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ABSTRACT 

This paper derives new results for the hybrid synchronization of identical Liu systems, identical Lü systems, 

and non-identical Liu and Lü systems via adaptive control method. Liu system (Liu et al. 2004) and Lü 

system (Lü and Chen, 2002) are important models of three-dimensional chaotic systems. Hybrid 

synchronization of the three-dimensional chaotic systems addressed in this paper is achieved through the 

synchronization of the first and last pairs of states and anti-synchronization of the middle pairs of the two 

systems. Adaptive control method is deployed in this paper for the general case when the system 

parameters are unknown. Sufficient conditions for hybrid synchronization of identical Liu systems, 

identical Lü systems and non-identical Liu and Lü systems are derived via adaptive control theory and 

Lyapunov stability theory. Since the Lyapunov exponents are not needed for these calculations, the 

adaptive control method is very effective and convenient for the hybrid synchronization of the chaotic 

systems addressed in this paper. Numerical simulations are shown to illustrate the effectiveness of the 

proposed synchronization schemes. 
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1. INTRODUCTION 

 
A chaotic system is a very special nonlinear dynamical system, which has several properties such 

as the sensitivity to initial conditions as well as an irregular, unpredictable behaviour.  This 

sensitivity to initial conditions of chaotic systems is popularly called as the butterfly effect [1].   

Chaos is an interesting nonlinear phenomenon and has been extensively studied in the last two 

decades [1-40]. Chaos theory has been applied in many scientific disciplines such as 

Mathematics, Computer Science, Microbiology, Biology, Ecology, Economics, Population 

Dynamics and Robotics. Especially, chaos synchronization has found important applications in 

areas such as secure communications, data encryption, etc. 

 

In 1990, Pecora and Carroll [2] deployed control techniques to synchronize two identical chaotic 

systems and showed that it was possible for some chaotic systems to be completely synchronized. 

From then on, chaos synchronization has been widely explored in a variety of fields including 
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physical systems [3-4], chemical systems [5-6], ecological systems [7], secure communications 

[8-10], etc. 

 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is 

used. If a particular chaotic system is called the master or drive system and another chaotic 

system is called the slave or response system, then the idea of the synchronization is to use the 

output of the master system to control the slave system so that the output of the slave system 

tracks the output of the master system asymptotically.  

 

Since the seminal work by Pecora and Carroll [3], a variety of impressive approaches have been 

proposed for the synchronization of chaotic systems such as the OGY method [11], active control 

method [12-16], adaptive control method [17-22], sampled-data feedback synchronization 

method [23], time-delay feedback method [24], backstepping method [25-26], sliding mode 

control method [27-32], etc.  

So far, many types of synchronization phenomenon have been presented such as complete 

synchronization [3], phase synchronization [33], generalized synchronization [34], anti-

synchronization [35-37], projective synchronization [38], generalized projective synchronization 

[39-40], etc. 

Complete synchronization (CS) is characterized by the equality of state variables evolving in 

time, while anti-synchronization (AS) is characterized by the disappearance of the sum of 

relevant variables evolving in time.  

Projective synchronization (PS) is characterized by the fact that the master and slave systems 

could be synchronized up to a scaling factor, whereas in generalized projective synchronization 

(GPS), the responses of the synchronized dynamical states synchronize up to a constant scaling 

matrix .α  

It is easy to see that the complete synchronization (CS) and anti-synchronization (AS) are special 

cases of the generalized projective synchronization (GPS) where the scaling matrix Iα = and 

,Iα = −  respectively. 

In hybrid synchronization of chaotic systems [41-42], one part of the system is synchronized and 

the other part is anti-synchronized so that the complete synchronization (CS) and anti-

synchronization (AS) coexist in the system. The coexistence of CS and AS is highly useful in 

secure communication and chaotic encryption schemes. 

In this paper, we investigate the hybrid chaos synchronization of uncertain three-dimensional 

chaotic systems, viz. identical Liu systems ([43], 2004), identical Lü systems ([44], 2002) and 

non-identical Liu and Lü systems.  We consider the general case when the parameters of the 

systems are unknown. 

This paper is organized as follows. In Section 2, we provide a description of the chaotic systems 

addressed in this paper, viz. Liu system (2005) and Lü system (2002). In Section 3, we discuss the 

hybrid synchronization of identical Liu systems via adaptive control.   In Section 4, we discuss 

the hybrid synchronization of identical Lü systems via adaptive control.    In Section 5, we 

discuss the hybrid chaos synchronization of identical Lü systems via adaptive control. Section 6 

summarizes the main results obtained in this paper. 
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 2. SYSTEMS DESCRIPTION 

The Liu system ([43], 2004) is described by the Liu dynamics 

1 2 1

2 1 1 3

2

3 3 1

( )x a x x

x bx x x

x cx dx

= −

= −

= − +

&

&

&

        (1) 

where 1 2 3, ,x x x are the state variables and , , ,a b c d are positive, constant parameters of the 

system.  

The Liu system (1) is chaotic when the parameter values are taken as 

  10,   40,   2.5a b c= = =   and   4d =                                        

The state orbits of the Liu chaotic system (1) are shown in Figure 1. 

 

Figure 1.  State Orbits of the Liu Chaotic System 

The Lü system ([44], 2002) is described by 

     

1 2 1

2 2 1 3

3 3 1 2

( )x x x

x x x x

x x x x

α

γ

β

= −

= −

= − +

&

&

&

         (2) 
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where 
1 2 3, ,x x x  are the state variables and , ,α β γ are positive constant parameters of the system.  

 The Lü system (2) is chaotic when the parameter values are taken as 

  36,   3α β= =   and   20γ =                                        

The state orbits of the Lü chaotic system (2) are shown in Figure 2. 

 

Figure 2.  State Orbits of the Lü Chaotic System 

3. HYBRID SYNCHRONIZATION OF IDENTICAL LIU CHAOTIC SYSTEMS VIA 

ADAPTIVE CONTROL  

 
3.1 Theoretical Results 

 
In this section, we discuss the hybrid synchronization of identical Liu chaotic systems ([43], 

2004), where the parameters of the master and slave systems are unknown. 

As the master system, we consider the Liu dynamics described by 

1 2 1

2 1 1 3

2

3 3 1

( )x a x x

x bx x x

x cx dx

= −

= −

= − +

&

&

&

                (3) 

where 1 2 3, ,x x x are the state variables and , , ,a b c d are unknown, real ,constant parameters of the 

system. 

As the slave system, we consider the controlled Liu dynamics described by 
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1 2 1 1

2 1 1 3 2

2

3 3 1 3

( )y a y y u

y by y y u

y cy dy u

= − +

= − +

= − + +

&

&

&

              (4) 

where 
1 2 3, ,y y y are the state variables and 

1 2 3, ,u u u are the nonlinear controllers to be designed. 

The hybrid chaos synchronization error is defined by 

   

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= +

= −

              (5) 

From the error equations (5), it is clear that one part of the two chaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized (second states) so that complete synchronization (CS) and anti-

synchronization (AS) coexist in the synchronization of the chaotic systems (3) and (4). 

The error dynamics is easily obtained as 

 

( )

1 2 1 2 1

2 1 1 1 3 1 3 2

2 2

3 3 1 1 3

( 2 )

( 2 )

e a e e x u

e b e x y y x x u

e ce d y x u

= − − +

= + − − +

= − + − +

&

&

&

        (6) 

Let us now define the adaptive control functions  

   

( )

1 2 1 2 1 1

2 1 1 1 3 1 3 2 2

2 2

3 3 1 1 3 3

ˆ( ) ( 2 )

ˆ( ) ( 2 )

ˆˆ( )

u t a e e x k e

u t b e x y y x x k e

u t ce d y x k e

= − − − −

= − + + + −

= − − −

     (7) 

where ˆˆ ˆ, ,a b c and  d̂ are estimates of , ,a b c and ,d respectively, and , ( 1, 2,3)ik i = are positive 

constants. 

Substituting (7) into (6), the error dynamics simplifies to 

  

1 2 1 2 1 1

2 1 1 2 2

2 2

3 3 1 1 3 3

ˆ( )( 2 )

ˆ( )( 2 )

ˆˆ( ) ( )( )

e a a e e x k e

e b b e x k e

e c c e d d y x k e

= − − − −

= − + −

= − − + − − −

&

&

&

      (8) 

Let us now define the parameter estimation errors as 

  ˆˆ ˆ,   ,   a b ce a a e b b e c c= − = − = −   and  ˆ
de d d= −            (9) 

Substituting (9) into (8), we obtain the error dynamics as 
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1 2 1 2 1 1

2 1 1 2 2

2 2

3 3 1 1 3 3

( 2 )

( 2 )

( )

a

b

c d

e e e e x k e

e e e x k e

e e e e y x k e

= − − −

= + −

= − + − −

&

&

&

           (10) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov 

approach is used. 

We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , , ) ,

2
a b c d a b c d

V e e e e e e e e e e e e e e= + + + + + +      (11) 

which is a positive definite function on 
7.R  

We also note that 

         ˆˆ ˆ,  ,   a b ce a e b e c= − = − = −
&& && & &    and   ˆ

de d= −
&

&        (12) 

Differentiating (11) along the trajectories of (10) and using (12), we obtain 

  

2 2 2

1 1 2 2 3 3 1 2 1 2 2 1 1

2 2 2

3 3 1 1

ˆˆ( 2 ) ( 2 )

ˆˆ      ( )

a b

c d

V k e k e k e e e e e x a e e e x b

e e c e e y x d

  = − − − + − − − + + −    

  + − − + − −    

&&&

&&

 (13) 

In view of Eq. (13), the estimated parameters are updated by the following law: 

        

( )

1 2 1 2 4

2 1 1 5

2

3 6

2 2

3 1 1 7

ˆ ( 2 )

ˆ ( 2 )

ˆ

ˆ

a

b

c

d

a e e e x k e

b e e x k e

c e k e

d e y x k e

= − − +

= + +

= − +

= − +

&

&

&

&

         (14) 

where 4 5 6, ,k k k and 7k are positive constants. 

Substituting (14) into (13), we obtain 

         
2 2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 7a b c dV k e k e k e k e k e k e k e= − − − − − − −&             (15) 

which is a negative definite function on 
7.R  

Thus, by Lyapunov stability theory [45], it is immediate that the hybrid synchronization error 

, ( 1,2,3)ie i = and the parameter estimation error , , ,a b c de e e e decay to zero exponentially with 

time.  

Hence, we have proved the following result. 
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Theorem 1. The identical Liu chaotic systems (3) and (4) with unknown parameters are globally 

and exponentially hybrid synchronized via the adaptive control law (7), where the update law for 

the parameter estimates is given by (14) and , ( 1,2, ,7)ik i = K are positive constants. Also, the 

parameter estimates ˆˆ ˆ( ), ( ), ( )a t b t c t and ˆ( )d t exponentially converge to the original values of the 

parameters , ,a b c and ,d respectively, as .t → ∞ � 

3.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the 3-D chaotic systems (3) and (4) with the adaptive control law (14) and the 

parameter update law (14) using MATLAB.  

We take 

 4ik = for 1,2, ,7.i = K  

For the Liu chaotic systems (3) and (4), the parameter values are taken as 

  10,   40,   2.5,a b c= = =    4d =                           

Suppose that the initial values of the parameter estimates are 

  ˆ ˆˆ ˆ(0) 4,   (0) 12,   (0) 8,   (0) 10.a b c d= = = =  

The initial values of the master system (3) are taken as 

 1 2 3(0) 7,   (0) 11,   (0) 15x x x= = =  

The initial values of the slave system (4) are taken as 

   
1 2 3(0) 30,   (0) 18,   (0) 26y y y= = =  

Figure 3 depicts the hybrid-synchronization of the identical Liu chaotic systems (3) and (4). It 

may also be noted that the odd states of the two systems are completely synchronized, while the 

even states of the two systems are anti-synchronized. 

 Figure 4 shows that the estimated values of the parameters, viz. ˆˆ ˆ( ), ( ), ( )a t b t c t and 

ˆ( )d t converge exponentially to the system parameters  

10,   40,   2.5a b c= = =  and  4d =  

as  t  tends to infinity. 
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Figure 3.  Hybrid-Synchronization of Liu Chaotic Systems 

 

Figure 4.  Parameter Estimates ˆ ˆˆ ˆ( ), ( ), ( ), ( )a t b t c t d t  
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4. HYBRID SYNCHRONIZATION OF IDENTICAL LÜ CHAOTIC SYSTEMS VIA 

ADAPTIVE CONTROL  

 
4.1 Theoretical Results 

 
In this section, we discuss the hybrid synchronization of identical Lü chaotic systems ([44], 

2002), where the parameters of the master and slave systems are unknown. 

As the master system, we consider the Lü dynamics described by 

1 2 1

2 2 1 3

3 3 1 2

( )x x x

x x x x

x x x x

α

γ

β

= −

= −

= − +

&

&

&

                (16) 

where 
1 2 3, ,x x x are the state variables and , ,α β γ are unknown, real ,constant parameters of the 

system. 

As the slave system, we consider the controlled Lü dynamics described by 

  

1 2 1 1

2 2 1 3 2

3 3 1 2 3

( )y y y u

y y y y u

y y y y u

α

γ

β

= − +

= − +

= − + +

&

&

&

              (17) 

where 1 2 3, ,y y y are the state variables and 1 2 3, ,u u u are the nonlinear controllers to be designed. 

The hybrid chaos synchronization error is defined by 

   

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= +

= −

              (18) 

From the error equations (18), it is clear that one part of the two chaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized (second states) so that complete synchronization (CS) and anti-

synchronization (AS) coexist in the synchronization of the chaotic systems (16) and (17). 

 
The error dynamics is easily obtained as 

1 2 1 2 1

2 2 1 3 1 3 2

3 3 1 2 1 2 3

( 2 )e e e x u

e e y y x x u

e e y y x x u

α

γ

β

= − − +

= − − +

= − + − +

&

&

&

         (19) 

Let us now define the adaptive control functions  
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1 2 1 2 1 1

2 2 1 3 1 3 2 2

3 3 1 2 1 2 3 3

ˆ( ) ( 2 )

ˆ( )

ˆ( )

u t e e x k e

u t e y y x x k e

u t e y y x x k e

α

γ

β

= − − − −

= − + + −

= − + −

      (20) 

where ˆˆ ,α β and  γ̂ are estimates of ,α β and ,γ  respectively, and , ( 1, 2,3)ik i = are positive 

constants. 

Substituting (20) into (19), the error dynamics simplifies to 

  

1 2 1 2 1 1

2 2 2 2

3 3 3 3

ˆ( )( 2 )

ˆ( )

ˆ( )

e e e x k e

e e k e

e e k e

α α

γ γ

β β

= − − − −

= − −

= − − −

&

&

&

       (21) 

Let us now define the parameter estimation errors as 

   

ˆ

ˆ

ˆ

e

e

e

α

β

γ

α α

β β

γ γ

= −

= −

= −

                  (22) 

Substituting (22) into (21), we obtain the error dynamics as 

   

1 2 1 2 1 1

2 2 2 2

3 3 3 3

( 2 )e e e e x k e

e e e k e

e e e k e

α

γ

β

= − − −

= −

= − −

&

&

&

            (23) 

For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov 

approach is used. 

We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2 2 2

1 2 3 1 2 3

1
( , , , , , ) ,

2
V e e e e e e e e e e e eα β γ α β γ= + + + + +      (24) 

which is a positive definite function on 
6.R  

We also note that 

           

ˆ

ˆ

ˆ

e

e

e

α

β

γ

α

β

γ

= −

= −

= −

&&

&
&

&&

             (25) 

Differentiating (24) along the trajectories of (23) and using (25), we obtain 
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2 2 2 2

1 1 2 2 3 3 1 2 1 2 3

2

2

ˆˆ( 2 )

ˆ      

V k e k e k e e e e e x e e

e e

α β

γ

α β

γ

  = − − − + − − − + − −    

 + − 

&&&

&

  (26) 

In view of Eq. (26), the estimated parameters are updated by the following law: 

        

1 2 1 2 4

2

3 5

2

2 6

ˆ ( 2 )

ˆ

ˆ

e e e x k e

e k e

e k e

α

β

γ

α

β

γ

= − − +

= − +

= +

&

&

&

         (27) 

where 
4 5,k k and 

6k are positive constants. 

Substituting (27) into (26), we obtain 

         
2 2 2 2 2 2

1 1 2 2 3 3 4 5 6V k e k e k e k e k e k eα β γ= − − − − − −&              (28) 

which is a negative definite function on 
6.R  

Thus, by Lyapunov stability theory [45], it is immediate that the hybrid synchronization error 

, ( 1, 2,3)ie i = and the parameter estimation error , ,e e eα β γ decay to zero exponentially with time.  

Hence, we have proved the following result. 

Theorem 2. The identical Lü  chaotic systems (16) and (17) with unknown parameters are 

globally and exponentially hybrid synchronized via the adaptive control law (20), where the 

update law for the parameter estimates is given by (27) and , ( 1, 2, ,6)ik i = K are positive 

constants. Also, the parameter estimates ˆˆ ( ), ( )t tα β and ˆ( )tγ exponentially converge to the 

original values of the parameters ,α β and ,γ respectively, as .t → ∞ � 

4.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the 3-D chaotic systems (16) and (17) with the adaptive control law (20) and the 

parameter update law (27) using MATLAB.  

We take 4ik = for 1,2, ,6.i = K  

For the Lü chaotic systems (16) and (17), the parameter values are taken as 

  36,   3,α β= =    20γ =                        

Suppose that the initial values of the parameter estimates are 

  ˆˆ ˆ(0) 9,   (0) 24,  (0) 11α β γ= = =  

The initial values of the master system (16) are taken as 
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1 2 3(0) 22,   (0) 14,   (0) 30x x x= = =  

The initial values of the slave system (17) are taken as 

          1 2 3(0) 10,   (0) 28,   (0) 7y y y= = =  

Figure 5 depicts the hybrid-synchronization of the identical Lü chaotic systems (16) and (17). It 

may also be noted that the odd states of the two systems are completely synchronized, while the 

even states of the two systems are anti-synchronized. 

 Figure 6 shows that the estimated values of the parameters, viz. ˆˆ ( ), ( )t tα β and ˆ( )tγ converge 

exponentially to the system parameters 36,   3α β= =  and 20,γ = respectively, as .t → ∞  

 

 

Figure 5.  Hybrid-Synchronization of Lü Chaotic Systems 
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5. HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA 

ADAPTIVE CONTROL  

 
5.1 Theoretical Results 

 
In this section, we discuss the hybrid synchronization of identical Lü chaotic systems ([44], 

2002), where the parameters of the master and slave systems are unknown. 

As the master system, we consider the Liu dynamics described by 

1 2 1

2 1 1 3

2

3 3 1

( )x a x x

x bx x x

x cx dx

= −

= −

= − +

&

&

&

           (29) 

where 1 2 3, ,x x x are the state variables and , , ,a b c d  are unknown, real ,constant parameters of 

the system. 

As the slave system, we consider the controlled Lü dynamics described by 

  

1 2 1 1

2 2 1 3 2

3 3 1 2 3

( )y y y u

y y y y u

y y y y u

α

γ

β

= − +

= − +

= − + +

&

&

&

              (30) 

where 1 2 3, ,y y y are the state variables , , ,α β γ are unknown, real, constant parameters of the 

system and 1 2 3, ,u u u are the nonlinear controllers to be designed. 
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The hybrid chaos synchronization error is defined by 

   

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

= −

= +

= −

              (31) 

From the error equations (31), it is clear that one part of the two chaotic systems is 

completely synchronized (first and third states), while the other part is completely anti-

synchronized (second states) so that complete synchronization (CS) and anti-

synchronization (AS) coexist in the synchronization of the chaotic systems (29) and (30). 

The error dynamics is easily obtained as 

1 2 1 2 1 1

2 2 1 1 3 1 3 2

2

3 3 3 1 2 1 3

( ) ( )e y y a x x u

e y bx y y x x u

e y cx y y dx u

α

γ

β

= − − − +

= + − − +

= − + + − +

&

&

&

         (32) 

Let us now define the adaptive control functions  

  

1 2 1 2 1 1 1

2 2 1 1 3 1 3 2 2

2

3 3 3 1 1 2 3 3

ˆ ˆ( ) ( ) ( )

ˆˆ( )

ˆˆ ˆ( )

u t y y a x x k e

u t y bx y y x x k e

u t y cx dx y y k e

α

γ

β

= − − + − −

= − − + + −

= − + − −

       (33) 

where ˆ ˆˆ ˆ, , , ,a b c d ˆˆ ,α β and  γ̂ are estimates of , , , ,a b c d ,α β and ,γ  respectively, and 

, ( 1, 2,3)ik i = are positive constants. 

Substituting (33) into (32), the error dynamics simplifies to 

  

1 2 1 2 1 1 1

2 2 1 2 2

2

3 3 3 1 3 3

ˆ ˆ( )( ) ( )( )

ˆˆ( ) ( )

ˆˆ ˆ( ) ( ) ( )

e y y a a x x k e

e y b b x k e

e y c c x d d x k e

α α

γ γ

β β

= − − − − − −

= − + − −

= − − + − − − −

&

&

&

       (34) 

Let us now define the parameter estimation errors as 

   

ˆ ˆˆ ˆ,   ,   ,   

ˆˆ ˆ,   ,   

a b c de a a e b b e c c e d d

e e eα β γα α β β γ γ

= − = − = − = −

= − = − = −
       (35) 

Substituting (35) into (34), we obtain the error dynamics as 

  

1 2 1 2 1 1 1

2 2 1 2 2

2

3 3 3 1 3 3

( ) ( )a

b

c d

e e y y e x x k e

e e y e x k e

e e y e x e x k e

α

γ

β

= − − − −

= + −

= − + − −

&

&

&

              (36) 
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For the derivation of the update law for adjusting the estimates of the parameters, the Lyapunov 

approach is used. 

We consider the quadratic Lyapunov function defined by 

  ( )2 2 2 2 2 2 2 2 2 2

1 2 3

1
,

2
a b c d

V e e e e e e e e e eα β γ= + + + + + + + + +       (37) 

which is a positive definite function on 
10.R  

We also note that 

           

ˆ ˆˆ ˆ,   ,   ,   

ˆˆ ˆ,  ,  

a b c de a e b e c e d

e e eα β γα β γ

= − = − = − = −

= − = − = −

& && && & & &

&& && & &

          (38) 

Differentiating (37) along the trajectories of (36) and using (38), we obtain 

  

2 2 2

1 1 2 2 3 3 1 2 1 2 1 3 3

2

3 1 1 2 1 3 3 2 2

ˆˆ ˆ( )

ˆ ˆˆ ˆ        ( )

a b c

d

V k e k e k e e e x x a e e x b e e x c

e e x d e e y y e e y e e yα β γα β γ

    = − − − + − − − + − + −     

      + − − + − − + − − + −        

&& &&

& && &

  (39) 

In view of Eq. (39), the estimated parameters are updated by the following law: 

        

1 2 1 4 1 2 1 8

2 1 5 3 3 9

3 3 6 2 2 10

2

3 1 7

ˆˆ ( ) ,       ( )

ˆ ˆ,                    

ˆˆ ,                   

ˆ              

a

b

c

d

a e x x k e e y y k e

b e x k e e y k e

c e x k e e y k e

d e x k e

α

β

γ

α

β

γ

= − − + = − +

= + = − +

= + = +

= − +

&&

& &

&&

&

        (40) 

where , ( 4, ,10)ik i = K  are positive constants. 

Substituting (40) into (39), we obtain 

         
2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 5 6 7 8 9 10a b c dV k e k e k e k e k e k e k e k e k e k eα β γ= − − − − − − − − − −&              (41) 

which is a negative definite function on 
10.R  

Thus, by Lyapunov stability theory [45], it is immediate that the hybrid synchronization error 

, ( 1,2,3)ie i = and the parameter estimation error ,ae ,be ,ce ,de , ,e e eα β γ decay to zero 

exponentially with time.  

Hence, we have proved the following result. 

Theorem 3. The non-identical Liu system (29) and Lü system (30) with unknown parameters are 

globally and exponentially hybrid synchronized via the adaptive control law (33), where the 
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update law for the parameter estimates is given by (40) and , ( 1, 2, ,10)ik i = K are positive 

constants. Also, the parameter estimates ˆ ˆˆ ˆ( ), ( ), ( ), ( ),a t b t c t d t ˆˆ ( ), ( )t tα β and ˆ( )tγ exponentially 

converge to the original values of the parameters , , , , ,a b c d α β and ,γ respectively, as 

.t → ∞ � 

5.2 Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 
610h

−= is 

used to solve the 3-D chaotic systems (29) and (30) with the adaptive control law (33) and the 

parameter update law (40) using MATLAB.  

We take 4ik = for 1,2, ,10.i = K  

For the Liu chaotic system, the parameter values are taken as 

  10,  40,  2.5,a b c= = =   4d =                        

For the Lü chaotic system, the parameter values are taken as 

  36,   3,α β= =   20γ =                        

Suppose that the initial values of the parameter estimates are 

  ˆ ˆ ˆˆ ˆˆ ˆ(0) 7,  (0) 15,  (0) 20,  (0) 9,  (0) 12,   (0) 6,  (0) 5a b c d α β γ= = = = = = =  

The initial values of the master system (29) are taken as 

          1 2 3(0) 17,   (0) 11,   (0) 28x x x= = =  

The initial values of the slave system (30) are taken as 

          1 2 3(0) 30,   (0) 16,   (0) 12y y y= = =  

Figure 7 depicts the hybrid-synchronization of the non-identical Liu system (29) and Lü chaotic 

system (30). It may also be noted that the odd states of the two systems are completely 

synchronized, while the even states of the two systems are anti-synchronized. 

 Figure 8 shows that the estimated values of the parameters, viz. ˆ( ),a t  ˆ( ),b t  ˆ( ),c t  ˆ( ),d t  ˆ ( ),tα  

ˆ( )tβ and ˆ( )tγ converge exponentially to the system parameters 10,a = 40,b = 2.5,c =  

4,d = 36,   3α β= =  and 20,γ = respectively, as .t → ∞  
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Figure 7.  Hybrid-Synchronization of Liu and Lü Chaotic Systems 

 

Figure 8.  Parameter Estimates ˆ ˆ ˆˆ ˆˆ ˆ( ), ( ), ( ), ( ), ( ), ( ), ( )a t b t c t d t t t tα β γ  

6. CONCLUSIONS 

 
In this paper, we have deployed adaptive control method to derive new results for the hybrid 

synchronization of identical Liu systems (2004), identical Lü systems (2002) and non-identical 

Liu and Lü systems with unknown parameters. The hybrid synchronization results derived in this 

paper are established using Lyapunov stability theory. Since the Lyapunov exponents are not 
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required for these calculations, the adaptive control method is a very effective and convenient for 

achieving hybrid chaos synchronization for the uncertain three-dimensional chaotic systems 

discussed in this paper. Numerical simulations are presented to demonstrate the effectiveness of 

the adaptive synchronization schemes derived in this paper for the hybrid chaos synchronization 

of identical and non-identical uncertain Liu and Lü systems. 
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