
Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

DOI : 10.5121/acij.2013.4202 7

Method-Level Code Clone Modification using
Refactoring Techniques for Clone Maintenance

E. Kodhai
1
, S. Kanmani

2

1
 Research Scholar, Department of CSE, Pondicherry Engineering College , Puducherry,

India.
kodhaiej@yahoo.co.in

2
 Department of IT, Pondicherry Engineering College, Puducherry, India.

kanmani@pec.edu

ABSTRACT

Researchers focused on activities such as clone maintenance to assist the programmers. Refactoring is a

well-known process to improve the maintainability of the software. Program refactoring is a technique to

improve readability, structure, performance, abstraction, maintainability, or other characteristics by

transforming a program. This paper contributes to a more unified approach for the phases of clone

maintenance with a focus on clone modification. This approach uses the refactoring technique for clone

modification. To detect the clones ‘CloneManager’ tool has been used. This approach is implemented as an

enhancement to the existing tool CloneManager. The enhanced tool is tested with the open source projects

and the results are compared with the performance of other three existing tools.

KEYWORDS

Code clone, Refactoring, Software maintenance.

1. Introduction

 It is generally said that code clone is one of the factors that make software maintenance

more difficult [6]. Code clone is a code fragment that is identical or similar to another. Code

clones are introduced for various reasons like reusing code by ‘copy-and-paste’. Code clone

detection techniques can be categorized based on the types of clones they can detect [4] [36].

Many clone detection approaches that can uncover duplication in large scale software systems

have been proposed [24- 28][30-31][37].

Information retrieval technique proposed in [18] is to detect trends and associations

among the clustered clone classes and determine if they provide further comprehension to assist

in the maintenance of clones. Nguyen et al. [20] have developed a clone management tool JSync

to notify developers change and its inconsistency of code clones in source files. Sandro et. al [23]

approach is to take into account detailed code clone analysis and classification as well as how the

analysis results are presented to the user in order to guide an interactive removal process.

 One technique that helps to process the code clones is Refactoring. Refactoring is a

disciplined technique for restructuring an existing body of code, altering its internal structure

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

8

without changing its external behavior [6]. By making refactoring efforts on a set of code clones,

they can be merged into a method [5, 15], a component [7], or an aspect [9].

Program refactoring is not a very simple technique to apply. Firstly, it is often very

difficult to identify which part of the program should be refactored without understanding the

basic notion of software quality. Secondly, software in practice is so large in scale that developers

have to spend a decent amount of time to inspect the whole target software. Finally, program

refactoring potentially introduces a new bug in the source code because it does require a source

code modification.

Although, numerous techniques and tools have been proposed for code clone detection

[30] and [31], only little has been known about which detected code clones are appropriate for

refactoring and how to extract code clones for refactoring. Roy [22] proposed an Integrated

Development Environment (IDE) based clone management system to flexibly detects, manage,

and refactor both exact and near-miss code clones.

Rajlich [16] use different ways of restructuring functions to remove clones. Komondor

[32] and Liu [33] suggested approaches to extract a function from the clones, which is similar to

Extract Method. These works provide extensive mechanisms for function extraction in procedural

languages. Li and Thompson [34] proposed code clone removal for the functional language

Erlang. This technique is integrated within a refactoring environment for the language. The

detection process is limited to the associated detection tool for Erlang.

The refactoring functions are performed one at a time on each duplicate code detected.

Robert Tairas [19] conclude that sub-clone refactoring should be considered to augment

refactoring performed on the entire clone. Popular development environments such as Eclipse,

semi automatic refactorings [17] implementing Visual Studio or Squeak the programmer specifies

which refactoring patterns to be applied and where to be applied.

In this paper, we show that the existing refactoring patterns [6] can be used to modify

code clones and we propose an approach to support refactoring process by applying code clone

detection techniques. Furthermore, a tool CloneManager [38] is extended to support our proposed

approach. The functionality of this tool is to find certain code clones to which the refactoring

patterns can be applied.

Existing refactoring patterns has different levels of elements for identifying refactoring

opportunities such as field, method, class, objects, etc. As the detected clones by the

CloneManager tool are methods, we need to go for identifying the method level refactoring

opportunities. Moreover, as we are extending the CloneManager tool, it becomes capable of both

detection and modification of clones as by its name.

This paper is presented in four major sections. Section 2 presents the related work. Section 3

presents the basics of refactoring. Section 4 describes the existing CloneManager tool [38].

Section 5 describes the implementation of the proposed approach. Section 6 discusses the

results obtained using our proposed approach. Finally, section 7 concludes the paper.

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

9

2. Related Work

The tool Aries developed by Yoshiki et. al [3][10] supports removal of code clones from

source code. This tool applies the characterization of code clones by some metrics, which suggest

how to remove them. A refactoring support tool was developed by them to remove code clones.

This tool is developed for detecting only two types of refactoring patterns namely extract method

and pull up method. They have evaluated the tool with the open source software ant 1.6.0.

The RefactoringCrawler tool developed by Danny Dig et. al. [8] detects refactoring

pattern or performs refactoring during component evolution, by combining Shingles encoding

with traditional semantic analyses, and by iterating the analyses until a fixed point was

discovered. They detect over 85% of the refactoring opportunities. This is mainly useful for clone

evolution than maintenance.

The CeDAR which stands for Clone Detection, Analysis, and Refactoring is developed

by Robert Tairas [2]. A unified process where the phases of clone maintenance with a focus on

clone removal (i.e., detection, analysis, and refactoring) are streamlined together within the

programmer’s working environment. In this work, the extract method refactoring pattern alone

has been developed.

The existing refactoring tool RefactoringCrawler is developed for clone evolution and not

for clone maintenance. The tools Aries and CeDAR are tools developed for clone maintenance

but with limited refactoring patterns applied such as extract method and/or pull up method.

Whereas our proposal has applied three refactoring patterns such as extract method, move method

and pull up method.

3. Program refactoring

Refactoring is the process of changing the structure of a program while maintaining all of its

functionality. There are many types of refactoring patterns such as renaming a class, changing a

method signature, extracting some code. With each refactoring patterns, a number of steps are

carried out to keep the code consistent with the original code. Each refactoring patterns includes

both a description of a refactoring opportunity i.e., a set of code fragments that should be

refactored and the corresponding procedure to perform refactoring.

Martin Fowler et al.[6] introduced a catalog for refactoring patterns where they used a

standard format to represent frequently needed refactoring process. They initially introduced 72

refactoring patterns and later the number has been increased to 93[35]. In this work we apply only

3 refactoring patterns as our detected clones are methods. They are extract method, move method

and pull up method. The following subsections will explain each of the refactoring patterns in

detail.

3.1 Extract Method Refactoring

“Extract Method Refactoring” is intended for “a code fragment that can be grouped

together”[6]. Refactoring turns this fragment into a method whose name explains the purpose of

http://www.cis.uab.edu/tairasr/

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

10

the method. The rationale is that if there is a very large method that does require some added

comments to understand its purpose, turning a fragment of code into method will increase the

understandability. Fowler also emphasizes the importance of selecting an appropriate short name

for the extracted method refactoring.

The “Extract Method” is classified into three types. They are as follows:

 Clone sets that can be removed only by extracting them and making a new method in the

same class.

 Clone sets that can be removed by extracting them and making a new method with setting

the externally defined variables as parameters of it because such variables are used in the

clone.

 Clone sets that can be removed by extracting them and making a new method with setting

the externally defined variables as parameters of it and with adding parameters of return

statement to deliver the results to the variables used in the caller.

To put it plainly, “Extract Method” means extraction of a part of existing method as a

new method, and the extracted part is replaced by a new method caller shown in Figure 1. In

general, this pattern is applied to the case that there is a too long method. In applying the pattern

to code clones, a new method, that is a code fragment of code clone, is defined and the original

code clones are replaced by the new method caller. As a result, we can modify the code clones.

Figure 1. One Scenario for Extract Method Refactoring

3.2 Move Method Refactoring

A method is used or will be used by more features of another class than by its own. It can

be moved from one class to another. As one of the most elementary refactor operations, move

method aids the reduction of a system’s complexity by moving functionality from classes

suffering too much behavior or strong coupling. By moving methods around, it can make the

classes simpler and they end up being a crisper implementation of a set of responsibilities. An

illustration of move method refactoring is shown in Figure 2.

Void printTaxi(int amount){

 String name =getTaxiName();

}
Void printBus(int amount){
 String name=getBusName();

}

System.out.println(“name:” +name);
System.out.println(“amount:”
+amount);

System.out.println(“name:” +name);
System.out.println(“amount:” +amount);

Void printTaxi(int amount){
 String name =getTaxiName();
 print(name,amount);
}
Void printBus(int amount){
 String name=getBusName();
 print(name,amount);
}
Void print(string name, int amount) {

}

}

System.out.println(“name:” +name);
System.out.println(“amount:” +amount);

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

11

Moving a method actually consists of two actions: (1) removing the method from the original

class and (2) adding the removed method to the new class.

The move method from the source class to a target class is performed as follows:

1. The tag indicating to which class the method belongs is changed from source class to target

class.

2. The entity sets of all methods accessing the method are updated according to the new tag.

3. The entity sets of all attributes that are being accessed by the method are updated according to

the new tag.

4. The method is removed from the entity set of the source class.

5. The method is added to the entity set of the target class.

Figure 2. One Scenario for Move Method Refactoring

3.3 Pull Up Method Refactoring

“Pull Up Method Refactoring” means moving identical methods in derived classes to the

base class, so it is necessary that the derived classes have common base class. Therefore, we

measure the position and distance of clones in the class hierarchy. If the base class has several

derived classes and some of them have the same method (that is, code clone), pulling up the

method can modify the code clone.

The easiest case of using Pull Up Method Refactoring occurs when the methods have the

same body, implying there’s been a copy and paste. The two methods in different classes can be

parameterized in such a way they end up as essentially the same method. In that case the smallest

step is to parameterize each method separately and then generalizes them. A special case of the

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

12

need for Pull Up Method Refactoring occurs when there is a subclass method that overrides a

superclass method yet does the same thing.

If all or most of a class’s subclasses declare the same method, then it should be pulled up

into the base class. This way it is only defined once in a central location instead of being defined

multiple times. If many of the subclasses have the same method and it should not be pulled up

into the base class, then extract superclass can be used. Refer Figure 3.

Figure 3. One Scenario for Pull Up Method Refactoring

4. Clone Manager

The existing clone detection tool CloneManager [38] is used, to detect the clones. It is

well suited as it is a metric-based code clones because they can be the target of refactoring

operations in their entirety. The tool CloneManager is developed for clone detection to

effectively and accurately detect all four types of code clones at method level in C and Java

source codes through Lexical Analysis and Metrics. The tool is implemented in Java language.

The various types of clones detected by the tool must then be classified and clustered as

clone clusters and given as output. The granularity level for clone detection process of the tool

CloneManager are methods. It means that the tool detects the functions or the methods of the

software system as clones. The tool requires users to select the project containing the necessary

files that are to be analyzed. The user is also given the choice of selecting the types of clones that

he/she wants to be detected and analyzed.

 The result of the code clone detection tool is given as clone pairs. Clone Pair (CP) is the

pair of code portions / fragments which is identical or similar to each other. Having detected the

clone pairs in each type, the results need to be given in a suitable form for review and analysis.

The cloned methods detected in each type are clustered into groups called clone clusters (CC).

Every clone pair is commutative and hence in a clone cluster all the members are associative, i.e.

every member of the clone cluster is a clone of every other member of the clone cluster. Thus the

detected clones and clusters are stored in the text files.

Employee

Employee

getName()

getName()

Engineer

getName()

getName()

Salesman

getName()

getName()

Salesman

Engineer

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

13

4.1 Final Result Set And Coverage Output

i. Duplicates.txt: Contains list of all duplicates grouped by similarity which will be

very useful for a quick overview of results and in the selection of ‘similarity groups’

for closer review, etc. The duplicates are listed as in the clustered order for easier

verification. It also contains details of the no. of lines in the cloned method, cluster

no., etc.

ii. Duplicates_summary.txt: A summary version of the ‘Duplicates.txt’ containing

information about the clone pairs and clusters without any source code. The clusters

are represented as a set of cloned method names with the method name and line no.

in the file specified along with it.

5. Proposed approach

The detected code clones can be modified automatically using refactoring technique. The

refactoring process is performed as follows. The clones are detected using the tool

CloneManager[38] and the results are documented in a text file. To perform a refactoring

process, the element(s) selected are methods in the source code. The results of the CloneManager

are method-level clones which are appropriate for refactoring process. The three types of

refactoring discussed in section 3 are implemented by our approach. This approach has been used

to enhance the clone detection tool to extend the environment to realize the three refactoring

methods.

The main window has two parts. The original source code will be displayed in the left side part

and the results of the detected clones by CloneManager tool will be displayed in the right side

part. Figure 4 shows the overall system architecture.

The following are the steps to do clone modification by applying refactoring patterns in

the proposed approach.

 Identify the possible refactoring opportunities and highlight those clones in the

right side window

 This clone in the left side window will be highlighted automatically

 Determine which refactoring pattern should be applied to the identified places

 Apply the refactoring pattern

 Assess the effect of refactoring process

 If the developer wants to reflect the changes, then the changes are store

permanently in the original code itself. Otherwise, it will not reflect the changes

in the original code

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

14

Figure 4: Extended CloneManager System Architecture

The implementation of proposed approach is carried out in four phases as follows

1. Clone Collection

2. Applying refactoring patterns

3. Behavioral verification on refactoring process

4. Confirming refactoring process

5.1 Clone Collection

Using the existing combination of clone metrics proposed in [1][21], the clone clusters are

selected from the text file resulted from the tool CloneManager. These clone metrics helps us to

identify the clone clusters that are appropriate for refactoring process. After selection of clone

clusters, the exact locations of the clones in the source code are located using the string matcher

technique.

Clone metrics namely LEN(S), POP(S) and RNR(S) are used for this purpose. Each of them

characterize a clone cluster (i.e. an equivalent of code clone) S:

 LEN(S) - The average number of token sequence of code clones in a clone cluster S

 POP(S) - The number of code clones in a clone cluster S

 RNR(S) - The ratio of non-repeated token sequence of code clone in a clone cluster S

The definition of LEN(S) and POP(S) are explicit as they are the simple count metrics.

Higher LEN(S) values mean that each code clone in a clone cluster S consists of more token

sequences. Clone Metric LEN(S) eliminates small size code clones detected.

Results of

CloneManager

Clone Collection

Highlighting the clones

Matching the

token

Source

Files

Splitting

Tokens

Apply Refactoring

Patterns

 Behavioral verification

on refactoring process

Confirming refactoring

process

Extract

Method

Move

Method

Pull Up

Method

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

15

 A clone cluster with a high value of POP(S) means that the code clones appears more

frequently in many places. A clone set who’s higher POP(S) apply good motivation for

refactoring to developers because to perform refactoring to code clones in a clone cluster appear

more frequently in software improves the maintainability.

The definition of RNR(S) metric is defined by Equation (1). If clone set S includes n code

clones, c1; c2 : : : ; cn, LOSwhole(ci) is the Length of the whole token Sequence of code clone ci.

LOSnon-repeated(ci) is the Length of non-repeated token Sequence of code clone ci, then,

 n

 ∑ LOSnon-repeated (ci)

 i=1

RNR(S) = __________________ x 100 (1)

 n

 ∑ LOSwhole (ci)

 i =1

Higher RNR(S) values mean that each code clone in a clone cluster S consists of more non-

repeated token sequences. It eliminates types of if (or if-else) blocks. It also eliminates language

dependent code clones.

The following combination of the clone metrics are used for identifying the clone cluster

1. Clone cluster whose LEN(S) and RNR(S) is the highest

2. Clone cluster whose LEN(S) and POP(S) is highest

3. Clone cluster whose RNR(S) and POP(S) is highest

4. Clone cluster whose LEN(S), RNR(S), and POP(S) is highest

These are the identified clone clusters for applying refactoring mechanisms. The clone

collector helps us to find the presence of code clones in the source code. The exact location of the

clones in the source code can be determined by clone collector. Using the string matcher

technique the clone collector matches the similarity between the source code and the cloned

codes.

 After the above steps in the browser, the code clones are highlighted using a different

background color such as yellow to show the exact location and presence of the clones in the

original source code. The remaining part of the code is left with the white background color as

such. After highlighting the clones the clone files are integrated together into a single file. The

integrated file contains all the copies of the cloned codes from the source code. This type of clone

collection is used in future by the user. i.e programmer who refer to the clones can decide which

type of refactoring pattern will be made to the clones to correct them or to remove them. Figure 5

illustration of highlighting clones.

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

16

Figure 5. Illustration of Highlighting the Clone Clusters

5.2 Applying Refactoring Patterns

In this phase the refactoring patterns extract method, move method and pull up method for

modifying the clones are applied. The steps in each of the methods are explained in the following

subsections.

5.2.1 Extract method

Make a list of all methods in the selected clone cluster. For each method, count the lines of code

and the number of statements in the method’s body. If both of those counts exceed their

corresponding thresholds, then the method should probably be extracted into multiple smaller

methods. The statement count is important because it prevents false positives from methods with

statements that span many lines. For example, a method may have just a few statements, but one

of those statements can contain a conditional expression that spans one or more screens. The line

count is less important; however, it is useful for users those who want to enforce strict policies on

how many lines a method may span.

α:= 70,β := 50

for m methods[clone set] do

if lines-of-code[m] >= α ^|statements[m]| >= β then

report (“Extract Method”, m)

Figure 6. Algorithm for Extract Method

The Extract Method algorithm is based on the assumption that a method with a large

body can most likely be split up into smaller methods. This is done by extracting chunks of

functionality from the large method into separate small methods. This algorithm also makes the

assumption that the larger the method body is, the more likely it is to have multiple chunks of

code that are mostly independent of each other. Those independent chunks of code are easily

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

17

extracted. This is not always the case; sometimes a method is so interconnected and cohesive that

there is no multiple functionality. It cannot easily be extracted into separate methods.

5.2.2 Move Method

A data class is a class that holds data but does not make use of the data itself; it merely

holds the data for other classes to use. For each class or struct in the list, count the number of

attributes and methods declared. If there is a low ratio of methods to attributes, then the

assumption is that the class is a data class and targets it as a candidate class for move method.

Once a candidate class has been found, for each attribute in the class determine the set of

methods referencing the attribute by using the forward reference chains previously built. If a

foreign method makes too many references to a number of distinct fields, then move the method

or some of its functionality into the data class. The additional check on the number of distinct

attributes is needed since some methods may reference a single attribute many times, but in fact a

temporary variable could have been used to reference the attribute only once.

α := 0.40,β := 4, µ := 2

for c classes[program] do

if |fields[c]| > α·|methods[c]| then

for f fields[c] do

for r references[f] do

m := containing-method(r)

fields-referenced[m] := fields-referenced[m] ∪ { f }

total-references[m] := total-references[m]+1

for m fields-referenced do

if total-references[m] >= β^|fields-referenced[m]| >=µ then

report(“move method”,m,c)

delete fields-referenced, total-references

Figure 7.Algorithm for Move Method

If there are duplicated methods in different classes that have no common base class, it is

difficult to apply refactoring using class hierarchy to them. In such case, the “Move Method” is a

good solution for identifying refactoring opportunities for removing code clones as shown in

figure 2.

5.2.3 Pull Up Method

This algorithm makes the assumption that multiple instances of any method in a class

hierarchy with the same method signature will be used in very similar ways. It also assumes that

methods with the same method signature and roughly the same number of lines are more likely to

have a similar purpose.

β := 20

for m methods[clone set] do

common-methods-count[m] := common-methods-count[m]+1

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

18

if common-methods-max-lines[m] < lines-of-code[m] then

common-methods-max-lines[m] := lines-of-code[m]

if common-methods-min-lines[m] > lines-of-code[m] then

common-methods-min-lines[m] := lines-of-code[m]

for m common-methods-count do

if common-methods-max-lines[m]−common-methods-min-lines[m] <= β then

report(“pull up method”,m)

Figure 8: Algorithm for Pull Up Method

5.3 Behavioral Verification on Refactoring Process

The definition of behavior preservation states that, for the same set of input values, the

resulting set of output values should be the same before and after refactoring process. So, we need

to check the behavior of the system. For this the given input software are executed before and

after to check the output of the system. (i.e) to test the results are same after refactoring process.

The tool allows the user to test that the files in the project all compile correctly before a

refactoring process is performed. This is an essential feature since one of the assumptions made

by the tool is that the code compiles correctly. Thus it is automated to check the external

behavior.

The user can test whether refactoring patterns can be applied without actually applying the

refactoring patterns. The JavaCompiler interface from the framework is used to provide a method

for the user to compile files in the project. All files specified in the project are compiled

according to the various settings specified in the project file.

To check the external behavior, the refactored source code file is converted into executable

file. Hence the file can be run on a machine to produce output file. The code file is saved for the

future reference and for the case study that is done on the source code.

5.4 Confirming Refactoring Process

If, the refactored codes do preserve the same external behavior as before, then according

to the requirement of the software developer, the software can be made to change completely and

permanently in the original source code. The tool allows output conditions to be checked by

testing. If the conditions hold, apply the refactoring to the current source code. This confirms the

refactoring.

The user interface window has two options with button named doractoring and cancel. The

user is enabled to select the dorefactoring option, if the user selects that option the code is

modified as per refactoring process and it is replaced and saved as such. If the developers don’t

want to make any changes, then the changes will not be done in original source code. For this the

user has to select the cancel option.

The tool provides facilities for undoing changes made by refactoring process. However it

leaves the management of these changes up to the user so that they can be represented as desired.

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

19

It is necessary for the tool to use its own mechanisms to undo the refactoring process, for example

by storing a textual representation in its own structure.

6 Experiments and Results

6.1 Experimental Setup

The proposed method is implemented and experimented with seven Java Projects. We

have chosen the dataset which have been already evaluated in the literature, so that it will be

helpful for us to do comparison easier. We compared our results with three of the existing tools.

To measure the accuracy of our proposed work, we use precision and recall, two standard metrics.

 Precision is the ratio of the number of relevant refactoring opportunities found to the total

number of irrelevant and relevant refactoring opportunities found.

 Recall is the ratio of the number of relevant refactoring opportunities found to the total

number of actual refactoring opportunities in the component.

Ideally, precision and recall should be 100%. Finally, we also cross checked the results

by manual inspection of the open source projects.

6.2 Datasets

We have analyzed with a medium sized program called JHotDraw 5.3 which is for

structured drawing editors of approximately 27,000 lines and to the large size program called

Eclipse which is the java text editor along user interface with 352,000 lines. Table 1 lists the

features of open source projects which are taken for the performance analysis of our

CloneManager tool.

Table 1: Projects chosen as dataset for Clone modification using refactoring

In Table 1, the second column is the list of open source program names as the input project. The

third column is the version of the project. The fourth column is the no. of lines in the source code

in thousands. The fifth column is the no. of methods in each project. The last column is the no. of

classes in each project. Table 2 shows the results for all chosen dataset.

S.No Project version Size KLOC #Methods #Classes

1 Eclipse UI 3.0 352 15894 1735

2 Struts 1.2.4 97 6044 469

3 JHotDraw 5.3 27 2038 195

4 JFreeChart 1.0.10 76 1847 436

5 JEdit 4.2 51 5418 426

6 Ant 1.6.0 180 9947 994

7 Ant 1.7.0 67 4231 778

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

20

6.3 Results

In Table 2, the 2, 3 & 4 column shows the no. of refactoring opportunities identified and

refactoring patterns applied for clone modification. The last column shows the total no. of

refactoring opportunities.

From the results, we observed, that even though eclipse UI 3.0 is the largest open source in

size, the total of number of the refactoring opportunities is very less. Next, we observed that the

total no. of refactoring opportunities in ant 1.6.0 is 87, where as in ant 1.7.0 the number is only

62. This shows that the number of refactoring opportunities reduced a lot in the next version of

ant. Finally, we observed that the number of pull-up method is nearly 20 in average for all the

projects, where as the extract method and move method varies a lot among the projects.

Table 2. No. of refactoring opportunities detected for each project

Project Extract Method
Move

Method
Pull Up Method

Total

Refactoring

opportunities

Eclipse UI 3.0 3 10 12 25

Struts 1.2.4 6 21 1 28

JHotDraw 5.3 5 0 26 31

JFreeChart

1.0.10
65 58 21 144

JEdit 4.2 20 58 23 101

Ant 1.6.0 35 29 23 87

Ant 1.7.0 32 27 03 62

6.4 Evaluation of the tool

 The table 3 shows the results produced for all the datasets to evaluate our tool. The column 3

holds [M] the number of manually detected refactoring opportunities for all the datasets. The

Column 4 holds [D] the number of refactoring opportunities detected by our tool CloneManager.

The column 5 holds [C] the number of refactoring opportunities detected correctly by our tool.

These values are used to calculate the two parameters precision and recall for evaluation. The

formula to calculate Precision = [C]/ [D] * 100 and Recall = [D]/ [M] * 100.

 Table 3: Results produced for evaluation of the tool

Project
Refactoring

patterns

Manually

detected

Refactoring

opportunities

[M]

Detected

Refactoring

opportunities

[D]

Correctly

Detected

Refactoring

opportunities [C]

Eclipse UI

3.0

Extract Method 2 3 2

Move Method 10 10 9

Pull Up Method 12 12 12

Struts 1.2.4 Extract Method 6 6 5

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

21

Move Method 23 21 21

Pull Up Method 1 1 1

JHotDraw

5.3

Extract Method 5 5 5

Move Method 0 0 0

Pull Up Method 26 26 26

JFreeChart

1.0.10

Extract Method 66 65 65

Move Method 57 58 56

Pull Up Method 20 21 20

JEdit 4.2

Extract Method 19 20 19

Move Method 58 58 58

Pull Up Method 24 23 22

Ant 1.6.0

Extract Method 36 35 35

Move Method 31 29 29

Pull Up Method 23 23 22

Ant 1.7.0

Extract Method 32 32 32

Move Method 25 27 25

Pull Up Method 03 03 03

From the results produced, the precision and recall parameters are calculated for each

refactoring patterns for all the chosen datasets. We observed that the precision percentage is

above 85 for all the datasets. Even though it is not feasible to get 100 percent for all methods, we

had many 100% results. .

We also observed that there is more number of 100 percentages in recall than precision. Moreover

the minimum percent is 90 for recall. From this we come to know that our system performance is

even higher in recall when compared to precision. This shows that almost all refactoring

opportunities detected by our tool are correct. Thus our tool proves to provide high precision and

recall, which are the best parameters for the evaluation of code clones tools.

Table 4: Evaluation parameters for all the datasets

Project [D] [C] [A] Precision in % Recall in % Time in sec

Eclipse UI 3.0 25 26 25 92 100 98

Struts 1.2.4 28 29 30 97 93 15

JHotDraw 5.3 31 31 31 100 100 05

JfreeChart 1.0.10 144 147 145 98 99 51

Jedit 4.2 101 103 103 98 98 45

Ant 1.6.0 87 88 90 99 97 56

Ant 1.7.0 62 64 62 97 100 32

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

22

Figure 9. Precision values for all datasets. Figure 10. Recall values for all datasets.

The system is also evaluated with overall detected refactoring opportunities for all

datasets. The parameters precision, recall and time taken in seconds are given for all datasets. All

these values are tabulated in Table 4 respectively. The overall Precision and recall is above 90%.

Figure 9 & 10 shows the precision and recall values in graph for all datasets.

The maximum time taken is not even 2 minutes. This shows that our system is very fast.

Finally we are able to get results for the Eclipse UI system also which is larger in size. This

proves that our system is also scalable.

6.5 Comparison of the tool

Having computed the results for all three types of refactoring patterns and modified the

clones in all datasets, we compared our results with three of the existing tools. Table 5 list outs

the existing refactoring tool along with their data.

Table 5: Existing tools data considered for analysis

Tool Name Refactoring patterns Used Projects considered

Aries [3]
Extract Method

Ant 1.6.0
Pull Up method

RefactoringCrawler [8]

Move Method Eclipse UI 3.0

Pull Up Method

Struts 1.2.4

JHotDraw 5.3

CeDAR [2] Extract Method

JfreeChart 1.0.10

Jedit 4.2

Ant 1.7.0

a) The first tool considered for analysis is Aries for refactoring process. Aries developed by

Yoshiki et. al [3] supports extract method and pull up method for code clones. Yoshiki et.

al has tested the tool with only one open source program Ant 1.6.0.

88

90

92

94

96

98

100

92

97

100
98 98

99

97

Precision…

88
90
92
94
96
98

100
96

93

100 99
98

97

100

Recall in…

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

23

b) The second tool we considered for analysis is the RefactoringCrawler developed by

Danny Dig et. al. [8] an algorithm that detects refactorings opportunities performed

during component evolution.

c) The third tool we considered for analysis is the CeDAR which stands for Clone

Detection, Analysis, and Refactoring is developed by Robert Tairas [2] . The information

about a selected clone group can be forwarded to the Eclipse refactoring engine for the

purpose of refactoring process.

Table 6: comparison with the existing tool Aries for Ant 1.6.0

 Refactoring

Patterns

No. of Refactoring Opportunities

Aries CloneManager Manual

Extract Method 32 35 36

Pull Up method 20 22 23

Total 52 57 59

Time in sec 120 56 -

From the table 6, we compared our tool results; which shows more no. of refactoring

opportunities identified in both refactoring patterns. This reveals that our tool is able to find and

do refactoring process better than Aries. The time taken to detect refactoring opportunities is also

lesser as shown in the table.

Table 7: Comparison with the existing tool RefactoringCrawler

Project

RefactoringCrawler CloneManager Manual

Move

Metho

d

Pull

Up

Metho

d

Tot

al
Move

Metho

d

Pull

Up

Metho

d

Tot

al
Move

Metho

d

Pull Up

Metho

d

Total

Eclipse UI

3.0
8 11 19 9 12 21 10 12 22

Struts 1.2.4 20 1 21 21 1 22 23 1 24

JHotDraw

5.3
0 26 26 0 26 26 0 26 26

Table 8: Comparison of the evaluation parameters with RefactoringCrawler

Project
RefactoringCrawler CloneManager

Precision% Recall% Time Precision% Recall% Time

Eclipse UI 3.0 90 86 16.38 92 96 1.38

Struts 1.2.4 100 86 4.55 97 93 0.15

JHotDraw 5.3 100 100 0.37 100 100 0.05

From table 7, we observed that the value in pull up method for struts 1.2.4 and the values

for JHotdraw 5.3 project are same. Other values are higher than the refactoringCrawler tool. This

shows that our tool is able to detect even more refactorings opportunities which are left by the

http://www.cis.uab.edu/tairasr/

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

24

refactoringCrawler tool. The values given are correctly detected by our tool[c]. The last column

list outs the values detected manually for each project.

Moreover, the precision and recall for their tool is only above 85%, where as our tool is

above 90%.Finally, the last column in each tool gives the time taken in minutes and seconds. This

shows that our tool is faster than RafactoringCrawler.

 Table 9: comparison with the existing tool CeDAR for Eixtract Method

 Project
No. of refactoring patterns

CeDAR CloneManager Manual

JfreeChart 1.0.10 62 65 66

Jedit 4.2 20 19 19

Ant 1.7.0 28 32 32

The CeDAR tool detects for Extract method alone. The value for Jedit 4.2 is the same.

The remaining two projects JfreeChart 1.0.10 and Ant 1.7.0 detect more refactoring opportunities

than CeDAR. The last column list outs the values detected manually for each project.

7 Conclusion

Thus we have proposed a method for clone modification using refactoring technique, for

the existing clone detection tool CloneManager. This proposed method is implemented as an

added feature for CloneManager tool. We used the existing refactoring patterns for clone

modification. The refactoring patterns extract method, move method, pull up method are used as

given in the literature. We have shown that our system is higher in the precision and recall and in

terms of speed.

References

[1] Eunjong Choi, Norihiro Yoshida, Takashi Ishio, Katsuro Inoue, Tateki Sano, Extracting Code Clones

for Refactoring Using Combinations of Clone Metrics, International Workshop on Software Clones

(IWSC) – 2011.

[2] Robert Tairas, Representation, Analysis, and Refactoring Techniques to Support Code Clone

Maintenance, Ph.D. Thesis – 2010.

[3] ARIES: Refactoring Support Tool for Code Clone, Yoshiki Higo, Toshihiro Kamiya, Shinji

Kusumoto, Katsuro Inoue, Proceeding 3-WoSQ Proceedings of the third workshop on Software

quality, ACM New York, NY, USA.2005.

[4] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and Ettore Merlo, “Comparison and

Evaluation of Clone Detection Tools,” IEEE Transactions on Software Engineering, Volume 33,

Number 9, September 2007, pages 577 - 591.

[5] M. Balazinska, E. Merlo, M. Dagenais, B. Lag¨ue, and K. Kontogiannis. Advanced clone-analysis to

support object-oriented system refactoring. Proc. of the 7th IEEE International Working Conference

on Reverse Engineering, pages 98–107, Nov 2000.

[6] M. Fowler, Refactoring: improving the design of existing code, Addison Wesley, 1999.

[7] S. Jarzabek and L. Shubiao. Eliminating redundancies with a “composition with adaptation”

metaprogramming technique. Proc. of ESEC-FSE’03 European Software Engineering Conference and

ACM SIGSOFT Symposium on the Foundations of SoftwareEngineering, pages 237–246, Sep 2003.

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

25

[8] Danny Dig, Can Comertoglu, Darko Marinov, Ralph Johnson: "Automated Detection of Refactorings

in Evolving Components", Proceedings of European Conference on Object-Oriented Programming

(ECOOP'06), pp 404-428, Nantes, France.2006.

 [9] M. Bruntink, A. V. Deursen, T. Tour´we, and R. V. Engelen. An evaluation of clone detection

techniques for identifying crosscutting concerns. In Proc. of the 20th IEEE International Conference

on Software Maintenance, pages 200–209, Sep 2004.

[10] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries: Refactoring support environment based on

code clone analysis. In Proc. of 8th IASTED InternationalConference on Software Engineering and

Applications, pages 222–229, Nov 2004.

[11] Eclipse Java Development Tools, http://www.eclipse.org/jdt.

[12] jEdit, http://www.jedit.org.

[13] FreeChart, http://www.jfree.org/jfreechart.

[14] JHotDraw, http://www.jhotdraw.org.

[15] Apache Ant, http://ant.apache.org.

[16] Richard Fanta and Vaclav Rajilich, “Removing Clones from the Code,” Journal of Software

Maintenance and Evolution: Research and Practice, Volume 11, Number 4, August 1999, pages 223 -

243.

[17] Emerson Murphy-Hill and Andrew Black, “Refactoring Tools: Fitness for Purpose,” IEEE Computer,

Volume 25, Number 5, September/October 2008, pages 38 - 44.

[18] Robert Tairas and Jeff Gray, “An Information Retrieval Process to Aid in the Analysis of Code

Clones,” Empirical Software Engineering, Volume 14, Number 1, February 2009, pages 33 - 56.

[19] Robert Tairas and Jeff Gray, “Sub-clones: Considering the Part Rather than the Whole,” International

Conference on Software Engineering, Research,and Practice, Las Vegas, Nevada, July 2010.

[20] Hoan Nguyen, Tung Nguyen, Nam Pham, Jafar Al-Kofahi, Tien Nguyen, Clone Management for

Evolving Software, IEEE Transactions on Software Engineering, vol. 38, Issue:5, oct 2012, pages

1008-1026.

[21] Eunjong Choi, Norihiro Yoshida, Takashi Ishio, Katsuro Inoue, Tateki Sano, Finding Code Clones

for Refactoring with Clone Metrics: A Case Study of Open Source Software, IEICE Technical Report

– 2011.

[22] Minhaz Zibran, Chanchal K. Roy, Towards Flexible Code Clone Detection, Management, and

Refactoring in IDE, International Workshop on Software Clones (IWSC) – 2011.

[23] Sandro Schulze, Martin Kuhlemann, Advanced Analysis for Code Clone Removal, GI-Workshop on

Software Reengineering – 2009.

[24] R. Koschke, “Survey of research on software clones,” Dagstuhl seminar 06301. ISSN 1682–4405 -

Duplication, Redundancy, and Similarity in Software, 2006.

[25] C. K. Roy and J. R. Cordy, “A survey on software clone detection research,” Queen’s University,

Kingston, Canada, Technical Report. 2007-541, 2007.

[26] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste and related bugs in large-

scale software code,” IEEE Transaction Software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[27] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of near-miss intentional clones using

flexible pretty-printing and code normalization,” The 16th IEEE International Conference on

Program Comprehension ’08, 2008.

[28] E. Juergens, F. Deissenboeck, and B. Hummel, “Clonedetective – a workbench for clone detection

research,” International Conference on Software Engineering ’09, 2009.

[29] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and Implementation for Investigating Code

Clones in a Software System. Information and Software Technology, 49(9-10):985{998, 2007.

[30] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable and accurate tree-based

detection of code clones,” International Conference on Software Engineering ’07, 2007.

[31] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-based code clone

detection system for large scale source code,” IEEE Transaction on Software Engineering, vol. 28, no.

7, pp. 654–670, 2002.

Advanced Computing: An International Journal (ACIJ), Vol.4, No.2, March 2013

26

[32] Raghavan Komondoor and Susan Horwitz, “Effective, Automatic Procedure Extraction,”

International Workshop on Program Comprehension, Portland, Oregon, May 2003, pages 33 - 42.

[33] Yidong Liu, “Semi Automatic Removal of Duplicated Code,” Diploma Thesis, University of

Stuttgart, Germany, 2004.

[34] Huiqing Li and Simon Thompson, “Clone Detection and Removal for Erlang/OTP within a

Refactoring Environment,” Workshop on Partial Evaluation and Semantics-Based Program

Manipulation, Savannah, Georgia, January 2009, pages 169 - 178.

[35] M. Fowler. Refactoring Catalog, http://refactoring.com/catalog/

[36] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of code clone detection techniques

and tools: A qualitative approach,” Science of Computer Programming, vol. 74, no. 7, pp. 470–495,

2009.

[37] N. Gode and R. Koschke, “Incremental clone detection”, 13th European Conference on Software

Maintenance and Reengineering ’09, 2009.

[38] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika and B. Vijaya Saranya, CloneManager : A tool for

detection of type1 and type2 code clones, International Conference on Recent Trends in Business

Administration and Information Processing, Springer digital library, Trivandrum, Kerala, India,

March 26 & 27, 2010.

	E. Kodhai1, S. Kanmani2
	1 Research Scholar, Department of CSE, Pondicherry Engineering College , Puducherry, India.
	2 Department of IT, Pondicherry Engineering College, Puducherry, India.
	KEYWORDS
	Code clone, Refactoring, Software maintenance.
	Figure 2. One Scenario for Move Method Refactoring
	Figure 3. One Scenario for Pull Up Method Refactoring
	Figure 4: Extended CloneManager System Architecture
	Figure 6. Algorithm for Extract Method
	5.2.2 Move Method
	Figure 7.Algorithm for Move Method
	If there are duplicated methods in different classes that have no common base class, it is difficult to apply refactoring using class hierarchy to them. In such case, the “Move Method” is a good solution for identifying refactoring opportunities for r...
	5.2.3 Pull Up Method
	Figure 8: Algorithm for Pull Up Method
	Table 4: Evaluation parameters for all the datasets
	Table 6: comparison with the existing tool Aries for Ant 1.6.0

