocol in the C++ 

programming language. The generation and processing of MAD (Multiple Address Declaration) 

message is mainly based on the implementation of OLSR MID (Multiple Interface Declaration) 

message. Only the autoconfiguration rules related to single interfaces [11] are implemented. 

 

6. CONVERGENCE OF DAD-MPR FLOODING PROTOCOL 
The NS-2 simulator does not support the combination of the multiple interfaces module [12] and 

the OLSR ad hoc routing protocol [1]. This is due to the fact that NS-2’ MAC layer does not 

support multi-channel. However, we were able to interpolate results obtained through separate 

measurements performed for single interface nodes scenarios. The results can easily be 

estimated considering a n-interfaces node as n nodes connected to each other each one having 

an interface operating on a different radio channel. Those nodes are connected together using a 

very high bandwidth wired link with no packet latency, which will constitute an equivalent 

multiple wireless interfaces node. Hence, the obtained results can be considered reliable for a 

scenario with multiple interfaces nodes operating with OLSR routing protocol.  

To evaluate the latency of address duplication detection using DAD-MPR flooding protocol, the 

merger of more than two networks generating massive address duplications is simulated. The 

nodes in each network are randomly placed in a square area of 1.0 x 1.0. The simulations were 

performed on MANETs with nodes moving from their starting points to a chosen destination in 

such a way that the length of the intersection area after merge is equal to a given value l (see 

Figure 9). 
 

 
 

Figure 9. Length of the intersecting area after merge 

 

As an illustration, Figure 10 and Figure 11 show the positions of nodes in 3 networks of 40 

nodes each before and after the merger. The length of the intersection square area l is equal to 

0.70.  

 

          
 

Figure 10. Before the merger                              Figure 11. After the merger 

                                                
6
 http://hipercom.inria.fr/OOLSR/. 
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The code used for simulations is compiled in a specific library (libolsr_static_plugee.a). It 

contains the core files for the OLSR protocol implementation with autoconfiguration and a 

simple simulator support. The code used for running simulations is composed of three modules, 

oolsrsimple.cc, liboolsr.py, and madAutoConfSimul.py (see Figure 12). The module 

oolsrsimple.cc is a wrapper used to use libolsr_static_plugee.a library and the Python functions 

there. The library liboolsr.py is a small Python library to create basic simulations, and 

madAutoConfSimul.py is the Python program used to make simulations. 
 

 
 

Figure 12. Components of the autoconfiguration simulator 

 

 

The simulations were run for a period of 100s. No mergers were simulated in the first 30 

seconds to allow the pre-configured nodes in each network to calculate their MPR sets and to 

setup their routing tables. There is no MAC, hence no contention or collision, the transmission 

delay is uniform, and there is no mobility after merge. The parameters of the simulation are: the 

radio range (R: 0 to 1) of each node, the number of nodes (N) in each network, the number of 

networks merging (nb-part: 1 to 4), and the length of the intersecting square (l: 0 to1) after 

merge. In the following, we discuss the challenge of detecting all duplicated addresses in a 

reasonable time when a merger of several networks containing duplicates occurs. The main 

parameter to compute is the duration the DAD-MPR flooding algorithm takes to detect all 

address conflicts after the merger. We discuss several merger scenarios by varying the values of 

the simulation parameters cited above.  

At the beginning each network is a copy of each other and every node x of each network m, m ≥ 

2, has the same address as the node x of the network 1 and has the same position but translated.  

Figure 13 shows the duration of address duplications detection, when 2, 3, and 4 networks 

merge by varying the number of nodes in each network. The radio range R of each node is set to 

0.40 and the length of the intersecting area l is set to 0.70. We notice here that all the durations 

of address conflicts detection are ≤ 5s (one period of MAD message). In this case, either the 

networks form a 1-hop network after merge (all nodes are 1-hop neighbors of each other) and 

one period of MAD message suffices to the MAD messages to reach all the nodes, or the MPR 

sets in the networks computed before the merger continue to cover all the nodes after the 

merger. These situations occur when the radio range of the nodes and the length of the 

intersecting area are relatively high as it is the case here. 
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           Figure 13. Duration of conflicts                                 Figure 14. Duration of conflicts  

           detection/Number of nodes                                        detection/Radio range R 

 

Figure 14 shows the duration of address duplications detection during the merger of two 

networks of 50 nodes each, by varying the radio range of the nodes. The length of the 

intersecting area l is set to 0.70. As we can see on this figure, there exist address conflicts 

detection durations > 5s. This happens when the resulting network after the merger is a multi-

hop network and the MPR sets in the original networks do not cover all the nodes after the 

merger. In fact, some of the MAD messages need to wait for the recalculation of the MPRs in 

the resulting network and hence to wait, at least, for the second period of MAD message after 

the merger to be propagated to the whole network. In addition, when a node detects an address 

conflict and changes its address, it must declare itself with the new address to the other nodes. 

Consequently, the neighbor tables, the MPR sets, and the topology tables are updated by at least 

its neighbors taking into account this new address, and therefore generating more latency in 

propagating the MAD messages and detecting the remaining address conflicts. That is why the 

duration of duplicate addresses detection can be more than 10s (two periods of MAD message) 

in some conflictual cases. Finally, when the radio range of the nodes is high enough, the 

network tends to become a 1-hop network and the address duplications are detected during the 

first MAD message period. 

 

To get more accurate results by simulations and confirm the robustness of the proposed 

autoconfiguration protocol, it is better that the resulting network after the merger contains at 

least 5 hops. That way, DAD-MPR flooding protocol can be faced to more complicated 

scenarios depending on the distance d between the nodes in conflict [11]. For this purpose, the 

length of the intersecting area l is set to 0.0, in such a way that there exists at least a link 

between the original networks after the merger (see Figure 15 and Figure 16).  

 

              
 

              Figure 15. Position of the nodes                            Figure 16. Position of the nodes  

              before the merger (l = 0.0)                                     after the merger (l = 0.0) 
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Also, it was not easy in the conducted simulations to generate connected network topologies 

because of the random character of the positions of the nodes in the square area of 1.0 x 1.0. 

Therefore, to increase the chances to get a connected network topology, we vary the number of 

nodes N in each network and the radio range of the nodes R in such a way that the density of 

neighbors D in the network is kept equal to 10
7
. Let us denote by S the surface of the square 

area where the nodes are randomly placed, and by Sx the surface of the area covered by the radio 

range R of node x (see Figure17). Hence, we have Sx = πR2 and (S/πR2)D = N. Therefore, since 

the surface of the square area where the nodes are placed is of size 1.0x1.0, the interaction 

between the radio range R and the number of nodes N in the network to keep the value of D 

equal to10 is expressed as  R =
D

π N
. 

 
Figure 17. The area covered by the radio range R 

 

 

The numbers of nodes used in the following simulations and their corresponding values of the 

radio range parameter R for D =10 are presented in Table 1. 

Table 1.  Correspondence between R and N 

 

Radio 

range R 
0.15 0.17 0.20 0.22 0.25 0.27 0.30 0.35 0.40 0.45 0.50 

 

Number of 

nodes N 

140 110 79 65 51 44 35 25 20 15 10 

 

Figure 18 shows the durations of address duplications detection during the merger of two 

networks with a density of neighbors D = 10 and by varying the radio range of the nodes. The 

length of the intersecting area l is set to 0.0. Here, the durations of conflicts detection vary from 

10.59s for R = 0.15 to 3.59s for R = 0.50 which are reasonable values. One can notice that the 

                                                
7
 An approach to topology control based on the principle of maintaining the number of neighbors of every node 

equal or slightly below a specific value k, was proposed in [16]. The value of k that guarantees connectivity of the 

network with high probability was estimated. Setting k = 9 produces a network which is connected with probability 

at least 0.95 for numbers of nodes in the range 50-500. The sizes of the networks in simulations belong to this range. 
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only difference between this figure and Figure 14 is that in this figure the durations of address 

conflicts detection for the values of R ≤ 0.35 are a little bit higher than those reported in Figure 

14. This is due to the fact that the numbers of nodes after the merger in this figure vary from 280 

nodes to 100 nodes for R ≤ 0.25 and are higher than the one in Figure 14, which is fixed and 

equal to 100 nodes. However, the durations of conflicts detection for R > 0.35 are almost the 

same in both figures because the networks tend to become a 1-hop networks and the address 

duplications are detected during the first MAD message period.  

 

                        
 

             Figure 18. Duration of conflicts                                 Figure 19. Duration of conflicts 

             detection/Radio range R                                              detection/Number of conflicts 

             (density of neighbors D = 10) 

 

 

Now rather than considering fully duplicated networks, we compute the durations of address 

duplications detection by varying the number of duplicated addresses after the merger. Figure 

19 shows the durations of address duplications detection during the merger of 2 networks of 50 

nodes each. The radio range R is set to 0.25 and l is set to 0.0. The number of address conflicts 

vary from 5 to 50 addresses. In this figure the durations of conflicts detection vary from 3.14s 

for 5 address conflicts to 5.80s for a network containing 50 address conflicts.  

 

 
 

 

Figure 20. Duration of conflicts detection / Number of hops 

 

 

The same simulation parameters as in Figure 18 are used in Figure 20; however, the durations of 

address conflicts detection reported in Figure 20 are function of the approximative number of 

hops in the network after the merger. This number of hops is calculated by dividing the length 

of the square area where the nodes are placed by the radio range R. We see here that even for 

networks containing more than 6 hops, the duration of address conflicts detection remains 

limited (≈10.5s).  
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7. CONCLUSIONS 

The autoconfiguration procedure proposed in this paper mainly relies on an efficient and proven 

duplicate address detection algorithm. A special control message MAD (Multiple Address 

Declaration) conveys a random identifier with the addresses of the node to detect address 

duplications. Due to specific processing when OLSR uses multiple interfaces nodes, the 

relaying and processing rules for the MAD messages proposed in [11] are modified. A formal 

proof of correctness of this new duplicate address detection scheme for multiple interfaces 

nodes is given in this paper. The results of the simulation experiments show that the proposed 

DAD-MPR flooding protocol can efficiently detect and resolve address duplications within 

seconds, even if the addresses in the networks are fully duplicated. 
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