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ABSTRACT 

In this paper, novel enhanced Cognitive Radio Network (CRN) is considered by using power control 

where secondary users (SUs) are allowed to use wireless resources of the primary users (PUs) when PUs 

are deactivated, but also allow SUs to coexist with PUs while PUs are activated by managing 

interference caused from SUs to PUs. Therefore, a novel finite horizon adaptive optimal distributed 

power allocation (FH-AODPA) scheme is proposed by incorporating the effect of channel uncertainties 

for enhanced CRN in the presence of wireless channel uncertainties under two cases. In Case 1, 

proposed scheme can force the Signal-to-interference (SIR)of the SUs to converge to a higher target 

value for increasing network throughput when PU’s are not communicating within finite horizon. Once 

PUs are activated as in the Case 2, proposed scheme cannot only force the SIR’s of PUs to converge to a 

higher target SIR, but also force the SIR’s of SUs to converge to a lower value for regulating their 

interference to Pus during finite time period. In order to mitigate the attenuation of SIR’s due to channel 

uncertainties the proposed novel FH-AODPA allows the SIR’s of both PUs’ and SUs’ to converge to a 

desired target SIR while minimizing the energy consumption within finite horizon. Simulation results 

illustrate that this novel FH-AODPA scheme can converge much faster and cost less energy than others 

by adapting to the channel variations optimally. 
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1    Introduction 

Cognitive Radio Network (CRN) [1] is a promising wireless network since CRN can 

improve the wireless resource (e.g. spectrum, power etc.) usage efficiency significantly by 

implementing more flexible wireless resource allocation policy [2]. In [3], a novel secondary 

spectrum usage scheme (i.e. opportunistic spectrum access) is introduced. The SUs in SRN can 

access the spectrum allocated to PUs originally while the spectrum is not used by any PU. 

Moreover, the transmission power allocation plays a key role in cognitive radio network 

protocol designs. The efficient power allocation cannot only improves the network performance 

(e.g. spectrum efficient, network throughput etc.), but also guarantees the Quality-of-Service 

(QoS) of PUs. A traditional scheme to protect transmission of PUs is introduced in [4] by 

imposing a power constraint less than a prescribed threshold referred to as interference 

temperature constraint [5] in order to contain the interference caused by SUs to each PU.  

 Research Supported by NSF ECCS#1128281 and Intelligent System Center. 
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Motivated by this idea, many researchers have utilized transmission power allocation for 

enhanced CRN subject to interference constraint. Authors in [6] proposed a centralized power 

allocation (CPA) to improve the enhanced cognitive radio network performance by balancing 

the signal-to-interference ratios (SIR) of all PUs and SUs. However, since centralized power 

allocation scheme requires the information from every PU and SU which might not be possible, 

distributed power allocation (DPA) is preferred for enhanced CRN since information from 

other PUs and SUs is not needed. In [7-8], authors developed distributed SIR-balancing 

schemes to maintain Quality-of-Service requirement for each PU and SU. However, wireless 

channel uncertainties which are critical are not considered in these works [1-8]. 

  For incorporating channel uncertainties into DPA, Jagannathan and Zawodniok [9] 

proposed a novel DPA algorithm to maintain a target SIR for each wireless receiver in cellular 

network under channel uncertainties. In [9], an adaptive estimator (AE) is derived to estimate 

slowly time varying SIR model which can be changed with varying power and channel 

uncertainties, and then adaptive DPA is proposed to force actual SIR of each wireless user 

converge to target SIR. Motivated from this idea, channel uncertainties have also been included 

into the developed novel finite horizon adaptive optimal DPA scheme. 

In this paper, a novel finite horizon adaptive optimal distributed power allocation (FH-

AODPA) for PUs and SUs in enhanced CRN with channel uncertainties is proposed. Based on 

the special property of enhanced CRN (i.e. introduced SUs can use PU’s wireless resource 

when PUs are deactivated, also SUs are allowed to coexist with PUs while PUs are activated by 

managing interference caused from SUs to PUs properly), FH-AODPA can be developed under 

two cases: Case 1 PUs are deactivated while in Case 2 PUs are activated. In Case 1, since PUs 

are deactivated and SUs would dominant CRN, proposed FH-AODPA has to force the SIRs of 

SUs to converge to a higher target value in order to increase the CRN utility within finite 

horizon. However, in Case 2, since PUs are activated, proposed FH-AODPA has to not only 

force the SIRs of the SUs to converge to a low target value to guarantee QoS for PUs, but also 

increase network utility by allocating the transmission power properly for both PUs and SUs 

during finite time period.  

Therefore, according to the target SIRs, the novel SIR error dynamics with channel 

uncertainties are derived first for PUs and SUs under two cases. Second, by using idea of 

adaptive dynamic programming (ADP), the novel adaptive value function estimator and finite 

horizon optimal DPA are proposed without known channel uncertainties for both PUs and SUs 

under two cases. It is important to note that proposed FH-AODPA scheme cannot only forces 

each PU’s and SU’s SIR converge to target SIRs respectively in two cases, but also optimizes 

the power allocation during finite convergence period which is more challenging compared due 

to terminal state constraint. The finite horizon optimal DPA case has not been addressed so far 

in the literature. Compared with infinite horizon, finite horizon optimal DPA design should 

optimize the network utility while satisfying the terminal constraint [14]. Meanwhile, proposed 

FH-AODPA algorithm being highly distributive in nature does not require any inter-link 

communication, centralized computation, and reciprocity assumption as required in a centrally 

control wireless environment. 

This paper is organized as follows. Section II introduces the background included cognitive 

radio network and wireless channel with uncertainties. Next, a novel adaptive optimal 

distributed power allocation (AODPA) scheme is proposed along with convergence proof for 

both PUs and SUs in enhanced CRN under two cases in Section III. Section IV illustrates the 

effectiveness of proposed adaptive optimal distributed power allocation in enhanced CRN via 

numerical simulations, and Section V provides concluding remarks. 
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2    Background 

2.1 Enhanced Cognitive Radio Network (CRN) 

As shown in Figure 1, the general enhanced Cognitive Radio Network (CRN) can be 

classified into two types of sub-networks: Primary Radio Network (PRN) and Secondary Radio 

Network (SRN) which include all PUs and SUs in enhanced CRN respectively. In order to 

improving network utilities (e.g. spectrum efficiency etc.), SUs are introduced in enhanced 

CRN to share the wireless resource (e.g. spectrum etc.) with PUs which usually exclusive 

network resource in other existing wireless networks (e.g. WLAN, WiMAX, etc.). On the other 

hand, similar to traditional wireless networks, QoS of PUs have to be guaranteed in enhanced 

CRN even though SUs coexist. Therefore, SUs in enhanced CRN need to learn the wireless 

communication environment and decide their communication specifications (e.g. transmission 

power, target SIR, etc.) to not only maintain the QoS of PUs, but also increase the network 

utility such as spectrum efficiency and so on.  

 

Figure 1.EnhancedCognitive Radio Network 

 

Due to special property of enhanced CRN, traditional wireless network protocol (e.g. 

resource allocation, scheduling etc.) might not be suitable for CRN.  Therefore, novel protocol 

is extremely needed to be developed for enhanced CRN. Using the enhanced CRN property, 

novel protocol has to be separated into two cases: Case 1 PUs are deactivated; Case 2 PUs are 

activated. In Case 1, since SUs dominant the enhanced CRN, enhanced CRN network protocol 

has to improve the SRN performance as much as possible. However, in Case 2, enhanced CRN 

network protocol has to not only guarantee QoS of PUs, but also increase CRN network utility 

by allocating resource to both PUs and SUs properly.  

2.2 Channel uncertainties 

It is important to note that wireless channel imposes limitations on the wireless network 

which also includes the cognitive radio network. The wireless link between the transmitter and 

the receiver can be simple line-of-sight (LOS) or non LOS, or combining LOS and non LOS. In 

contrast to a wired channel, wireless channels are unpredictable, and harder to analyze since 
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more uncertain elements (e.g. fading, shadowing etc.) are involved. In this paper, three main 

channel uncertainties (i.e. path loss, the shadowing, and Rayleigh fading) are considered. Since 

these main wireless channel uncertainties factors can attenuate the power of the received signal 

and cause variations in the SIR at the receiver significantly, it is very important to understand 

these before proposing novel adaptive optimal DPA scheme for cognitive radio network. The 

details are given as follows. 

In [10], assuming path loss, received power attenuation can be expressed as the following 

inverse n-th power law

 
n

ij

ij
d

h
h =

                                                            

(1) 

where h is a constant gain which usually is equal to 1 and
ijd is the distance between the 

transmitter of th
j user to the receiver of th

i user and n is the path loss exponent. Note that the 

value of path loss exponent (i.e. n ) is depended on the characteristic of wireless communication 

medium. Therefore, path loss exponent n have different values for different wireless 

propagation environments. In this paper, n is set to 4 which is normally used to model path loss 

in the urban environment. Moreover, the channel gain ijh is a constant when mobility of multiple 

wireless users is not considered. 

  Further in large urban areas, high buildings, mountains and other objects can block the 

wireless signals and blind area can be formed behind a high rise building or between two 

buildings. For modeling the attenuation of the shadowing to the received power, the term ζ1.010

is used to model as [11-12], whereζ is defined to be a Gaussian random variable. In next 

generation wireless communication system included cognitive radio network, the Rayleigh 

distribution is commonly used to describe the statistical time varying nature of the received 

envelope of a flat fading signal, or the envelope of an individual multipath component. In [10], 

the Rayleigh distribution has a probability density function (pdf), )(xp , given as: 
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(2)  

where x is a random variable, and 2σ is known as the fading envelope of the Rayleigh 

distribution. 

 Since all of these factors (i.e. pass loss, shadowing and Rayleigh fading) can impact the 

power of received signals and SIR of multiple users, a channel gain factor is used and 

multiplied with transmitted power to present the effect from these wireless channel 

uncertainties. The channel gain h can be derived d as [10-11]: 

( ) 21.0
10,,, XdXndfh

n ⋅⋅== − ζζ                                                                         (3) 

where nd − represents the effect from path loss, ζ1.010 corresponds to the effect from shadowing. 

For presenting Rayleigh fading, it is usually to model the power attenuation as 2
X , where X is a 

random variable with Rayleigh distribution. Obviously, the channel gain h is a function of time. 

3    Proposed finite horizon adaptive optimal distributed power 

allocation (FH-AODPA) scheme 

In this section, a novel finite horizon adaptive optimal distributed power allocation (FH-

AODPA) scheme is proposed to optimize the power consumption by forcing the SIRs of the 

PUs and SUs in enhanced CRN to converge to desired target SIRs within finite time under two 

cases (i.e. Case 1: PUs are deactivated, Case 2: PUs are activated) even with unknown wireless 

channel uncertainties respectively. In Case 1, since PUs are deactivated, proposed FH-AODPA 

scheme can force SUs’ SIRs converge to a high target SIR in order to increasing the network 
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capacity. In Case 2, proposed FH-AODPA scheme cannot only guarantee the PUs’ 

communication quality by forcing PUs’ SIRs converge to a desired target SIR, but also allow 

SUs to coexist with PUs in enhanced CRN by forcing their SIRs converge to a low target SIR 

which maintain the interference temperature constraints. 

Next, the SIR time-varying model with unknown wireless channel uncertainties is introduced 

for PUs and SUs. Subsequently, we setup the value function for PUs and SUs in enhanced CRN 

under two cases respectively. Then, a model-free online tuning scheme is proposed to learn the 

value function of PUs and SUs adaptively for two cases within finite time, and then based on 

different cases we develop the finite horizon adaptive optimal distributed power allocation for 

PUs and SUs by minimizing the corresponded value function that is learned. Eventually, the 

convergence proof is given. Meanwhile, without loss of generality, lth PU and thm SU are 

selected to derive finite horizon adaptive optimal distributed power allocation for convenience 

respectively.  

3.1    Dynamic SIR Representation for PUs and SUs with Unknown Uncertainties 

In previous power allocation schemes [5-8], only path loss uncertainty is considered. In 

addition, without considering the mobility of PUs and SUs, the mutual interference )(tI is held 

constant which is actually inaccurate in practical cognitive radio network. Therefore, in this 

paper, more uncertainties factors included path loss, shadowing and Rayleigh fading are 

considered together and both channel gain h and the mutual interference )(tI are assumed to be 

slowly time-varying. According to [9], the SIRs, )()( tRtR
SU

m

PU

l , at the receiver of lth PU and
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where )(),( tItI
SU

m

PU

l is the mutual interference for lth PU and thm SU, SU

m

PU

l PtP ),( are the 

transmitter power of lth PU and thm SU, and }{},{ SUsPUs are the sets of PUs and SUs 

respectively. 

 Differentiating (4) on both sides, (4) can be expressed as 
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In other words, 
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Then, equation (8) can be represented for lth PU and thm SU respectively as 
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(11) 

Using equation (11), SIR dynamics of each PU (i.e. }{PUsl ∈ ) and SU (i.e. }{SUsm ∈ ) can be 

obtained without loss of generality. Moreover, it is observed that the SIR dynamics for PUs and 

SUs is a function of wireless channel variation from time instant k to 1+k . However, due to 

uncertainties, wireless channel variation cannot be known beforehand which causes the DPA 

scheme development for PUs and SUs more different and challenging, especially for finite 

horizon optimal designing. For solving this challenging issue, a novel finite horizon adaptive 

optimal DPA method is proposed as next. 
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3.2    Value function setup for finite horizon adaptive optimal DPA in enhanced 

CRN 

As introduced above, two cases in enhanced CRN need to be considered in proposed 

AODPA scheme (i.e. Case 1: PUs are deactivated; Case 2: PUs are activated). The value 

function for PUs and SUs will be setup differently for the two cases. The details are given as 

follows. 

Case 1: PUs are deactivated 

In Case 1, since PUs are deactivated, wireless resource (e.g. spectrum etc.) allocated to PUs 

will be free. Therefore, proposed FH-AODPA scheme would force SUs’ SIRs converge to a 

high target SIR, SU

Hγ ,in order to improving the performance of enhanced CRN (e.g. spectrum 

efficiency, network capacity, etc.) within finite horizon. Therefore, the SIR error dynamics for 

SUs in enhanced CRN can be represented by using equation (11) as: 
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Moreover, 
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where SIR error in Case 1 as SU

H

SU

km

SU

km Re γ−= 1,

,

1,

,
, SU

Hγ is the high target SIR for SUs under Case 1, 

and augmented state TSU

H

SU

km

SU

km eE ][ 1,

,

1,

, γ= . Then, according to [14] and equation (12c), the cost 

function for thm SU in Case 1 can be defined within finite time as 





 −=∀

=
                                  )(

1,...,1,0       )(
1,

,

1,

,

1,

,

1,

,

1,

,

1,

,1,

, SU

Nm

SU

Nm

TSU

Nm

SU

km

SU

km

TSU

kmSU

km
EPE

NkEGE
J

                                                

(13) 

where 0
1,

, ≥SU

kmG is the solution of the Riccati equation [14], and
sNT is the final time constraint. 

The optimal action dependent value function )(•V of thm SU in Case 1 is defined as: 
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Using Bellman equation and cost function definition (13), we can formulate the following 

equation by substituting value-function into Bellman equation as 
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,
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Next after incorporating the terminal constraint in the value function and (15), slowly time 

varying 1,

,

SU

kmΘ matrix can be expressed as 
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,

1,,

,

1,,

,

1,,

,1,

,
)()(
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and 1,...,1,0 −=∀ Nk  
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Next, according to [14], the gain of the optimal power allocation for thm SU under Case 1 

can be represented in term of value function parameters, 1,

,

SU

kmΘ 1,...,1,0 −=∀ Nk , as 

1,,

,

11,,

,

1,

,

1,

1,

1,

,

11,

,

1,

1,

1,

,
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, )()(])([
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km
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SU
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TSU
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SUSU
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υυυ ΘΘ=+= −

+
−

+                
(16) 

It is important to note that even Riccati equation solution, 1,

,

SU

kmG , is known, solving the 

optimal design gain 1,

,

SU

kmK for thm SU under Case 1 still requires its SIR error dynamics (i.e.

1,

,

1,

, ,
SU

km

SU

km BA ) which cannot be known due to channel uncertainties. However, if the parameter 

vector 1,

,

SU

kmΘ , 1,...,1,0 −= Nk can be estimated online, then thm SU’s SIR error dynamic is not 

needed to calculate finite horizon optimal DPA gain. Meanwhile, SIR of PUs in enhanced CRN 

will not be considered since they are deactivated in Case 1. 

Case 2: PUs are activated 

     In Case 2, proposed FH-AODPA scheme should not only force PUs’ SIRs converge to a 

desired target SIR (i.e. PUγ ) for maintaining their QoS, but also force SU’ SIRs converge to a 

low target SIR (i.e. SU

Lγ ) in order to coexist with PUs. Therefore, the SIR error dynamics for lth

PU and thm SU can be expressed as 

2,

,
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,
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In the other words, 
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,
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,
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,
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,
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,
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,
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,
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where SIR error in Case 2 for PU and SU as PUPU

kl

PU

kl Re γ−= 2,

,

2,

,
, SU

L

SU

km

SU

km Re γ−= 2,

,

2,

,
, SU

L

PU γγ , is the 

desired target SIR for PUs and high target SIR for SUs under Case 2, and augmented state
TSU

L

SU

km

SU

km

TPUPU

kl

PU

kl eEeE ][,][ 2,

,

2,

,

2,

,

2,

, γγ == . Then, according to the same theory and derivation 

as Case 1, slowly time varying 2,

,

2,

, , SU

km

PU

kl ΘΘ matrices for PU and SU in Case 2 can be expressed 

respectively as: 

.
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Next, the gain of 

the optimal power allocation for lth PU and thm SU under Case 2 can be represented in term of 

value function parameters, 2,

,

PU

klΘ , 2,

,

SU

kmΘ , 1,...,1,0 −=∀ Nk , respectively as  
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,

12,,

,

2,

,

2,

1,

2,

,

12,

,

2,

1,

2,

,

2,2,

,

)()(])([

)()(])([

SUE

km

SU

km

SU

km

SU

km

TSU

km

SU

km

SU

km

TSU

km

SUSU

km

PUE

kl

PU

kl

PU

kl

PU

kl

TPU

kl

PU

kl

PU

kl

TPU

kl

PUPU

kl

AGBBGBSK

AGBBGBSK

υυυ

υυυ

ΘΘ=+=

ΘΘ=+=

−
+

−
+

−
+

−
+

                

(18) 

Similar to Case 1, once value function parameters 2,

,

PU

klΘ , 2,

,

SU

kmΘ for lth PU and thm SU under Case 

2 have been tuned, the finite horizon optimal power allocation can be obtained for PU and SU 

in Case 2 by using (18). 
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3.3 Model-free online tuning adaptive estimator for value function 

In this section, proposed finite horizon adaptive optimal approach derives a novel estimator 

which is used to estimate the value function for PUs and SUs in CRN under two cases 

respectively. After that, finite horizon optimal power allocation design will be derived by using 

learned value function parameters for PUs and SUs under two cases.  The details are given as 

follows.  

3.3.1 Adaptive estimator of value function and Θ matrix under two cases 

Case 1: PUs are deactivated 

Before deriving the adaptive estimator (AE), the following assumption is asserted. 

Assumption 1 [15]: The value function, ),(
1,

,

1,

,

SU

km

SU

kmEV υ , can be represented as the linear in the 

unknown parameter (LIP). 

 Then, using adaptive control theory [19] and (14), the value-function for mth SU in enhanced 

CRN under Case 1can be represented in vector form as 

NkzkNWzzzEV
SU

km

TSU

m

SU

km

TSU

km

SU

km

SU

km

TSU

km

SU

km

SU

km ,...,0   )()()()(),(
1,

,

1,1,

,
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,
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,
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,
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,
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,
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, =∀−==Θ= σθυ
                

(19) 

where TSU

km

T

m

TSU

km

SU

km

TSU

m

SU

km

SU

km EEzkNWvec )]()[(),()()( 1,

,

1,

,

1,

,

1,1,

,

1,

, υσθ =−=Θ= and =1,

,

SU

kmz

1,

,

1,

1,

21,

1, ,..,)[(
SU

knm

SU

knm

SU

km zzz − ])(,
21,

,

SU

knmz is the Kronecker product quadratic polynomial basis vector [20] 

for thm SU in enhanced CRN under Case 1, )(•vec function is constructed by stacking the 

columns of matrix into one column vector with off-diagonal elements [16]. Moreover, )(•σ is 

the time-dependent regression function for the value function parameter estimation 1,

,

SU

kmθ . It is 

important to note that )( 1,

,

1,

,

SU

Nm

SU

Nm vec Θ=θ is considered as the known terminal constraint in finite 

horizon optimal DPA problem. Therefore, it is obvious that target parameter 1,SU

mW for mth SU 

and regression function )(•σ should satisfy )0()( 1,1,

, σθ TSU

m

SU

Nm W= . 

Based on relationship between value function and cost function [16], cost function of thm SU 

under Case 1can also be represented in term of 1,

,

SU

kmΘ as 

NkzkNW

zzzEVEJ

SU

km

TSU

m

SU

km

TSU

km

SU

km
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(20) 

Next, the value function of mth SU in Case 1, ),(
1,

,

1,

,

SU

km

SU

kmEV υ , can be approximated by using 

adaptive estimator in terms of estimated parameter 1,

,
ˆ SU

kmΘ as 

NkzkNWzEV
SU

km

TSU

km

SU

km

TSU

km
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km
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,
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, =∀−== σθυ
                            

(21) 

where 1,

,
ˆ SU

kmW is the estimated value of mth SU’s target parameter vector 1,

,

SU

kmθ at time skT under 

Case 1. 

It is observed that mth SU’s Bellman equation in Case 1 can be rewritten as

0),()()(
1,

,

1,

,

1,

,

1,

1, =+−+
SU

km

SU

km

SU

km

SU

km ErEJEJ υ . However, this relationship does not hold when we apply 

the estimated matrix 1,

,
ˆ SU

kmΘ . Hence, using delayed values for convenience; the residual error 

associate with (21) can be expressed as ,()(ˆ)(ˆ 1,

1,

1,

1,

1,

,

SU

km

SU

km

SU

km ErEJEJ −− +− FTBE

Wkm

SU

km e ,

1,

1, ) =−υ , i.e. 
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ErEJEJe
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(22a) 

where 1,

1,

1,

,

1,

1, )1()(
SU

km

SU

km

SU

km zkNzkNZ −− +−−−=∆ σσ , and FTBE

Wkme , is Bellman equation residual error for 

the finite horizon scenario of mth SU under Case 1. Next, the dynamics of (22a) can be 

represented as 
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,1, =∀∆+= ++ υ
                                        

(22b) 

Besides considering FTBE

Wkme , , the estimation error FC

Wkme , due to the terminal constraint needs to be 

considered and therefore given 

)0()ˆ( 1,

,

1,

,, σθ TSU

km

SU

Nm

FC

Wkm We −=                                                                                       (23) 

Next, we define the auxiliary residual error vector and terminal constraint estimation error 

vector can be defined as 
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∆+Γ=Ξ −−
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where Λ is a known dimension matching matrix ,(....),([ 1,

1,

1,

1,

1,

1,

1,

1,

SU

ikm
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km ErEr −−−−− =Γ υ )]
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SU

km Z −− ∆=∆Z ].... 1,

1,

SU

ikmZ −−∆ , << i0 1−k and }{SUsm∈∀ . Then the dynamics of auxiliary 

residual error vector (24) are generated similar as (23) and revealed to be
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SUFTBE

km WZ . 

To force both the Bellman equation and terminal constraint estimation error converge to 

zero, the update law of the mth SU’s time varying matrix 1,

,
ˆ SU

kmΘ in Case 1 can be derived as 

])()()([])[(ˆ 1,

,

1,

,

1,,

,

1,1,,

,

1,11,

,

1,

,

1,

,

1,

1, Λ−Γ−Ξ+ΞΨΨΨ= −
+

SU

Nm

TSU

km

TSUFC

km

SU

W

TSUFTBE

km

SU

W

SU

km

TSU

km

SU

km

SU

kmW θαα
                

(25) 

where Λ−∆=Ψ )0(1,

,

1,

, σSU

km

SU

km Z and 10
1, << SU

Wα . Substituting (25) into (24) results 
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(26) 

Then defining the parameter estimation error of mth SU under Case 1 as 1,

,

1,1,

,
ˆ~ SU

km

SU

m

SU

km WWW −= , 

dynamics of estimation errors of mth SU’s adaptive estimator parameter in Case 1 can be 

expressed as 
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Next, the estimation of mth SU’s optimal design under Case 1 will be derived based on tuned 

parameter 1,

,
ˆ SU

kmΘ as 
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(28a) 

Then, using (10), the mth SU’s adaptive optimal DPA design under Case 1 can be expressed as 
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Case 2: PUs are activated 

     Similar to Case 1, the value-function for mth PU and mth SU in CRN under Case 2 can be 

estimated in vector form respectively as 
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(29) 

where 2,

,

2,

, , SU

km

PU

kl zz are Kronecker product quadratic polynomial basis vector for lth PU and mth SU 

in enhanced CRN under Case 2. 

     Next,the update law of lth PU’s and mth SU’s time varying matrices, 2,

,

2,

,
ˆ,ˆ SU

km

PU

kl ΘΘ , in Case 2 

can be derived respectively as 
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where tuning parameter 10
2, << PU

Wα and 10
2, << SU

Wα . Then, dynamics of estimation errors for lth

PU’s and mth SU’s adaptive estimator parameter in Case 2 can be represented respectively as 
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(31) 

     Then, we can derive the finite horizon adaptive optimal DPA design for lth PU and mth SU in 

enhanced CRN under Case 2 based on tuned parameter 2,

,
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ˆ,ˆ SU
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kl ΘΘ , 1,...,1,0 −=∀ Nk , 

respectively as: 

2,

,

2,

,

2,,

,

12,,

,

2,

,

2,

,

2,

1,

2,

,

2,

,

2,,

,

12,,

,

2,

,

2,

,

2,

1,

ˆ)ˆ(ˆ:SU

ˆ)ˆ(ˆ:PU

SU

km

SU

km

SUE

km

SU

km

SU

km

SU

km

SU

km

PU

kl

PU

kl

PUE

kl

PU

kl

PU

kl

PU

kl

PU

kl

IzIPmth

IzIPlth

υυυ

υυυ

υ

υ

ΘΘ−==

ΘΘ−==

−
+

−
+

                                    

(32) 

Eventually, the stability of value function estimation, adaptive DPA estimation, and adaptive 

estimation error dynamics for PUs and SUs in two cases are considered in next section. 

3.3.2 Closed-loop finite horizon adaptive optimal DPA system stability for PUs and SUs 

in enhanced CRN 

     Since proposed finite horizon adaptive optimal DPA is designed for enhanced CRN PUs and 

SUs in two cases, the closed-loop stability will be analyzed under two cases respectively. 

Case 1: PUs are deactivated 

In this case, it will be shown that mth SU’s time-varying matrix,
kl ,Θ , 1,...,1,0 −=∀ Nk , and 

related value function estimation errors dynamic are Uniformly Ultimately Boundednes (UUB) 

when PUs in enhanced CRN are deactivated. Further, the estimated finite horizon adaptive 

optimal distributed power allocation will approach the optimal power allocation within a small 

ultimate bound. Next the initial system states (i.e. SIR errors of SUs) are considered to reside in 

the compact set which in turn is stabilized by using the initial stabilizing input 1,

,0

SU

kmυ . Further 

sufficient condition for the adaptive estimator tuning gain 1,SU

Wα is derived to ensure the all future 

SUs’ SIR errors will converge close to zero. Then it can be shown that the actual finite horizon 

adaptive DPA approaches the optimal power allocation for SUs in Case 1 within ultimate 

bound during finite time period. 

 Before introducing the convergence proof, the algorithm represented the proposed finite 

horizon adaptive optimal distributed power allocation is given as follows.  
 

Algorithm 1:Finite Horizon Adaptive Optimal Distributed Power Allocation for mth  

SU in enhanced CRN under Case 1 (i.e. PUs are deactivated) 

1:   Initialize: 0=1,

,
ˆ SU

kmW and implementing admissible policy 1,

0,

SU

mυ . 

2:   while { ss TktkT )1( +<< }do 

3:          Calculate the value function estimation errors 1,,

,

SUFTBE

kmΞ and 1,,

,

SUFC

kmΞ . 

4:          Update the parameters of the value function estimator 

5:     ])()()([])[(ˆ 1,

,

1,

,

1,,

,

1,1,,

,

1,11,

,

1,

,

1,

,

1,

1, Λ−Γ−Ξ+ΞΨΨΨ= −
+

SU

Nm

TSU

km

TSUFC

km

SU

W

TSUFTBE

km

SU

W

SU

km

TSU

km

SU

km

SU

kmW θαα  

6:          Update finite horizon adaptive optimal DPA based on estimated 1,

,

SU

kmΘ matrix. 

7:           1,

,

1,,

,

11,,

,

1,

,

1,

,

1,

,
ˆ)ˆ(ˆˆ SU

km

SUE

km

SU

km

SU

km

SU

km

SU

km zzK υυυυ ΘΘ−=−= −  

8: 1,

,

1,

,

1,,

,

11,,

,

1,

,

1,

,

1,

1,
ˆ)ˆ(ˆ SU

km

SU

km

SUE

km

SU

km

SU

km

SU

km

SU

km IzIP
υυυυ ΘΘ−== −

+  

9:    end while 

10:If }{ sNTt < do 

11:Go to next time interval ))2(,)1[( ss TkTk ++   (i.e. 1+= kk ),  and then go back  
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12:to line 2. 

13:  else do 

14:    Stop the algorithm. 
 

 

Theorem 1.(Convergence of the Adaptive Optimal Distributed Power Allocation for SUs in 

enhanced CRN under Case 1). Let 1,

0,

SU

mυ be any initial admissible policy for the mth SU’s finite 

horizon adaptive optimal DPA scheme in Case 1 with 2/10 << ol . Within the time horizon (i.e.

],0[ sNTt ∈ ), let the mth SU’s parameters be tuned and estimation finite horizon optimal power 

allocation be provided by (25) and (28b) respectively. Then, there exists positive constant 1,SU

Wα

given as 10 1, << SU

Wα such that the mth SU’s SIR error 1,

,

SU

kme and value function parameter 

estimation errors 1,

,

~ SU

kmW are all uniformly ultimately bounded (UUB) in Case 1 (i.e. PUs are 

deactivated) within the finite time horizon. Moreover, the ultimate bounds are depend on final 

time (i.e. sNT ), bounded initial value function estimation error 1,,

0,

SUV

mB and bounded initial SIR 

error state 1,,

0,

SUE

mB . 

Proof: Consider the following positive definite Lyapunov function candidate 

( ) ( )1,

,

1,

,

~ SU

kmJ

SU

kmDk WLELL +=
                                                                                

(33) 

where ( )1,

,

SU

kmD EL is defined as ( ) 1,

,

1,

,

1,

, )( SU

km

TSU

km

SU

kmD EEEL Π= with I
21,

,

21,1,

)(2

])(1[
SU

Mm

SU

W

SU

B

S α−
=Π is positive 

definite matrix and I is identity matrix, 1,

,

1,

,

SU

Mm

SU

km BB ≤ ,and )
~

( 1,

,

SU

kmJ WL is defined as 

21,

1,

1,

,

21,

1,

1,

,

1,

,

1,

,

1,

,

])
~

[(                 

]))1()
~

()()
~

[()
~

(

SU

km

TSU

km

SU

km

TSU

km

SU

km

TSU

km

SU

kmJ

ZW

zkNWzkNWWL

−

−

∆=

+−−−= σσ

                                

(34) 

The first difference of (34) can be expressed as ( ) )
~

( 1,

,

1,

,

SU

kmJ

SU

kmD WLELL ∆+∆=∆ , and considering 

that ( )=∆ 1,

,

~ SU

kmJ WL
2

1,

1,

,

2

,

1,

1, ])
~

[(])
~

[( −+ ∆−∆ kl

TSU

kmkl

TSU

km ZWZW with value function estimator, we have 

2
1,

,

2
1,

1,

21,

21,

1,

1,

,

21,

2

1,

1,

,

2

,

1,

1,

1,

,

~
])(1[

])
~

][()(1[

])
~

[(])
~

[()
~

(

SU

km

SU

km

SU

W

SU

km

TSU

km

SU

W

kl

TSU

kmkl

TSU

km

SU

kmJ

WZ

ZW

ZWZWWL

−

−

−+

∆−−≤

∆−−=

∆−∆=∆

α

α                                                (35) 

Next considering the first part of Lyapunov candidate function
1,

,

1,

,

1,

1,

1,

1,

1,

, )()()( SU

km

TSU

km

SU

km

TSU

km

SU

kmD EEEEEL Π−Π=∆ ++ and applying the proposed FH-AODPA scheme and 

Cauchy-Schwartz inequality reveals 

2
1,

,

1,

,

2
1,

,

1,

,

1,

,

2
1,

,

1,

,

2
1,

,

1,

,

1,

,

1,

,

1,

,

1,

,

2
1,

,

1,

,

1,

,

1,

,

1,

,

1,

,

1,

,

~2)21(

)(~2ˆ2

)(~ˆ)(

SU

km

SU

km

SU

kmo

SU

km

TSU

km

SU

km

SU

km

SU

km

SU

km

SU

km

SU

km

SU

km

TSU

km

SU

km

SU

km

SU

km

SU

km

SU

km

SU

km

SU

kmD

BEl

EEBBEA

EEBBEAEL

υ

υυ

υυ

Π+Π−−≤

Π−Π++Π≤

Π−−+Π≤∆

                   

(36) 

At final step, combining the equation (34) and (36), we have 
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2
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*
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,
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21,
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,
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,

2
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*
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~~
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~
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SU
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km
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SU
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SU

W

SU

km

SU

km

SU

kmk

WZEk

WZWZ

WZEk
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WZBEkL

−
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−

−
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∆−−Π−−≤

∆−∆+

∆−+Π−−≤

∆−

∆+Π+Π−−≤∆

α

α

α

αυ

               

(37) 

Since 2/10 * << k and 10 1, << SU

Wα ,
kL∆ is negative definite and

kL is positive definite. Using 

standard Lyapunov theory [15], during finite horizon, all the signals can be proven UUB with 

ultimate bounds are dependent on initial conditions and final time
sNT . The details are 

demonstrated as following. 

Assume SIR error state and value function estimation error are initiated as a bound 1,,

0,

SUE

mB ,

1,,

0,

SUV

mB  respectively (i.e. 1,,

0,

2
1,

0,

SUE

m

SU

m BE = , 1,,

0,

2
1,

,

2
1,

1,

~ SUE

m

SU

km

SU

km BWZ =∆ − ). Using standard Lyapunov 

Theory [15], 1,

0,

SU

mE and
2

1,

,

2
1,

1,

~ SU

km

SU

km WZ −∆ for Nk ,...,2,1= can be represented as 

L

4444444 34444444 21444 3444 21

+
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∆+Π=∆+Π

∆

−
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     Using (37) and property of geometric sequence [17], equation (38) can be represented as 
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(39) 

Therefore, the ultimate bounds for SIR error value and value function estimation error can be 

represented as 
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(40) 

and 

Nk

BBBlWZ CLV

km

SUV

m

k
SU

WSUE

m

k

o

SU

km

SU

km

,...,2,1                                                                                                 

)(
2

)(1
)()2(

~ ,

,

21,,

0,

21,
21,,

0,

2
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,

2
1,

1,

=∀

≡






 +
+Π≤∆ −

α
                      (41) 

where CLE

kmB ,

. and CLV

kmB ,

, are the values of upper bounds for Nk ,...,2,1= . According to the 

representation of (40), (41) and values of 1,, SU

Wol α , it is important to note that since tuning 

parameter
2

1
0 << ol and 10 1, << SU

Wα given in Theorem 1, then 120 << ol , 1
2

)(1
0

21,

<
+

<
SU

Wα
and 

terms k

ol )2( ,

k
SU

W







 +

2

)(1
21,α

will decrease when k increase. Moreover, since initial value function 

estimation errors 1,,

0,

SUV

mB and initial SIR error value 1,,

0,

SUE

mB are bounded values, the closed-loop 

ultimate bounds CLE

kmB ,

.  (40) and CLV

kmB ,

.  (41) decrease while k increase. Further, when final time

sNT increases, the SIR error values and value function estimation errors will not only be UUB, 

but also these ultimate bounds will decrease with time. 

Remark 1: It is important to note since 1
2

)(1
0,120

21,

<
+

<<<
SU

W
ol

α
and initial value function 

estimation error 1,,

0,

SUV

mB and SIR error 1,,

0,

SUE

mB are bounded values, both term k

ol )2( ,

k
SU

W







 +

2

)(1 21,α

and the closed-loop ultimate bounds CLE

kmB ,

.  (40) and CLV

kmB ,

.  (41) will converge to zeros when time 

goes to infinite (i.e. 0,

. →CLE

kmB , 0,

. →CLV

kmB as ∞→k ) and proposed FH-AODPA will achieve 

infinite optimal DPA solution. 

Case 2: PUs are activated 

     Compared with Case 1, closed-loop stability analysis need to be done for SUs and for PUs 

since the PUs are activated. Similar to Case 1, before introducing the convergence proof, the 

proposed finite horizon adaptive optimal distributed power allocation algorithm for both PUs 

and SUs in Case 2 is given as follows. 

Algorithm 2:Finite Horizon Adaptive Optimal Distributed Power Allocation for lth  

PU and mth SU in enhanced CRN under Case 2 (i.e. PUs are activated) 

1:   Initialize: 00 == 2,

,

2,

,
ˆ,ˆ SU

km

PU

kl WW and implementing admissible policies 2,

0,

2,

0, , SU

m

PU

m υυ 2:                     

for lth PU and mth SU.
 

3:   while { ss TktkT )1( +<< } do 

4:             Calculate the value function estimation errors 2,,

,

2,,

, , SUFTBE

km

PUFTBE

kl ΞΞ and 

5:             2,,

,

2,,

, , SUFC

km

PUFC

kl ΞΞ for lth PU and mth SU. 

6:             Update the parameters of the value function estimator for lth PUand 

7:                           mth SU as 

8:  TPUFTBE

kl

PU

W

PU

kl

TPU

kl

PU

kl

PU

klWlth )([])[(ˆ:PU
2,,

,

2,12,

,

2,

,

2,

,

2,

1, ΞΨΨΨ= −
+ α  

9: ])()(                          2,

,

2,

,

2,,

,

2, Λ−Γ−Ξ+ PU

Nm
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TPUFC
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W θα  

10: TSUFTBE
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SU

W

SU

km
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kmWmth )([])[(ˆ:SU 2,,

,
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,
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,

2,

,

2,

1, ΞΨΨΨ= −
+ α  

11: ])( )(                        2,

,
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,

2,,

,

2, Λ−Γ−Ξ+ SU

Nm

TSU
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TSUFC

km

SU

W θα  
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12:          Update finite horizon adaptive optimal DPA based on estimated 2,

,

PU

klΘ , 

13:                      2,

,

SU

kmΘ matrices for lth PU and mth SU. 

14: 2,

,

2,

,

2,,

,

12,,

,

2,

,

2,

,

2,

1,
ˆ)ˆ(ˆ:PU PU
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PU
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PUE
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PU
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PU
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PU
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PU

kl IzIPlth
υυυυ ΘΘ−== −

+  

15: 2,
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SU

km

SU
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km

SU

km IzIPmth
υυυυ ΘΘ−== −

+  

16:  end while 

17:  If }{ sNTt < do 

18: Go to next time interval ))2(,)1[( ss TkTk ++   (i.e. 1+= kk ), and then go back  

19: to line 2. 

20:  else do 

21:     Stop algorithm. 

 

Theorem 2.(Convergence of the Finite Horizon Adaptive Optimal Distributed Power 

Allocation for PUs and SUs in enhanced CRN under Case 2). Let 2,

0,

2,

0, ,
SU

m

PU

l υυ be any initial 

admissible policy for lth PU’s and mth SU’s finite horizon adaptive optimal DPA scheme in 

Case 2 with 2/10 * << k . Let the lth PU’s and mth SU’s parameters be tuned and estimation 

optimal power allocation be provided by (30) and (32) respectively. Then, there exists positive 

constant 2,2, , SU

W

PU

W αα given as 10,10 2,2, <<<< SU

W

PU

W αα such that the lth PU’s and mth SU’s SIR 

error 2,

,

2,

, ,
SU

km

PU

kl ee and value function parameter estimation errors 2,

,

2,

,

~
,

~ SU

km

PU

kl WW are all UUB in Case 

2 (i.e. PUs are activated) within the finite time horizon. Moreover, the ultimate bounds are 

depend on finite time (i.e. sNT ), bounded initial value function estimation error 2,,

0,

2,,

0, , SUV

m

PUV

l BB

and bounded initial SIR error 2,,

0,

2,,

0, , SUE

m

PUE

l BB . 

Proof: Similar to the proofs in Theorem 1. 

4    Numerical Simulations 

 
Figure 2.Placement of PUs and SUs in enhanced CRN 

 
Figure 3. Activity performance of PUs in enhanced CRN 
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       In this simulation, the enhanced Cognitive Radio Network (CRN) is considered to be 
divided into 2 sub-networks: Primary Radio Network (PRN) and Secondary Radio Network 
(SRN) which included 8 PUs and 20 SUs. These PUs and SUs are placed randomly within an 
area of 9km x 9km by using a Gaussian distribution which is shown as Figure 2.  Moreover, 
power of each PU and SU in enhanced CRN is assumed to be updated asynchronously. 
Therefore, while lth PU or thm SU updates its power, the powers of all other PUs and SUs do not 

change. Wireless channel bandwidth cW is considered to be 100 kHz. Furthermore, it is well 

known that PUs in enhanced CRN will not always be activated. In this simulation, the activity 
performance of PUs is shown in Figure 3. According to Figure 3, there exists two cases (i.e. 

Case 1: PUs are deactivated during sec)1800sec,1200[sec),800sec,500[ ; Case 2: PUs are 

activated during sec)2000sec,1800[sec),1200sec,800[sec),500sec,0[ ) in enhanced CRN. In Case 1, 

since PUs are deactivated, a high threshold SIR, SU

Hγ , which each SU tries to achieve is 0.1 (-

10dB). In Case 2, to guarantee the QoS of activated PUs, a threshold, PUγ ,which each PU can 

achieve is selected as 0.1995 (-7dB) and another lower threshold SIR, SU

Lγ , which each SU tries 

to achieve is set at 0.01 (-20dB). 
Next, proposed finite horizon adaptive optimal distributed power allocation (FH-AODPA) is 

implemented for PUs and SUs in enhanced Cognitive Radio Network with channel uncertainties. 
Since wireless channel attenuations of users in enhanced CRN are different, initial PUs’ and 
SUs’ SIRs are different values (i.e. PUs: [-18.6788dB, -7.8337dB,…, -21.1189dB], SUs: [-
8.8116dB, -35.0345dB, -12.4717dB , …, -29.5028dB]).Moreover, the augment SIR error system 

state is generated as ∈= T

kkk Ez ][ υ �
���and the regression function for value function is 

generated as },...,,...,,{ 2

3

2

221

2

1 zzzzz as per (19). The design parameter for the value function 

estimation is selected as 0001.0=Wα while initial parameters for the adaptive estimator are set to 

zeros at the beginning of simulation. 

 
Figure 4.Average SIRs of PUs and SUs in enhanced CRN 

 

Figure 5. Average power allocation of PUs and SUs in enhanced CRN 
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In Figures 4 through 9, the performance of proposed finite horizon adaptive optimal 
distributed power allocation scheme is evaluated. In Figure 4, the averages of all PUs’ SIRs and 
SUs’ SIRs are shown. It is important to note that proposed FH-AODPA cannot only force SUs 

converge to low target SIR (i.e. dBSU

H 10−=γ ) when PUs are deactivated (i.e. Case 1:

}{PUsldB
PU

l ∈∀−∞=γ  during sec)1800sec,1200[sec),800sec,500[ ), but also force PUs and SUs 

converge to target SIRs (i.e. dBdB SU

L

PU 20,7 −=−= γγ ) respectively while CRN is at Case 2 (i.e. 

PUs are activated during sec)2000sec,1800[sec),1200sec,800[sec),500sec,0[ ). Also, the power 

consumptions averages of PUs and SUs are shown in Figure 5. Obviously, in Case 1, since PUs 
are deactivated, SUs increase transmission powers to improve network utility (e.g. spectrum 
efficiency). For Case 2, due to activated PUs, SUs decrease transmission power to reduce the 
inference to PUs for guarantying their QoS. 

 
Figure 6.Average of Bellman equation error. 

 

Moreover, the average of Bellman equation errors and terminal constraint errors for both PUs 
and SUs are considered. As shown in Figure 6 and 7, both average of Bellman equation errors 

and terminal constraint errors converge close to zeros during the finite horizon (i.e. ],0[ sNTt ∈

with sec2000=sNT ) which indicates that proposed scheme converges close to optimal power 

allocation while satisfying the terminal constraint for both PUs and SUs. It is important to note 
that the convergence performances are dependent upon tuning rate based on Theorem 1 and 2. 
Further, according to Theorem 1and 2, when final time sNT increases, the upper bound of average 

of Bellman equation errors and terminal constraint errors will decrease. 
 

 
Figure 7. Average of terminal constraint error 
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Figure 8. The spectrum efficiency comparison 

 
Figure 9. The comparison of cost value 

 

 

Then, in Figure 8, compared with traditional CRN power allocation schemes [5-6] which 

prohibit SUs to transmit when PUs are activated, proposed FH-AODPA scheme can increase 

the spectrum efficiency (i.e. (bits/Hz) efficiency spectrum
(Hz)Bandwidth 

(bits) Throughput CRN
= ) by allowing 

SUs coexist with PUs and allocating power to each user properly. Eventually, for the sake of 

comparison, adaptive DPA developed in [9] is extended to the enhanced CRN. As shown in 

Figure 9, proposed FH-AODPA scheme can minimize the cost function (13) more than 

adaptive DPA in [9]. Therefore, the performance developed FH-AODPA method is better than 

adaptive DPA [9]. It is important to note that the overshoots always happen at the time two 

cases switched since target SIRs and SIR errors of PUs and SUs are changed suddenly. 

Based on the results presented in Figure 4 through 9, it is important to note the proposed finite 

horizon adaptive optimal distributed power allocation scheme cannot only improve the efficient 

of enhanced Cognitive Radio Network (e.g. power, spectrum) within finite time horizon, but 

also does not require the information of channel uncertainties compared with other existing 

DPA schemes [7-8] in CRN under two cases. 

5    Conclusion 

In this work, the novel SIR error dynamics are developed for both PUs and SUs in enhanced 

cognitive radio network under two cases (i.e. Case 1: PUs are deactivated, Case 2: PUs are 

activated) with channel uncertainties. Then, using the SIR error dynamics, a novel finite 

horizon adaptive dynamic programming scheme is proposed which combines the adaptive 

estimator (AE) and idea of ADP to solve the Bellman Equation in the real time while satisfying 

the terminal state constraint and optimize distributed power allocation (DPA) for both PUs and 
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SUs in enhanced CRN under two cases within finite time horizon. The availability of past state 

values ensured that SIR error dynamics are not needed for proposed FH-AODPA design while 

an adaptive estimator (AE) generates an estimated value function and a novel finite horizon 

optimal power allocation law based on the estimation of value function. An initial admissible 

policy ensures that SIR error systems for PUs and SUs in enhanced CRN are stable for two 

cases while the adaptive estimator learns the value function and the matrix Θ , and optimal 

power allocation scheme within finite time horizon. All adaptive estimator (AE) parameters 

were tuned online using proposed update law and Lyapunov theory demonstrated the UUB of 

the overall closed-loop enhanced CRN system with ultimate bounds which are dependent on 

final time sNT and initial system conditions. When the final time is increased, ultimate bounds 

will be decreased and ultimately converging to zero as time goes to infinite. 
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